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ABSTRACT Myelin/oligodendrocyte glycoprotein
(MOG) is found on the surface ofmyelnatfng oligodendrocytes
and external lamellae of myelin sheaths in the central nervous
system, and it is a target antigen in experimental autoimmune
encephalomyelitis and multiple sclerosis. We have isolated
bovine, mouse, and ratMOG cDNA clones and shown that the
developmental pattern of MOG expression in the rat central
nervous system coincides with the late stages of myelination.
The amino-terminal, extraceilular domain of MOG has char-
acteristics of an immunoglobulin variable domain and is 46%
and 41% identical with the amino terminus of bovine butyro-
philin (expressed in the lactating mammary gland) and B-G
antigens of the chicken major histocompatibility complex
(MHC), respectively; these proteins thus form a subset of the
immunoglobulin superfamily. The homology between MOG
and B-G extends beyond their structure and genetic mapping
to their ability to induce strong antibody responses and has
implications for the role ofMOG in pathological, autoimmune
conditions. We colocaized the MOG and BT genes to the
human MHC on chromosome 6p2l.3-p22. The mouse MOG
gene was mapped to the homologous band C ofchromosome 17,
within theM region of the mouse MHC.

Myelin of the central nervous system (CNS) is composed of
a spiraled, wrapped set of closely apposed membranes pro-
duced by the oligodendrocytes. The proteolipid proteins
(PLP and DM20) and myelin basic proteins make up the bulk
of the structural proteins of mature myelin (reviewed in refs.
1 and 2). In contrast, myelin minor proteins, such as glyco-
proteins (3), are believed to mediate glial-glial and glial-
neuronal interactions. The most extensively studied member
of this group, the myelin-associated glycoprotein (MAG) is
thought to mediate the axon-glial adhesion that precedes
myelination (4).
Although much interest has been attached to the first steps

of the myelination process, little is known about the late
stages and the factors involved. An additional minor myelin/
oligodendrocyte glycoprotein, MOG, of26-28 kDa and form-
ing dimers of 52-54 kDa, was first defined by use of a mouse
monoclonal antibody (5). MOG is located on the external
surface of oligodendrocytes in culture and mostly on the
peripheral lamellae of compact myelin sheaths in the CNS
(6-9). MOG is expressed late during brain development
relative to other, well-characterized myelin proteins (6, 10).
The external location of MOG on myelin sheaths and oligo-
dendrocytes and the late expression argue for a more specific
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FIG. 1. Nucleotide and deduced amino acid sequences of bovine
MOG cDNA. Amino acids are numbered from the N-terminal residue
of the mature protein. A putative peptide signal sequence of 28 aa
precedes the first residue ofthe mature protein. An asterisk indicates
the single potential site for N-linked glycosylation. Two putative
membrane-spanning regions are boxed. Four nonclassical polyade-
nylylation signal sequences are underlined.

role of MOG in the late stages of myelination-i.e., in
completion and maintenance of myelin integrity. The signif-
icant demyelination induced in cultures of aggregating brain
cells by anti-MOG antibodies (11), the presence ofanti-MOG
antibodies in sera of guinea pigs with chronic relapsing
experimental autoimmune encephalomyelitis (12), and the
obvious CNS demyelination in animals injected with anti-
MOG monoclonal antibodies (13) support the definition of
MOG as an important autoantigen in autoimmune demyeli-
nating diseases of the CNS, such as multiple sclerosis (14).

Abbreviations: MOG, myelin/oligodendrocyte glycoprotein; CNS,
central nervous system; BT, butyrophilin; MHC, major histocom-
patibility complex; MAG, myelin-associated glycoprotein; PLP,
proteolipid protein.
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FIG. 3. (A) Macroscopic im-
ages of MOG mRNA distribu-
tion in rat brain after in situ
hybridization (17) with 35S-
labeled rat coding cDNA on sag-
ittal brain sections of 10-, 18-,
and 31-day-old animals (a-c, re-
spectively). 1, Corpus callosum;
2, fimbria of hippocampus; 3,
internal capsule; 4, brachium in-
ferior colliculus; 5, inferior cer-
ebellar peduncle. At all stages,
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ing. (B) In situ localization of
MOG mRNAs in rat brain at the
cellular level. (a-d) Corpus cal-
losum of 13-, 18-, 25-, and 31-
day-old rats, respectively. (e-h)
Cerebellum of a 13-day-old rat.
(g and h) Higher magnification
of box in f. Autoradiograms
were photographed under dark-
field (a-d, f, and h) and bright-
field (e and g) illumination after
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g and h, x320.)
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FIG. 4. Alignment, starting from the first residue of the mature protein, of the predicted extracellular domain of chicken B-G antigen (clone
bgl4/8; ref. 26), bovine MOG, and bovine BT with the Ig variable-region (V) motif (27). Uppercase letters in the Ig V motif represent the single
amino-acid code. Lowercase letters identify the amino acids with functional or physical properties as follows: a, acidic (D, E); f, aliphatic (L,
I, V); h, hydrophobic (L, I, V, M, Y, F); o, aromatic (Y, F, W); p, polar (K, R, H, D, E, Q, N, T, S); s, small (A, G, S, T, V, N, D). The positions
of matches in the three sequences with the V motif are highlighted. Amino acid identities among the three proteins are boxed.

been described (21), as have the SHH1 and SHH2 haplotypes
(22), from which the R27 and 12205 recombinants were
derived (K.F.L., unpublished work). Strains BTBRTF/Art
and C3H/DiSn represent wild-type chromosomes and were
homozygous, as was the partial t haplotype tw124. The other
t haplotypes were heterozygous with wild type and congenic
on C3H/DiSn.

RESULTS
Cloning and Sequencing of MOG cDNAs. A bovine brain

cDNA library was screened with the two degenerate primers
corresponding to amino-terminal (9) and internal bovine
MOG sequences. Three positive clones were plaque-purified
and sequenced. The longest (1600 bp) (Fig. 1), comprised a
short 5' untranslated sequence of 10 bp, followed by an ATG
start site, an open reading frame of 738 bp, and a 3' untrans-
lated sequence of 852 bp including a poly(A) tail of 14 nt.
Sequences of probes 1 and 2 were found within this clone.

In the amino acid sequence deduced from MOG cDNA, a
signal peptide of 28 aa was identified. It precedes the amino
terminus of the mature protein, which contains one site,
Asn-Ala-Thr (aa 31-33), that fits the consensus sequence
[Asn-Xaa-(Ser/Thr)] for N-linked glycosylation, consistent
with the N-glycosylated nature of the protein (8, 9). Both
these results suggest that the amino-terminal segment of
MOG is located on the extracytosolic side of the membrane.
Hydropathy analysis (23) ofMOG confirmed the presence of
an amino-terminal signal peptide and two potential mem-
brane-spanning regions typical ofintegral membrane proteins
(Fig. 1). By using bovine cDNA as a probe, the homologous
rat and mouse MOG cDNAs were also cloned and se-
quenced. The deduced amino acid sequences of MOG from
these three species are highly conserved (Fig. 2).

Developmental Expression of Rat MOG mRNA. To verify
the myelin/oligodendrocyte specificity and determine the
developmental pattern of MOG gene expression, cloned
cDNA was hybridized in situ to rat brain sections at different
stages of the myelination process. The most conspicuous
labeling was located in areas known to be enriched in white
matter (Fig. 3). In contrast, the areas of gray matter showed
no evident labeling. A MOG-specific signal was first detected
in the caudal part of the brain 10 days after birth. It became
progressively more intense in white matter areas of the
midbrain and forebrain and appeared maximal at 18 days in
these areas. At 31 days, labeling was less intense, especially
in the caudal region. A full-length cDNA probe for myelin
proteolipid, hybridized in parallel to similar sections, showed
identical anatomical distribution of the labeling throughout
the brain, except that the signal was far more intense (data not
shown). RNase pretreatment of the sections eliminated all
hybridization signals (not shown).

Microscopic analysis clearly demonstrated MOG mRNA
accumulation in individual cells, as well as clusters or rows

of cells whose number and distribution were identical to
those of oligodendrocytes, in the corpus callosum (Fig. 3B
a-d) and the cerebellar white matter (Fig. 3B e-h). At high
magnification, the silver grains appeared clustered around
and above oligodendrocyte cell bodies (Fig. 3B g-h). The
localization of MOG mRNA in the oligodendrocyte
perikaryon was strikingly similar to that observed for PLP
(proteolipid protein) mRNA (data not shown).
Amino Acid Sequence Comparison. The amino-terminal

extracellular domain of MOG (aa 1-118) is most homologous
to that of two non-myelin proteins, with 46% identity to
bovine BT (25), which is expressed in the mammary gland
during lactation, and 41% identity to B-G antigens (26) of the
chicken major histocompatibility complex (MHC) region
(Fig. 4) (24). The extracellular domains ofMOG, BT, and B-G
share key features with immunoglobulin (Ig) variable region-
like domains (27): (i) an invariant tryptophan; (ii) two cys-
teines, appropriately spaced (73 aa for MOG and BT, 71 aa
for B-G) and assumed to form the characteristic disulfide
bridge; and (iii) a small series of conserved amino acids with
similar physical properties (Fig. 4).
Chromosomal Localation of MOG and BT Genes. The

MOG and BT genes were located by in situ hybridization on
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FIG. 5. Chromosomal mapping of the human (A) and mouse (B)
MOG genes. An idiogram illustrates the distribution of the labeled
site for 3H-labeled rat. MOG probe: 12.7% of the silver grains were
located on human chromosome 6, and 69.2% of these mapped to
p21.3-p22, with the maximum at 6p22 band (A); 26.9% of the silver
grains were located on mouse chromosome 17, and 86.5% of these
mapped to bands 17B-17C, with the maximum at 17C (B).
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normal human metaphase chromosomes. The MOG gene was
localized in bands p21.3-p22 on human chromosome 6 (Fig.
5A), like the BT gene (C. Vemet, M.-G.M., and P.P.,
unpublished work). Homologous mapping of the MOG gene
to band C of murine chromosome 17 (Fig. 5B) was also
observed.
Mapping of the MOG Gene in Mouse MHC. The mouse

MOG gene was further mapped by restriction fragment length
polymorphisms (RFLP) to the distal end of the MHC on
chromosome 17 in the H-2M region. The MOG gene was
placed distal to H-2D by recombinants R27 and 12205, distal
to Qa-2 by Rl, and distal to Tla by R4-1 (Fig. 6 A and C),
within the Hmt region defined by the R4-e and R4-1 recom-
binational breakpoints (Fig. 6E) (21). The presence of a
t-haplotype specific band at 4 kb in strain tw18 (Fig. 6 B and
D) further located the MOG gene within the short duplication
created by the crossover near the end of the distal t inversion
that led to this partial t haplotype (21); similar results were
obtained with Msp I-digested DNA. The intensity of the
bands was not sufficiently consistent between lanes that we
could confirm the expected change in stoichiometry for tw18
by densitometry.
With all enzymes tested, we detected two to four frag-

ments, of which one or more were monomorphic and hence
gave no mapping information; the polymorphic bands were

A
B1O.CAS3 (R1) [

all consistent with a map position in the M region. If the
mouse has more than one MOG gene, they must map close
together, because pulsed-field gel electrophoresis of mouse
genomic DNA digested with Sfi I, BssHI, Sac I, or Not I
showed only a single band ofabout 100 or 150 kb (E. P. Jones
and K.F.L., unpublished work).

DISCUSSION

The predicted sequence of the mature MOG protein is
remarkably conserved among rats, mice, and cattle. Similar
conservation is characteristic of other myelin proteins (29-
31). The predicted structure shows an Ig variable region-like
extracellular domain and two transmembrane segments
linked by a short cytoplasmic loop, with the carboxyl termi-
nus facing the extracellular space. MOG is thus a member of
the Ig superfamily (32).
The Ig-like extracellular domain suggests a role for MOG

in adhesion or cell surface interaction (27). MAG, present in
peripheral and CNS myelin, and protein zero (P0), the major
peripheral myelin glycoprotein, also contain Ig-like domains.
Both have been classified as morphogenic factors (27), be-
cause they are implicated in adhesion and neurite outgrowth
(33-35).
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The spatial and temporal expression of the rat MOG gene
was studied by in situ hybridization. MOG mRNA was
clearly restricted to oligodendrocytes, and during brain on-
togenesis the MOG mRNA level increased following a cau-
dorostral gradient. MOG mRNA content was the highest in
the white-matter areas of the midbrain at the time when
myelin deposition was at its maximum. These findings agree
with immunocytochemical observations concerning MOG
deposition during brain development (8, 9) and further indi-
cate that MOG mRNA does not accumulate significantly
before MOG becomes detectable in myelin. A similar pos-
terior-to-anterior developmental pattern has been observed
for PLP mRNA (36), but, by contrast, PLP mRNA is found
some days before PLP is detected immunocytochemically.
MOG is thus specific for CNS myelin and its expression
coincides with the late steps of myelination.
Computer sequence analysis disclosed the strongest ho-

mology for MOG with the Ig-like domains of two non-myelin
proteins, BT and B-G, as recently shown (24). We colocal-
ized the human MOG and BT genes on 6p21.3-p22, bands
corresponding to the MHC. The colocalization of the BT and
MOG genes and the 46% identity of their Ig-like domains
suggest they belong to a subset of the Ig superfamily. The
shared Ig variable region-like domain could have arisen
through exon shuffling, and the association of Ig-like domains
with unrelated functional motifs, such as the carboxyl-
terminal domains of BT (25), B-G (26), and MOG, is char-
acteristic of the Ig superfamily (27).
Whether MOG, BT, and B-G have any functional similarity

has yet to be evaluated. BT is specifically expressed in
mammary tissue during pregnancy and lactation, indicating a
function in milk-fat secretion (25). Chicken B-G antigens are
expressed in many tissues (37); they have been associated
with immunological phenomena, in particular a strong adju-
vant effect (38) and a much faster primary response with
higher antibody production compared to other antigens. The
related Ig variable region-like domain in MOG may be
responsible for MOG's ability to induce strong antibody
responses in experimental autoimmune encephalomyelitis.

Conservation of syntenic groups of genes among the ge-
nomes of distantly related species presents a powerful tool
for the study of genome evolution and allows, as a first
approximation, extrapolation ofgenetic mapping information
among species. We have shown that the first mammalian
proteins MOG and BT are structurally related to the chicken
B-G antigens, and it is intriguing that the genes map to
homologous chromosomal regions in humans and birds.
The mapping of the MOG gene in the mouse MHC is of

particular interest. To our knowledge, it is the first non-class
I gene to be located in the M region, which contains at least
eight MHC class I genes (19), one of which is adapted to
presentation of N-formylated prokaryotic peptides (28).
Whereas the MHC class I genes do not exhibit obvious
orthologies between species as distantly related as humans
and mice, conserved genes like the MOG gene may identify
the region of the human MHC that corresponds to the mouse
M region.
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