Skip to main content
. 2016 Jan 26;5:5. doi: 10.1186/s40249-016-0101-5

Table 5.

Regression analysis of total non-medical cost and patient characteristics a

Variable Total non-medical cost Transportation plus accommodation cost Additional nutrition cost
Parameter SE P value Parameter SE P value Parameter SE P value
Location
 Hanzhong 8.00 1.86 <.0001 −1.98 1.19 0.0970 13.31 2.02 <.0001
 Yichang Ref
 Zhenjiang 4.45 1.86 0.0167 −6.42 1.19 <.0001 10.87 2.02 <.0001
Sex Ref: male 2.66 1.73 0.1241 0.40 1.11 0.7203 2.31 1.89 0.2209
age Ref: aged <65 −6.12 1.70 0.0003 −2.38 1.08 0.0285 −5.24 1.84 0.0046
Residence type Ref: rural 10.18 2.82 0.0003 −0.62 1.83 0.7356 11.35 3.05 0.0002
Inpatient care Ref: without 14.86 1.50 <.0001 18.53 0.96 <.0001 4.00 1.62 0.0140
Health insurance Ref: covered 7.12 5.91 0.2290 6.88 3.84 0.0737 1.86 6.22 0.7657
Education
 Never attended school Ref
 Primary school 6.22 2.15 0.0040 0.31 1.37 0.8197 6.47 2.33 0.0057
 Junior high school 7.32 2.24 0.0011 1.36 1.43 0.3432 6.49 2.44 0.0079
 High school or higher 9.19 2.90 0.0016 0.27 1.84 0.8815 9.25 3.15 0.0034
Family income Ref: lower half 4.12 1.57 0.0090 0.45 1.00 0.6517 6.16 1.70 0.0003
Category Ref: new patients 1.61 1.87 0.3891 −1.54 1.19 0.1983 2.69 2.02 0.1838

a Following variables were enrolled in the regression medel: residence location (the three study cities), gender, age (<65 years or > =65 years), residence type (urban or rural), inpatient care (with or without), health insurance (covered or uncovered), education level (never attended school, primary school, Junior high school, high school or higher), family income (as a proportion of the median in each city), and patient category (new or relapse patient)