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Abstract

Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several 

weeks. The size, location, composition, structure and mechanical properties of the healing scar are 

all critical determinants of the fate of patients who survive the initial infarction. While the central 

importance of scar structure in determining pump function and remodeling has long been 

recognized, it has proven remarkably difficult to design therapies that improve heart function or 

limit remodeling by modifying scar structure. Many exciting new therapies are under 

development, but predicting their long-term effects requires a detailed understanding of how 

infarct scar forms, how its properties impact left ventricular function and remodeling, and how 

changes in scar structure and properties feed back to affect not only heart mechanics but also 

electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar 

formation itself. In this article, we outline the scar formation process following an MI, discuss 

interpretation of standard measures of heart function in the setting of a healing infarct, then 

present implications of infarct scar geometry and structure for both mechanical and electrical 

function of the heart and summarize experiences to date with therapeutic interventions that aim to 

modify scar geometry and structure. One important conclusion that emerges from the studies 

reviewed here is that computational modeling is an essential tool for integrating the wealth of 

information required to understand this complex system and predict the impact of novel therapies 

on scar healing, heart function, and remodeling following myocardial infarction.

Introduction

Over a million Americans suffer a heart attack each year, and most now survive the initial 

event. Once myocardium dies during a heart attack, it is replaced by scar tissue over the 

course of several weeks. The size, location, composition, structure and mechanical 

properties of the healing scar are all critical determinants of the fate of patients who survive 

the initial infarction. Initial depression of left ventricular pump function depends strongly on 

infarct size, as does the long-term risk of left ventricular remodeling that commonly leads to 

heart failure following infarction; yet even identically sized infarcts in different locations 

carry different prognoses. Some infarcts cannot withstand the mechanical loads placed on 

them and rupture in the first few days, a catastrophic and usually fatal complication. Others 

gradually stretch and thin (a process termed infarct expansion), increasing wall stresses and 
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accelerating ventricular remodeling and the development of heart failure. While the central 

importance of scar structure in determining pump function and remodeling has long been 

recognized, it has proven remarkably difficult to design therapies that improve heart 

function or limit remodeling by modifying scar structure. Many exciting new therapies are 

under development, but predicting their long-term effects requires a detailed understanding 

of how infarct scar forms, how its properties impact left ventricular function and 

remodeling, and how changes in scar structure and properties feed back to affect not only 

heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the 

ongoing process of scar formation itself. In this article, we will first review the scar 

formation process following an MI and the evolution of collagen content and alignment, 

collagen fiber orientation, and scar geometry during infarct healing. We will then discuss 

measures of heart function typically employed following infarction, with specific attention 

to their interpretation in the setting of a healing infarct. Then, we will present implications of 

infarct scar geometry and structure for both mechanical and electrical function of the heart. 

Finally, we will close with a discussion of therapeutic interventions that aim to modify scar 

geometry and structure, and their effects on heart function and remodeling.

Scar Formation and Remodeling Following Myocardial Infarction

Overview of Infarct Healing

Myocardial infarction (MI) occurs when prolonged reduction in blood flow to a region of 

the heart results in permanent death of myocytes. Over the following days and weeks, the 

dead myocytes are gradually replaced by a collagenous scar. This progression of myocardial 

wound healing following infarction is a dynamic process generally divided into three stages: 

inflammation/necrosis, fibrosis/proliferation, and long-term remodeling/maturation (Figure 

1) (59, 112, 126).

Inflammatory Phase—The necrotic or inflammatory phase of infarct healing occurs over 

the first few days in small animals and the first week or more in large animals and humans 

(57, 69, 70, 293). After prolonged ischemia, cardiomyocytes undergo necrosis followed by a 

wound healing cascade wherein a variety of inflammatory cells including neutrophils, 

macrophages, and lymphocytes invade the ischemic zone beginning within hours of injury, 

peaking several days later at several thousand cells/mm2 in small animals, with lower 

numbers lingering for a week or longer (70, 293). These cells play central roles in the wound 

healing process including both remodeling and signaling functions. Structural remodeling of 

the ischemic area is initiated as inflammatory cells and necrotic myocytes secrete and 

activate matrix metalloproteinases (MMPs) including MMP1, 2, 3, 7, 8, 9, 12, 13, and 14 

(160, 267, 297). These proteinases degrade cell and matrix material aiding phagocytic 

macrophages in the resorption of necrotic tissue. This early proteinase activity is also 

thought to disrupt the collagen fibers and struts that supported cardiomyocyte structure in 

the once-healthy myocardium (286).

While new collagen accumulation is not apparent for several days after the initial injury, as 

necrotic myocytes are resorbed, a provisional granulation tissue consisting of fibrin, 

fibronectin, laminin, glycosaminoglycans (GAGs), and other matrix is laid in their place (57, 

160, 265). Figure 1B presents data from 25 studies that reported mRNA or protein levels of 
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various extracellular matrix components during infarct healing in small animals, averaged 

across functional groups of similar molecules and fitted to highlight the temporal dynamics 

of changes in each group. Rapid increases in GAGs and provisional matrix molecules begin 

within 24 hours after infarction, and resolve during the fibrotic phase. These matrix proteins 

maintain temporary structural support until the myofibroblasts upregulate the secretion of 

fibrillar collagen that will ultimately become the primary structural constituent of cardiac 

scar tissue.

In addition to producing proteinases, inflammatory cells upregulate the release of a myriad 

of signaling cytokines, growth factors, and hormones including transforming growth factor 

β, interleukins 1, 2, 6, and 10, tumor necrosis factor α, interferon γ, chemokines of the CC 

and CXC families, angiotensin II, norepinephrine, endothelin, natriuretic peptides, and 

platelet-derived growth factors (57, 160, 249, 285, 299). The details of this complex 

signaling mileau have been extensively reviewed elsewhere (56, 77); here, we note only that 

these molecules are essential to the recruitment and activation of fibroblasts as the healing 

process transitions to its next stage: fibrosis.

Fibrotic Phase—The fibrotic or proliferative phase of healing lasts one to several weeks 

(57, 69, 70, 293), and is dominated by the actions of myofibroblasts. By number, cardiac 

fibroblasts are the most abundant cell type in the healthy heart (126, 163). In an infarct zone, 

their concentration increases through a combination of migration from surrounding 

myocardium, proliferation, and differentiation of diverse cell types into activated 

myofibroblasts, including pericytes, smooth muscle cells, endothelial cells, mesenchymal 

stem cells, and circulating fibrocytes (56, 93, 163). Myofibroblasts are characterized by 

increased α-smooth muscle actin expression that generally accompanies elevated migration 

and contractile force as well as increased expression of matrix proteins (56). Beginning 

several days after MI, myofibroblasts can increase 20-fold in abundance to reach several 

thousand cells/mm2 around 1 week in small animals, and persist at high levels for several 

weeks (70, 293).

Inflammatory cell expression of MMPs begins to wane a few days after MI, just as 

myofibroblast expression of pro-collagen (predominantly type I and III but also IV and VI) 

ramps up drastically, peaking roughly 1 week post infarction before falling back to baseline 

(29, 47, 182, 203, 250, 292, 300). This transient expression can generate upwards of 10-fold 

increases in myocardial collagen content, which plateaus several weeks to months after MI 

(Figure 1B) (21, 47, 99, 122–124, 126, 168, 175). Collagen content is the result of a highly 

regulated balance between the secretion of collagen and the activation of MMPs and tissue 

inhibitor of MMPs (TIMPs); thus, steady-state collagen levels can be influenced by a 

number of chemical and mechanical conditions as discussed in the Therapeutic Modification 

section below. More extensive reviews of post-MI MMP and TIMP activity can be found in 

Creemers (51), Lindsey (160), and Vanhoutte (267). During the period when collagen 

content is increasing most rapidly, reports also show transient increases in the abundance of 

a number of matricellular proteins (tenascin-C, thrombospondin, osteopontin, periostin, 

SPARC) that play important structural as well as signaling roles in developing scar 

(reviewed previously (57, 160, 169, 240)). Supporting their importance, genetic knockout of 

several of these proteins increases the risk for infarct rupture and mortality (163, 172).
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Remodeling Phase—The final stage of infarct scar formation is often termed the 

remodeling or maturation phase and lasts several weeks in small animals and months in 

large animals and humans (57, 69, 70, 293). During this time, apoptosis of myofibroblasts 

slightly reduces cell numbers in the infarct, but a moderate population persists (24, 126, 

249). While collagen content begins to stabilize, the scar matures via a steady increase in 

collagen crosslinking (Figure 1B). In addition to post-MI increases in expression of the 

cross-linking enzyme lysyl oxidase, the accumulation of cross-links hydroxlysylpyridinium 

and hydroxylysylpyridinoline as well as the secretion of proteoglycans like decorin and 

biglycan, which bind to collagen and regulate fibrillogenesis and fiber diameters, continue 

during this phase (59, 62, 73, 156, 163, 175, 272, 283, 291, 300). These organizational 

changes in collagen matrix seem to occur at a slower but steady rate that continues longer 

than the relatively quick initial accumulation of collagen content (62, 73, 122, 272, 300).

Differences Among Experimental Models—The infarct healing process follows the 

same general pattern across a variety of experimental models. However, there are some 

important differences between these various models that deserve mention, especially when 

seeking to extend experimental findings to clinical therapies. The most obvious is that each 

phase proceeds faster in small animal models (mice and rats) compared to large animals 

(pigs, dogs, sheep) and humans (57, 69, 70, 293). Another potentially important difference is 

that collagen content increases are typically lower in rats than in larger animals and patients 

(averages: rat 6x, dog 11x, sheep 8x, patient 9x pre-infarct value) (21, 47, 99, 122–124, 168, 

175). Potentially related to these differences in collagen content, it is well-known that the 

mouse MI model produces a thin scar that is extraordinarily prone to rupture, relative to 

other species (80). Thus, the mouse model is commonly selected for rupture studies, but 

information on other post-infarction remodeling processes from mouse models may have 

significant limitations for understanding remodeling in larger animals and humans.

The most common experimental approach for generating a myocardial infarction is to 

induce ischemia through some form of coronary artery ligation or occlusion (138). A 

difficulty with this technique is that it results in highly variable infarct size, in part due to 

individual variability in coronary anatomy and the extent of collaterals; as a result, ischemic 

injury studies can require large cohorts of animals and/or post-hoc size-matching for data 

analysis (138). Another technique that has been utilized in multiple species is cryo-injury, in 

which a liquid nitrogen-cooled probe is held against the epicardium long enough to induce 

cell death (25, 75, 247). In contrast to ischemic infarction, cryo-infarction offers excellent 

control over scar size, shape, and location, thereby enabling experimental consistency. Cryo-

infarcts are typically non-transmural, a feature which may confound some types of analyses 

but has also been employed for investigating border-zone properties (247). Although it is 

unclear what fraction of resident fibroblasts survive the ischemic period in a traditional 

ligation model, it seems likely that cryo-injury kills most of the fibroblasts in the infarct 

zone, which may alter subsequent healing. Another important difference from ischemic 

injury is that cryo-injury does not block flow through coronary vessels, allowing the injured 

zone to become reperfused, which as discussed in the next paragraph may affect the healing 

process.
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As clinical reperfusion via thrombolytics and percutaneous coronary intervention began to 

show benefit and was adopted into standard practice, many groups shifted toward 

ischemiareperfusion animal models in order to better approximate the clinical situation 

following early intervention. Studies have identified several differences between reperfused 

and non-reperfused infarcts. During ischemic infarction, the spatial distribution of myocyte 

death spreads as a wavefront moving in the radial direction, generally taking ~6 hours to 

overtake most of the area at risk and kill the majority of the myocytes that will ultimately die 

(222). Reperfusion within less than 6 hours halts this wavefront and therefore results in 

smaller and non-transmural infarcts (221). Weeks later, reperfused infarcts remain thicker 

and smaller in the circumferential-longitudinal plane (266). Additionally, early reperfusion 

has been shown to accelerate resorption of necrotic tissue, increase the number of 

inflammatory cells, increase the numbers of blood vessels, and decrease the number of 

myofibroblasts within the wound (221, 266). This acceleration of inflammation kinetics is 

presumably due to reperfused flow increasing the rate at which circulating inflammatory 

cells reach the infarct. Structurally, these changes result in more surviving myocytes and less 

collagen density in the infarct area, as well as lower density of cross-links within the 

collagen matrix (49).

Mature Scar Structure

Fibrillar collagen is the most abundant structural component of infarct scar tissue and a 

critical determinant of mechanical properties across diverse tissues (73, 252). Thus, many 

studies of infarct structure have focused on quantifying features of the fibrillar collagen 

including collagen content, collagen crosslinking, collagen orientation, and the degree of 

collagen alignment. Collagen content can be assessed both biochemically and 

morphologically. For biochemical assessment, hydroxyproline, a major component of 

fibrillar collagen, is commonly used as a proxy measure of content since it can easily be 

quantified using radiometric or colorimetric assays. Morphologic assessment usually 

employs either picrosirius red (PSR) staining of tissue sections, polarized light microscopy, 

or a combination of both (287, 297). Collagen appears bright red in PSR-stained sections, is 

naturally birefringent and therefore bright under polarized light, and is the sole tissue 

component that exhibits both those qualities, allowing automated separation of collagen 

from other tissue components in digital images (73, 287). Nonlinear optical microscopy has 

emerged recently as an increasingly popular collagen imaging modality (44). The molecular 

structure of type I collagen enables second-harmonic generation (SHG), often achieved via 

two-photon excitation, which allows for in vivo imaging of cardiac scar up to several 

hundred micrometers in depth (38).

Techniques such as polarized microscopy and SHG provide information not only on 

collagen content but also on collagen alignment and organization. This structural 

information is typically displayed using histograms and quantified in terms of both the 

average orientation of a particular field, section, or sample and the strength of co-alignment 

of the collagen fibers. Because measured orientations have a limited range (0° and 180° 

denote the same orientation), standard averaging and statistics are inappropriate when 

analyzing fiber orientation data. Instead, researchers generally utilize circular statistics to 

calculate a mean angle of orientation as well as an alignment index, the most common being 
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mean vector length (MVL, 0 = no alignment, 1 = perfect alignment) or its related converse, 

angular standard deviation (0 = perfect alignment) (298).

Collagen Content and Crosslinking—After weeks to months of healing, mature scar is 

composed predominantly of fibrillar collagen. Collagens I, III, IV, and VI all increase post-

infarction but I and III show the most dramatic increases and remain the predominant scar 

matrix components, in that order (18, 47, 185). The steady-state content of collagen varies, 

with most reports measuring 5-15 fold increases in hydroxyproline from pre-infarct to 

chronic infarct tissue (21, 47, 99, 122–124, 168, 175). Even after normalizing by collagen 

content, the density of hydroxylysylpyridinium and hydroxylysylpyridinoline covalent 

cross-links in mature scar can increase 2-fold or more in rats compared to pre-infarction (73, 

175, 272, 300). As described above, mature infarct scar also contains elevated 

concentrations of a range of collagen-associated proteins including SPARC, decorin, 

biglycan, and others (Figure 1B) (163).

Collagen Orientation and Alignment—Historically, gross and microscopic 

examination of myocardial scar tissue has usually been performed in short-axis rings or 

sections cut perpendicular to the long axis of the left ventricle (LV). Cutting the LV into 

short-axis rings is particularly useful for visualizing the size and transmural extent of healing 

infarcts, and corresponds nicely to the images typically obtained from echocardiography and 

magnetic resonance imaging (MRI). In such sections, it is apparent that collagen is arranged 

in concentric layers or shells, like the layers of an onion (Figure 2); very few collagen fibers 

run radially (75, 288). Quantitative measures of collagen alignment therefore reveal high 

alignment in the circumferential direction.

However, the collagen structure in a healing infarct is of interest primarily because collagen 

fibers are the major load-bearing elements in the scar. These fibers resist tension very 

effectively, providing the structural basis for the exponential stress-strain curve observed 

when myocardial scar is tested in tension (see Infarct Material Properties below); however, 

they buckle or coil under compression, providing very little resistance. Therefore, from a 

mechanics perspective, it is the orientation of collagen within each plane or shell parallel to 

the epicardial surface (the circumferential-longitudinal plane) that is most important, 

because the scar is under tension in this plane and compression in the radial direction. 

Recent studies focusing on collagen orientation in the circumferential-longitudinal plane 

have shown a surprising variety of collagen fiber orientations and degrees of alignment in 

different experimental models.

Examining picrosirius-stained sections under polarized light microscopy, Holmes and 

Covell quantified collagen alignment in pig infarct scar tissue 3 weeks after permanent 

ligation (113). They found a high degree of anisotropy with strongest fiber alignment (MVL 

= 0.9) at the midwall and somewhat weaker alignment near the endo- and epicardium. Fiber 

orientation varied transmurally as well, following a similar pattern as native myocardium but 

across a narrower range (normal myofiber orientation ranged from −50° at the epicardium to 

+60° at the endocardium, while mean collagen fiber orientation ranged from −50° to +10°). 

In stark contrast to the anisotropic structure of pig infarcts, Fomovsky and colleagues used 

similar methods to examine collagen fiber structure at a range of time points following 
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permanent ligation in the rat and found very low average fiber alignment (MVL = 0.1 to 

0.25) reflecting nearly isotropic structure at all depths and time points (73). In a follow-up 

study using cryoinfarction to control infarct location, Fomovsky et al. showed that cryo-

infarcts at the apex of rat hearts developed minimal collagen alignment at 3 weeks (MVL = 

0.1), similar to the rat ligation model, whereas cryo-infarcts at the LV equator showed a 

higher degree of alignment (MVL = 0.4), similar to the pig ligation model (75). 

Furthermore, Fomovsky showed that the collagen structure across these different 

experimental models correlated with regional mechanics (Figure 3): apical infarcts that 

ultimately developed isotropic collagen structures stretched similarly in the circumferential 

and longitudinal directions early after infarction, while equatorial infarcts that developed 

aligned collagen stretched primarily in the circumferential direction. The same group 

developed an agent-based model to simulate the integrated effects of mechanical 

environment, local extracellular matrix orientation, chemokine gradients, and other factors 

on scar formation following myocardial infarction; the model successfully reproduced not 

only their rat cryo-infarct data but also the transmural trends in collagen fiber orientation in 

healing pig infarcts discussed above (230).

Surviving Myocytes—In the healed infarct, surviving muscle fibers are widely separated 

and insulated by connective tissue. However, as discussed under Electrical Implications of 

Scar Structure below, these myocytes may still play an important role in determining 

features of electrical propagation in and around the infarct and thereby the risk of post-

infarction arrhythmias. A recent high-resolution reconstruction (1 μm3 voxels) of myocyte 

and collagen organization in transmural rat ventricular tissue samples showed that lateral 

coupling between myocytes decreases by ~65% over the first 250 μm of the border-zone, but 

sparsely connected networks of surviving myocytes do exist within the scar (232). While 

most of these strands, some as little as one cell thick, terminate within the border-zone, some 

pass transmurally through the infarct, connecting normal myocardium to surviving sub-

endocardial and sub-epicardial layers.

Geometric Remodeling: Thinning, Expansion, and Compaction—In addition to 

composition and organization, scar geometry is a key property of infarct structure. In an 

important early study of infarct remodeling, Hutchins and Bulkley examined hearts from 

patients who died within 30 days post-infarction and observed two apparent dimension 

changes of the infarcted zone: thinning in the radial direction and dilation in the 

circumferential direction (116). They termed this pattern of remodeling infarct expansion, 

and qualitatively identified expansion in 59% of infarcts. In a second autopsy study, 

Schuster and Bulkley examined hearts obtained within 21 days of MI, qualitatively 

identified expansion in 49% of infarcts, and associated the presence of expansion with a 

highly increased probability for rupture (239). In an important quantitative clinical study, 

Eaton and colleagues collected serial echo images for ~2 weeks post-MI and measured 

endocardial segment lengths in short axis images (65). On average, these lengths indeed 

increased over the observation period, and the presence of infarct expansion was associated 

with more aggressive progression to heart failure and increased mortality over the following 

months. To identify the mechanisms underlying acute infarct expansion, Weisman and 

colleagues measured cellular number, density, cross-sectional area, and length within short-
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axis histological sections of 1, 2, and 3 day-old infarcted and sham rat ventricles (280). They 

concluded that acute infarct expansion resulted predominantly from permanent myocyte 

slippage and rearrangement. A number of other studies across a variety of species have since 

supported these early findings of an abrupt circumferential dilation of the injured zone 

within the first few hours after the induction of infarction (28, 66, 132, 157, 178, 195, 271, 

273).

At longer times after infarction, infarct thinning remains a consistent and prominent feature 

of geometric remodeling. Regardless of species and measurement technique, studies have 

reported progressive scar thinning to an average of ~60% of initial thickness over several 

months and in some studies to as low as 20% (53, 65, 68, 70, 110, 114, 122, 124, 183, 188, 

223, 225). By contrast, long-term studies of in-plane dimensions find a wide range of 

patterns, from continuing expansion to dramatic compaction (a reduction in one or both in-

plane dimensions) (Figure 4). As mentioned above, Eaton et al. reported progressive 

increases in patient infarct endocardial segment lengths for ~2 weeks after infarction (65). 

More recently however, Hillenbrand and colleagues used late-enhancement MRI to image 

30 MI patients within 12 hours of symptoms and again 5, 12, and ~90 days later (110). Over 

that time, infarct area in the circumferential-longitudinal plane actually compacted ~9%. 

This expansion vs. compaction discrepancy has also been reported in dogs: Jugdutt and 

colleagues reported a 56% increase in infarct-containing segment lengths from 2 days to 6 

weeks in a dog ligation model (infarct segment demarcated by papillary muscle landmarks 

in 2D echo images), whereas Theroux and colleagues reported a 34% decrease from 2 days 

to 4 weeks in circumferential lengths assessed via implanted pairs of ultrasonic crystal 

length gauges (124, 258). As discussed under Measures of Post-Infarction Function below, 

in vivo measurements of remodeling can be difficult to interpret because pressures, 

geometry, and material properties are all changing at once. Accordingly, many experimental 

studies have examined geometric changes in an unloaded configuration (i.e., arrested, 

excised, and fixed under zero pressure); such studies are much more likely to report 

progressive compaction over time (Figure 4B). For example, Fishbein and colleagues 

induced MI in rats via ligation, then excised, fixed, sectioned, and stained ventricles in short 

axis sections and found a 12% decrease in infarct surface area from day 1 to 21 (70). 

Roberts and colleagues reported a 17% decrease in infarct circumferential segment length 

from day 2 to 21 using similar methods (225). In dogs, Jugdutt et al. and Richard et al. 

reported 39% and 30% decreases, respectively, in infarct circumferential segment length 

over six weeks of healing, measured using computerized planimetry of short-axis sections 

(122, 223). Reports of scar compaction suggest the existence of one or more remodeling 

mechanisms that can overcome elevated local stresses due to scar thinning; as discussed 

under Therapeutic Modification of Scar Structure and Properties below, therapeutic 

approaches to enhance intrinsic scar compaction are currently under development.

Measures of Post-Infarction Function

Assessing heart function can be particularly challenging following myocardial infarction, 

because so many things are changing at the same time. Consider the excellent Handbook of 

Physiology chapter, “Systolic and Diastolic Function (Mechanics) of the Intact Heart,” by 

Covell and Ross, which is available as legacy content in this Comprehensive Physiology 
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series (50). Nearly all of the determinants of systolic function discussed in that article 

change during myocardial infarction and subsequent LV remodeling, including: cardiac 

shape and dimensions, preload, afterload, contractility (inotropic state), and beta-adrenergic 

stimulation. Against this complex background of time-varying changes, it is critical to 

understand what information individual functional measures provide, and how and when 

their interpretation is most likely to be confounded. In particular, measurements of ejection 

fraction are frequently used inappropriately in the literature to claim that individual therapies 

improve LV function, when in fact those therapies alter LV size or hemodynamics without 

improving function. Therefore, before discussing how myocardial scar structure impacts 

function in the next section, we review here the most commonly used functional measures 

and discuss their interpretation in the setting of myocardial infarction (Table 1). This section 

focuses on LV function, which is usually of primary interest in post-infarction studies.

Assessing Diastolic Function Following Infarction

Immediately following a myocardial infarction, the acute drop in LV function triggers a 

number of compensatory reflexes. One of these reflexes is constriction of the systemic veins, 

where most of the blood volume typically resides. Venoconstriction shifts blood from the 

veins into the rest of the circulatory system, thereby increasing pressures. In particular, 

Burkhoff and Tyberg employed a circuit model of the circulatory system to demonstrate that 

venoconstriction appears to be primarily responsible for the increases in pulmonary and LV 

end-diastolic pressures (EDP) observed following a large myocardial infarction (30). 

Consistent with that model prediction, Goldman and coworkers found that the systemic 

veins are constricted in rats with post-infarction heart failure, and that vasodilators that act 

on veins lower LV EDP, while those that selectively lower arterial resistance do not (84, 

219). Elevated EDP immediately following an infarction plays an important role in 

preserving systolic function through the Frank-Starling mechanism, whereby increased 

diastolic pre-stretch leads to greater systolic force generation in the undamaged myocardium 

(191). However, severe elevations lead to pulmonary edema and congestive heart failure. 

The fact that EDP is changing following an infarction is important to keep in mind when 

interpreting changes in end-diastolic volume (EDV), by far the easiest diastolic parameter to 

measure noninvasively, and therefore one of the most commonly reported in studies of 

myocardial infarction. Obviously, if EDP changes, then EDV will change as well, even in 

the absence of ventricular remodeling or changes in myocardial mechanical properties.

Measuring the relationship between EDP and EDV over a range of loading conditions – the 

end-diastolic pressure-volume relationship, or EDPVR – provides the clearest picture of 

how the diastolic properties of the heart are changing. Yet even this relationship must be 

interpreted with care following myocardial infarction. The EDPVR reflects both the material 

properties of the myocardium itself and the geometry of the LV. If part of the LV becomes 

stiffer due to scar formation (see Infarct Material Properties below), then the EDPVR should 

shift to the left, reflecting the greater pressure required to inflate the ventricle to a given 

volume. On the other hand, if the LV dilates, the EDPVR should shift to the right. This is 

because LV dilation occurs through a growth process that increases the circumference of the 

unloaded ventricle; as a result, at any given volume the myocardium is less stretched than it 

was prior to remodeling, resulting in lower stresses in the wall and lower pressure in the 
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cavity. The great challenge of interpreting the EDPVR following infarction is that both of 

these changes occur simultaneously. The healing scar becomes stiffer, pushing the EDVPR 

leftward, but the ventricle also dilates, pushing the EDPVR rightward. In rats, Pfeffer et al. 

found that the balance between these two effects depended on both infarct size and time: 

with small infarcts, changes in infarct stiffness and LV dilation largely offset one another, 

producing little overall change in the EDPVR, while with larger infarcts the dilation 

dominated and the EDPVR shifted progressively rightward (Figure 5) (204). Even relatively 

simple computational models can separate the effects of infarct stiffness and LV dilation if 

data on both are available (23, 251); accordingly, such models have played an important role 

in understanding how individual factors affect post-infarction function. The effects of scar 

formation on both diastolic and systolic function are discussed in more detail in the section 

on Mechanical Implications of Collagen Content and Crosslinking below.

Assessing Systolic Function Following Infarction

As the region deprived of blood flow during an acute myocardial infarction stops 

contracting, the pumping ability of the LV is reduced. However, quantifying the drop in 

function is surprisingly difficult, particularly in animals with intact hemodynamic reflexes 

(Table 1). Traditionally, the slope Emax (maximal elastance) of the end-systolic pressure-

volume relationship (ESPVR) is considered to be a reasonably load-independent measure of 

LV contractility (50, 248). Drugs that enhance contractility increase Emax, and drugs that 

decrease contractility decrease Emax. Yet during acute myocardial infarction in dogs, 

Sunagawa et al. found that Emax changed little, while the volume intercept of the ESPVR 

(V0) increased dramatically. In other words, the ESPVR shifted rightward rather than 

decreasing its slope as expected (Figure 6) (251). In the same paper, the authors constructed 

a remarkably simple compartmental model that both captured this behavior and explained 

the underlying mechanics. Their key insight was that acutely ischemic myocardium behaves 

mechanically like passive myocardium, exhibiting the same exponential stress-strain 

behavior. They therefore modeled the end-systolic pressure-volume behavior of the acutely 

infarcted LV by taking a weighted average of the volumes contained in a normally 

contracting LV (normal compartment) and a passively inflated LV (ischemic compartment) 

at a range of pressures (Figure 6). When the ischemic compartment was inflated to systolic 

pressures, it moved up to such a steep part of its pressure-volume curve that its slope was 

similar to that of the normal ESPVR; thus a weighted average of these two slopes differed 

little from the baseline Emax. By contrast, at end-systolic pressure the infarct compartment 

contained much more volume than if it had been contracting, explaining the rightward shift 

in the overall ESPVR.

In vivo, changes in hemodynamic variables such as end-systolic pressure (ESP) and volume 

(ESV), stroke volume (SV), cardiac output (CO), and ejection fraction (EF) are determined 

both by the underlying change in pump function reflected by the shifted ESPVR and by 

reflex hemodynamic compensations that occur in response to infarction. For a detailed 

review of reflex control of arterial pressure, we recommend the Handbook of Physiology 

chapter “Baroreflex Control of Systemic Arterial Pressure and Vascular Bed” by Sagawa, 

which is available as legacy content in this Comprehensive Physiology series (234). 

Broadly, these reflexes act to maintain systemic arterial pressure, and following infarction 
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they include arterial vasoconstriction, venous vasoconstriction, and increases in heart rate 

and contractility of noninfarcted myocardium via activation of the sympathetic nervous 

system. The magnitudes of the compensations depend heavily on infarct size, and their 

balance varies by species, but here we outline some general trends that aid interpretation of 

specific hemodynamic measures, based primarily on studies in conscious animals (220, 

258). As noted above, Emax normally changes little due to an acute infarct; however, dP/

dtmax (the maximum rate of systolic pressure generation), another commonly used index of 

contractility, generally decreases as bulging of the ischemic region during isovolumic 

contraction slows pressure development. Except in the setting of very large infarcts that 

trigger acute heart failure, reflex compensations typically restore CO to near normal; heart 

rate (HR) may increase or remain unchanged, and SV may or may not decrease. ESP is often 

slightly reduced and ESV is nearly always increased, due to the rightward shift of the 

ESPVR, but should be interpreted with care if ESP is significantly different from control. 

Because EDV and EDP typically increase (see Diastolic Function above), EF usually 

decreases even when SV is unchanged.

It should be clear from the discussion above that no single parameter measured in vivo in the 

presence of intact reflexes can reliably indicate the magnitude of systolic dysfunction 

associated with an acute infarct (Table 1). Among the measures discussed here, EF has 

become the most commonly reported, probably because it is relatively easy to measure 

noninvasively and has a well-established range of normal values in patients and common 

animal models. Unfortunately, changes in EF are often misleading following infarction 

because both the numerator (SV) and denominator (EDV) change simultaneously. This is 

particularly problematic for chronic studies of post-infarction healing, which are further 

complicated by remodeling in both the infarcted and non-infarcted regions of the LV. In 

experimental settings where preload can be varied, plotting cardiac output as a function of 

LV EDP is the most reliable way to gauge changes in function independently from the 

increases in EDP that frequently accompany infarction. This approach reveals that in the 

setting of a large compensated MI, the cardiac output curve has shifted down and to the 

right, reflecting reduced function, and CO is normal primarily because EDP is elevated. 

Readers familiar with CO curves may rightly object that changes in afterload also affect 

these curves, but in practice the fact that the baroreflexes hold arterial pressure nearly 

constant limits the impact of this potential confounder.

Assessing Regional Function Following Infarction

Regional measurements have played an essential role in our understanding of the mechanics 

of myocardial infarction. In their classic study, Tennant and Wiggers tracked local epicardial 

motion and showed that shortening of the muscle fibers gradually disappeared and was 

replaced by systolic lengthening over the first minute following coronary occlusion; 

restoration of normal blood flow after brief occlusions produced full recovery of contraction 

(255). Tyberg et al. plotted cavity pressure against regional segment lengths measured in 

healthy myocardium and found counter-clockwise loops similar to pressure-volume loops, 

reflecting the positive work performed by the muscle during ejection (264). Following just a 

few seconds of ischemia, these segments no longer traced out active loops when plotted 

against pressure; instead, they stretched and recoiled along a single curve reflecting the 
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passive elastic properties of the myocardium. Early ultrasound imaging provided a similar 

picture of regional mechanics: during acute ischemia or infarction, the normal inward 

motion of the heart wall was reduced, absent (akinesis), or even replaced by outward motion 

(dyskinesis). Consequently, qualitative (108) and quantitative (88) analysis of abnormalities 

in regional wall motion were introduced as new tools to diagnose myocardial ischemia, and 

recognition of wall motion abnormalities during stress echocardiography became a common 

clinical approach to screening for coronary artery disease.

Subsequent studies used implanted radiopaque markers (107, 114, 271) or sonomicrometers 

(258, 259) to track the regional mechanics of ischemic regions and healing infarcts over time 

and in multiple dimensions. Most of these studies employed strains computed between end 

diastole and end systole to measure regional mechanics. Today, ultrasound speckle-tracking, 

MRI tagging, DENSE MRI, and other similar methods can provide non-invasive imaging of 

strain, allowing concepts from earlier animal studies to be employed in the clinic. However, 

the shift from active contraction to passive stretching in the ischemic region has some 

implications that are important to keep in mind. First, a passive infarct stretches not only 

during filling but also as pressure rises during isovolumic contraction; once ejection begins, 

wall stresses begin to drop due to the decrease in chamber size, and the infarct begins to 

passively recoil. In other words, segment lengths in the infarct are not maximum at ED and 

not minimum at ES. Furthermore, the amount of stretch during LV filling and recoil during 

LV emptying depend upon the mechanical properties of the tissue and the hemodynamics of 

the particular animal model (Figure 7). Accordingly, the traditional approach of measuring 

strain from end diastole to end systole makes less sense than in actively contracting 

myocardium, and such strains can be difficult to interpret correctly. The second potential 

difficulty in interpreting strains from the infarct region is that – like EF – strain is a relative 

measure, and both the numerator and denominator are typically changing following 

infarction in vivo. Another potential confounding factor is that shortening in remaining 

viable myocardium can complicate interpretation of strain measurements in the setting of 

non-transmural ischemia or infarction. Finally, as tissue structure, mechanical properties, 

stresses, and coupling to surrounding myocardium all evolve over time following infarction, 

strains can change in surprising ways.

In most animal models, in-plane strains (circumferential and longitudinal) drop to near zero 

immediately after ligation and remain small throughout the course of healing (Figure 8) (73, 

114, 258, 259). In many cases, reported mean strains are small relative to the standard 

deviation of the measurement, and the reported strains are therefore not significantly 

different from zero. However, some studies with the resolution to detect small amounts of 

stretching have reported that the magnitude of stretching remains constant over time, as 

gradual stiffening of the healing infarct is offset by increased stresses resulting from 

thinning of the infarct and dilation of the LV (73, 114). By contrast, MRI studies in patients 

tend to report an early drop in shortening within the ischemic region, followed by a gradual 

recovery (Figure 8) (22, 136, 148, 228). This discrepancy in reported trends in regional 

mechanics appears to be due primarily to differences in infarct size and transmural extent 

rather than to differences in surgical or imaging methods: using sonomicrometers, Theroux 

et al. found no strain recovery following permanent ligation but substantial recovery in 
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reperfused dog infarcts (Figure 8A), while very large reperfused infarcts in mice failed to 

show strain recovery on MRI (Figure 8B). We note here that interpretation of radial strains 

is often much more difficult following infarction. For example, 3 weeks following infarction 

in pigs, Holmes et al. found that radial strains measured by implanted markers returned to 

preinfarction levels despite the persistence of abnormal strains in other directions and 

histologic evidence of dense, transmural scars (114). In chronic studies, measuring strains in 

more than one direction can help avoid misinterpretation.

Finally, we note that the presence of an infarct can confound interpretation of measures of 

regional function in the rest of the heart. While shortening in the non-infarcted myocardium 

increases following infarction (258), part of this shortening is related to the transfer of blood 

into the ischemic region during isovolumic contraction; therefore, increased local shortening 

does not necessarily imply better global function. Furthermore, bulging of the ischemic 

region during isovolumic contraction and recoil during isovolumic relaxation are 

mechanically similar to the strain patterns observed in a late-activated region of a 

dyssynchronous heart (16, 135). Therefore, measures of LV dyssynchrony must be 

interpreted carefully in the setting of myocardial ischemia or infarction.

Assessing Left Ventricular Remodeling Following Infarction

Survivors of MI face a substantial risk of developing heart failure through a gradual process 

of LV dilation. As a result, treatments such as angiotension converting enzyme inhibitors 

(ACEis) that can slow post-infarction LV remodeling are a mainstay of clinical therapy, and 

methods to monitor the progression of LV remodeling non-invasively are essential. In 

practice, LV volumes are the most commonly used index of LV remodeling, and ESV has 

demonstrated the best prognostic value (284). As discussed above for diastolic and systolic 

function, EDV and ESV depend not only on geometry, mechanical properties, and 

contractile function but also on pressures; therefore, non-invasive measurements of volumes 

without corresponding pressures can be difficult to interpret in some situations. ESV offers 

an advantage over EDV in this respect as well: when following remodeling in a single 

patient, large changes in systolic pressures that could confound interpretation of ESV should 

be apparent from standard arterial blood pressure measurements, whereas monitoring 

changes in LV EDP would require catheterization.

Despite the advances in noninvasive strain measurement discussed under Regional Function 

above, measuring remodeling on a regional basis requires the ability to identify the same 

individual points within the heart wall at multiple times over the course of remodeling, and 

therefore remains practical only in laboratory settings where implantation of markers or 

sonomicrometers is feasible. Implanted markers are typically used to define individual 

circumferentially or longitudinally oriented segments and track changes in their length over 

time, and typically show gradual compaction (reduced segment lengths) within the healing 

scar and dilation (increased segment lengths) in the remote myocardium (114, 258). Not 

surprisingly, local measures of segment lengths come with the same caveat as global 

measures of volume: unless pressures are matched experimentally or measured, changes in 

pressure can confound interpretation.
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Mechanical Implications of Scar Structure

Infarct size, location and geometry vary widely among animal models as well as among 

individual patients who suffer heart attacks; as reviewed above, collagen content, 

crosslinking, and organization also vary among models and change over time. Because these 

structural features determine the mechanical properties of the healing infarct and its 

mechanical interactions with remaining myocardium, they are critical determinants of pump 

function, remodeling, and the risk of post-infarction complications ranging from infarct 

rupture to heart failure. As discussed above, within minutes after coronary artery occlusion 

the ischemic region becomes passive and non-contractile. Acutely, the mechanical 

properties of the infarct still resemble those of passive myocardium and diastolic filling 

remains unaffected (23). However, during systole the infarct stretches and bulges outward 

when the remaining intact myocardium is contracting. As a result, the mechanical efficiency 

of the heart as a pump decreases to an extent that depends strongly on infarct size. The 

extent of functional depression in turn determines the degree of reflex sympathetic 

activation, which initially preserves LV function but becomes problematic in the long term: 

prolonged sympathetic activation is associated with progression of chronic heart failure (26, 

261). As the scar forms and its collagen structure evolves, changes in infarct mechanical 

properties interact with geometric remodeling of both the infarct and the noninfarcted 

regions of the left ventricle to govern changes in diastolic and systolic function, ongoing 

remodeling, and ultimately clinical prognosis.

Mechanical Implications of Infarct Geometry

Infarct Size—Infarct size is one of the most important determinants of post-MI ventricular 

function. Larger volumes of ischemic tissue lead to more severe dysfunction during all 

stages of post-MI healing. In the acute stage after MI, functional depression stems primarily 

from reduced active contraction during systole, and the degree of systolic impairment is 

determined by the size of the ischemic area. For example, in the classic study of acute 

ischemia discussed in the previous section (Figure 6), Sunagawa et al. found that the 

magnitude of the rightward shift in the ESPVR was linearly proportional to the size of the 

ischemic region (251). In a porcine model of MI, Savage et al. similarly found that systolic 

wall thickening decreased with increasing extent of necrosis (236). Clinically, patients with 

larger infarcts upon admission have lower CO and SV, decreased LV stroke work, and 

elevated LV filling pressures (171). Infarct size also correlates with changes in function at 

later time points following infarction: chronic changes in EDP, LV volume, CO, dP/dtmax, 

and systolic arterial pressure all vary in proportion to infarct size several weeks after 

infarction in the rat (71, 207).

The amount of infarcted tissue is also a critical determinant of post-MI remodeling: larger 

infarcts not only cause more severe functional depression, but also carry a greater risk of LV 

dilation. In rats, both increases in LV volume and decreases in infarct thickness over 2-4 

weeks post-MI are proportional to infarct size (71, 111). Over several months of remodeling 

in rats, Pfeffer found monotonic increases in LV volume and LV volume:mass ratio at 

matched values of LV pressure (LVP) across small, moderate, and large infarct groups 

(204). In patients, increases in EDV and ESV have also been shown to be positively related 
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to infarct size over both short (30 days) and long (6-12 months) periods of remodeling 

(Figure 9), regardless of infarct location (41, 177).

Given their impact on both function and remodeling, it is not surprising that larger infarcts 

lead to poorer prognoses. In one study, the location of coronary artery ligation was varied to 

produce a range of infarct sizes in rats. One-year survival monotonically decreased between 

the sham, small, medium, and large infarct groups, and the most dramatic increase in the 

relative risk of death was observed between infarcts covering 40-50% of the LV (206). 

Several clinical studies have established a similar correlation between infarct size and 

clinical outcome. Studies using PET and gadolinium-enhanced MR imaging to determine 

infarct size reported increased mortality or decreased event-free survival 2-3 years post-MI 

in groups with large infarcts (289, 294). In another study, infarct size measured at 3 months 

post-MI was a stronger predictor of 1.5 year mortality than either LVEF or LV volumes 

(227). Finally, in an autopsy study of 54 patients, Page and colleagues found that all patients 

with >40% LV scar had cardiogenic shock, while no patients with <35% scar had shock 

(199). Interestingly, this study showed that risk is related to the cumulative amount of scar in 

the ventricle, rather than to the size of the most recent infarct: several small infarcts could 

lead to the same poor prognosis as a single large infarct, provided that similar volumes of 

scar are present.

Infarct Location—In addition to infarct size, the location of scar in the ventricle 

(determined by the affected coronary arteries) also plays an important role in determining 

function, remodeling, and prognosis following MI. Infarcts on the anterior wall of the LV, 

arising from occlusion of the left anterior descending coronary artery (LAD), lead to greater 

functional detriment and worse clinical outcomes than similarly sized infarcts in other 

locations. Several studies reporting clinical follow-up of patients suffering a first MI have 

found that anterior infarcts lead to greater risk of chronic heart failure (HF) and mortality 

(105, 246, 256). Stone et al. reported that patients with large, anterior MIs exhibited HF and 

cardiac mortality rates more than double those of patients with inferior infarcts (246), and 

Hands and coworkers reported the same trends after controlling for infarct size (105). 

Unfortunately, the anterior wall is also the most frequently observed site of infarction (14, 

239, 246, 256).

Rupture of the injured myocardium following infarction is a catastrophic event and in an 

early report accounted for 10-20% of fatalities occurring between 1-21 days post-MI (239). 

Although studies have reported modulation of rupture risk with infarct location, there are 

conflicting reports on which location carries the greatest risk. Several reports suggest that 

anterior infarcts are less likely to rupture than infarcts in other locations, or that risk of septal 

rupture is lower following anterior rather than inferior MI (181, 239). Other studies have 

reported that, despite differences in the frequency of infarction, risk of rupture is similar for 

infarcts on the anterior, posterior, lateral, and septal walls (14, 187).

The location of scar also plays a role in determining the extent of post-MI LV remodeling. 

Infarct location is correlated with changes in LV volume indices (197) and the degree of 

infarct expansion, with anterior infarcts exhibiting the greatest expansion likelihood (210). 

Significant post-MI LV cavity dilation occurs in a higher percentage of first-MI patients 
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with anterior vs. non-anterior infarction (83, 177). Additionally, the degree of remodeling, 

quantified by changes in absolute cavity volumes, is more severe in anterior MI patients 

(177). Since various scar locations have different likelihood of involving papillary muscles 

or adjacent myocardium, it is possible that differences in remodeling partially stem from 

differences in the likelihood of ischemic mitral regurgitation (MR) (92). MR following MI is 

associated with larger LV volumes, higher incidence of HF, and diminished long-term 

survival (1, 4, 13, 97). However, reported rates of MR in acute MI vary widely, from 3-70%, 

depending on the characteristics of the patient population, degree of MR reported, detection 

method used, and timeline of follow-up (17). There are also conflicting reports on whether 

different infarct locations are associated with increased risk of MR (31). Several clinical 

studies have reported greater incidence of MR following inferior (89, 149, 151) or anterior 

infarction (154), while others report no difference (32, 202). Ovine studies of ischemic MR 

have shown that posterior infarcts of varying size were sufficient to induce MR, while 

anterior infarcts (even those including the anterior papillary muscle) were not (94, 95). 

However, in another ovine study, Guy and associates concluded that ischemic MR was a 

consequence, not a cause, of post-infarction LV remodeling (100).

Transmural Extent—A third parameter that plays a role in determining post-MI clinical 

outcome is the transmural extent of infarction. However, discerning the relative risk of 

mortality with a transmural versus non-transmural infarct is partially confounded by 

differences in the risk of recurrent infarction. While some studies suggest that the transmural 

extent of scar does not lead to differences in early or late mortality (224), there are more 

reports of elevated risk of acute mortality or in-hospital death following transmural 

infarction (117, 125, 190, 253). Non-transmural infarction carries less risk of acute 

mortality, but patients with a non-transmural MI are more likely to suffer a recurrent MI 

(169, 170, 190). One study of acute MI patients found that the incidence of recurrent MI 

following non-transmural infarction was over 5 times greater than following transmural MI 

(170). As a result, late mortality is often higher in patients whose first MI is nontransmural 

(35, 190). These differences in early and late mortality with infarcts of varying transmurality 

can partially offset, leading to minimal differences in cumulative survival (35, 117, 190, 

253).

Mechanical Implications of Collagen Content and Crosslinking

Infarct Rupture—As discussed above, the first few days following infarction are 

characterized by myocyte necrosis and inflammation. Immune cells migrate into the infarct 

area to remove necrotic myocytes and cellular debris (19). Recruitment and activation of 

MMPs, which degrade collagen and other components of myocardial ECM, can occur as 

early as 15 minutes post-MI with peak activation observed 1-2 days later (205, 235, 254). As 

a result, the infarct is mechanically weakest and most prone to rupture during this time, 

when degradation of the existing structure is underway but before significant deposition of 

new collagen has begun. In a study of transgenic mice overexpressing the β2-adrenergic 

receptor, it was found that higher pre-MI myocardial collagen content is protective against 

acute infarct rupture (79). In mice, higher incidence of infarct rupture has been observed in 

mouse strains with higher densities of inflammatory cells in the infarct region (24). 

Inhibition of certain MMPs and plasminogen activators can reduce rupture frequency, but 
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can also lead to incomplete removal of necrotic myocytes and impaired scar formation (19, 

109). In mice, TIMP-3 deficient animals had a 4-fold increase in cardiac rupture and 50% 

decrease in survival after LAD ligation (104).

Infarct Material Properties—As discussed elsewhere in this review, within minutes after 

the onset of ischemia, myocardium stops contracting and begins stretching and recoiling 

along a curve that reflects its passive properties. Because collagen is a key determinant of 

those passive properties, it seems logical that early damage to collagen in the ischemic 

region could not only increase susceptibility to rupture but also reduce the stiffness of the 

injured muscle. However, it has proven remarkably difficult to test this hypothesis directly. 

In vivo measurements of pressure-segment length curves (211, 257, 258, 264, 273), two-

dimensional strains (107), and three-dimensional strains (271) consistently show a shift to 

longer segment lengths during ischemia. However, this shift could reflect the fact that 

systolic stresses are now acting on passive myocardium and stretching it to longer lengths, 

or could in part reflect a shift in the myocardial stress-strain curve itself. The data from our 

laboratory presented in Figure 7 illustrate the difficulty of distinguishing between these two 

possibilities: the example pressure-segment length curves from rat (lower panel) seem 

consistent with a region operating at higher pressures on the same pressure-segment length 

curve, but the data from dog seem to suggest the entire curve has shifted rightward. Most 

studies that have varied EDP over a wide enough range to compare segment lengths or 

strains at matched pressures have concluded that there is a rightward shift of these curves, 

such that circumferential and longitudinal dimensions are greater even at matched pressures; 

for a more detailed review of these studies please see Holmes et al. (112).

Here, we focus on the interpretation of these data with regard to changes in collagen 

structure and material properties. The key point is that even an increase in dimensions at 

matched pressures doesn’t prove that material properties have changed. The early studies of 

infarct expansion (280) concluded that there was a rearrangement of myocytes, which could 

change the unstressed length of a region of the infarct, shifting its stress-strain curve to 

higher lengths without changing the slope or shape of the curve. Furthermore, the early 

expansion studies reviewed above and at least one three-dimensional study of regional 

mechanics (271) found early thinning of the ischemic region, which would increase stresses 

(and therefore strains or segment lengths) at matched cavity pressures even if material 

properties remained unchanged. Interestingly, May-Newman et al. studied the effect of 

coronary perfusion pressure on three-dimensional strains during passive inflation of isolated 

arrested hearts and found that the loss of perfusion decreased wall thickness significantly 

(173); the changes in wall thickness they observed were large enough to explain the reported 

levels of radial thinning during regional ischemia induced by coronary occlusion (112). In 

theory, excising acutely ischemic tissue and mechanically testing it could provide a more 

definitive answer to whether material properties are changing. However, mechanical testing 

of normal passive myocardium is technically difficult due to the need to prevent ischemic 

contracture of the myocytes; following infarction, this problem is compounded by the 

gradual onset of edema, which can mask changes in material properties due to collagen 

degradation (112) and increase the disparity between in vivo properties and those measured 

in dissected (unperfused) specimens.
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During the fibrotic phase, the relationship between collagen content and scar material 

properties appears clearer: scar stiffness in the circumferential and longitudinal directions 

increases in proportion to the accumulation of collagen fibers oriented in those directions. A 

number of early studies found that the stiffness of healing infarcts increased with a time-

course similar to that reported by others for collagen content, but did not directly correlate 

collagen content and mechanical properties in individual samples. Theroux et al. reported 

that the slope of passive pressure-segment length curves measured in healing infarcts in dogs 

increased from 1 to 3 weeks (258), and Connelly et al. found the stiffness of uniaxially 

tested tissue strips increased progressively from control to 3 and 15 weeks following 

infarction (48). In human infarcts obtained at autopsy at times ranging from 3 days to 11 

years after myocardial infarction, Parmley et al. came closer to correlating mechanics and 

collagen content: they fitted exponential functions to stress-strain curves obtained from 

uniaxial tensile tests and found that samples classified as “fibrotic” at autopsy had the 

highest stiffness coefficients, followed by samples containing a mix of muscle and fibrotic 

tissue; samples classified as muscular – obtained within the first week after infarction – had 

the lowest stiffness coefficients (201).

More recent studies have demonstrated that both collagen content and collagen fiber 

orientation are critical determinants of the mechanical properties of healing infarct scars. 

Holmes et al. found that collagen fibers in porcine infarcts were strongly aligned in the 

circumferential direction 3 weeks after coronary ligation; when they tracked strains in these 

infarcts during passive inflation of isolated arrested hearts, they saw very little stretch in the 

circumferential direction but more stretch in the longitudinal direction than in remote, 

noninfarcted myocardium (113). By contrast, Omens et al. saw significant reductions in both 

circumferential and longitudinal infarct strains during passive inflation of rat hearts tested 2 

weeks after coronary ligation (196). A recent study by Fomovsky and Holmes explained 

why: the collagen fiber structure in healing rat infarcts is isotropic, with no significant 

alignment in any direction at 1, 2, 3, or 6 weeks following infarction, and these infarcts are 

mechanically isotropic when subjected to planar biaxial tensile testing (73). This last study 

by Fomovsky was also one of the few to directly test for a correlation between collagen 

content and mechanical properties: the authors reported that the stiffness coefficient 

describing infarct mechanical properties correlated modestly (R2 = 0.42) but significantly 

with the square of collagen content. Fomovsky and Holmes also measured crosslinking in 

their study, and concluded that collagen content was a much more important determinant of 

mechanics than crosslinking. While few studies are available for comparison, one uniaxial 

tensile testing study examined 3-week rabbit scars following a range of different reperfusion 

protocols and concluded that tensile strength of those samples correlated strongly with the 

level of crosslinking rather than with collagen content (49). Finally, we note that a few 

studies have suggested that at some later point in the remodeling phase, scar stiffness may 

begin to drop despite the persistently high collagen content. The most intriguing of these is a 

planar biaxial testing study on sheep infarcts, which showed a clear drop in scar stiffness in 

both the circumferential and longitudinal directions at 6 weeks after initial increases at 1 and 

2 weeks, despite a progressive increase in collagen content (99).
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Pump Function—Perhaps the most surprising thing about the dramatic changes in infarct 

stiffness that occur during healing due to collagen deposition and crosslinking is that these 

large changes appear to have very little effect on pump function. Early computational 

models that simulated the functional impact of changes in infarct material properties over 

the time-course of healing found an interesting trade-off between the effects of scar 

stiffening on systolic vs. diastolic function (Figure 10) (23, 121). Simulating acute infarcts 

as noncontractile regions with material properties identical to passive myocardium predicted 

normal diastolic behavior (reflected in an unchanged EDPVR) but severely depressed 

systolic function (rightward shift in the ESPVR), in agreement with experiments. Increasing 

infarct stiffness in the models improved systolic function as expected, shifting the predicted 

ESPVR back towards baseline. However, hearts with a stiffer infarct also displayed 

impaired filling, reflected in a left-shifted EDPVR, and the reduced filling offset the 

improved ejection, producing little overall change in predicted CO at matched pressures. 

These early models made a number of simplifications, particularly assuming that scar is 

mechanically isotropic (having the same properties when stretched in any direction), but 

recent modeling studies using more sophisticated and better-validated finite-element models 

reached similar conclusions. Fomovsky et al. found that isotropically stiffening a large 

anterior infarct in a model of an infarcted dog heart reduced both systolic and diastolic 

volumes at matched pressures, producing no net benefit in overall pump function (74). 

Similarly, Dang et al. studied the impact of the stiffness of an isotropic patch used in a 

surgical reshaping procedure in hearts with anterior infarcts and found that increasing patch 

stiffness reduced systolic and diastolic volumes at matched pressures, but actually decreased 

SV – in this setting, stiffer patches impaired filling more than they improved ejection (55). 

Overall, these computational studies are consistent with the majority of the functional 

evidence for both global and local infarct reinforcement (see the section “Therapeutic 

Modification of Scar Structure and Properties”): infarct stiffening can be effective in 

limiting LV dilation, but isotropic reinforcement is unlikely to directly improve LV pump 

function (20, 180).

Finite-element models have also been used to explore the relationship between infarct 

stiffness and wall motion in the LV. It has been shown experimentally that post-MI LV 

dyssynchrony is associated with increased risk of HF and mortality (2). Finite-element 

models of acute MI in sheep have shown that infarct stiffening is capable of modulating the 

amount of post-MI dyskinesis, but extreme infarct stiffening was required to render a 

dyskinetic infarct region akinetic. In order to eliminate negative radial strains in the passive 

infarct during ventricular systole, scar stiffnesses ~300 times greater than that of normal 

myocardium had to be implemented in the models (55, 281). However, given the detrimental 

effects of excessive infarct stiffening on LV diastolic function outlined above, it is unlikely 

that such dramatic increases in scar stiffness would translate to improvements in overall 

pump function.

Mechanical Implications of Collagen Orientation and Alignment

Fomovsky and colleagues recently proposed one idea for finessing the trade-off between 

systolic and diastolic function (74). Inspired by the fact that some infarct scars are highly 

anisotropic (113), they tested whether any choice of different material properties in the 
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circumferential and longitudinal directions could significantly enhance predicted pump 

function in a finite element model of a dog heart with a large anterior infarct (74). Those 

simulations suggested that an infarct that is quite stiff in the longitudinal direction but as 

compliant as passive myocardium in the circumferential direction would produce the best 

pump function. One way to achieve these infarct properties would be to direct collagen fiber 

orientation over the course of healing; however, a more practical alternative is to selectively 

reinforce the infarct in the longitudinal direction. The hypothesis that longitudinal 

reinforcement would improve pump function was tested directly by ligating the LAD in 

open-chest anesthetized dogs and reinforcing the resulting acute infarcts with a modified 

Dacron patch that was inextensible in the longitudinal direction but free to deform in the 

circumferential direction (72). Comparison of hemodynamics immediately before and after 

reinforcement revealed that the anisotropic patch dramatically improved pump function, as 

indicated by an upward shift in the cardiac output curve. Calculating CO values at a matched 

EDP revealed that anisotropic reinforcement restored half of the deficit in pump function 

due to acute MI. Pressure-volume analysis showed that the anisotropic patch caused a 

leftward shift in the ESPVR, indicating enhanced contractile capability, while the EDPVR 

remained unchanged, signifying minimal change in the passive behavior of the infarct and 

therefore minimal interference with diastolic filling of the LV. The ability of this anisotropic 

patch to produce dramatic restoration of systolic function without depression of diastolic 

filling makes anisotropy a promising avenue for exploration, not only for local 

reinforcement but possibly in total ventricular restraint as well.

Mechanical Implications of Scar Remodeling

As outlined under Geometric Remodeling: Thinning, Expansion, and Compaction above, 

thinning of the infarct region has been well documented in rats (70, 225, 279), dogs (122, 

123, 223), pigs (114), and sheep (183), and also reported in humans (116). This thinning 

occurs in left ventricles that are operating at elevated diastolic pressures, and often 

undergoing progressive dilation. Therefore, LaPlace’s Law suggests that wall stresses are 

elevated globally in the LV, and are even higher in the thinning infarct area. This can lead to 

the development of a detrimental positive feedback loop during scar remodeling, in which a 

thin scar experiences high wall stresses that cause the scar to undergo further thinning and 

expansion, leading to higher wall stresses. However, as noted earlier under Assessing 

Regional Function Following Infarction, most studies of strains in healing transmural 

infarcts reveal little change in strain magnitude over time. Using coupled agent-based and 

FE models of infarct scar remodeling, Rouillard and Holmes found that gradual increases in 

stress may be offset by the deposition of new collagen in the scar (231). Observed increases 

in rat scar stiffness due to ongoing collagen deposition were sufficient to keep strains in the 

infarct nearly constant over the simulation time-course.

Electrical Implications of Scar Structure

Determinants of Normal Electrical Activity

Electrical activation of the ventricles is primarily determined by: 1) myocyte 

electrophysiology, 2) intercellular connectivity, 3) regional differences of both myocyte 

electrophysiology and connectivity, and 4) three-dimensional tissue structure. In healthy 
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ventricular myocardium, the normal balance of these factors ensures the efficient and stable 

spread of electrical impulses through the tissue (reviewed in (243)). Overall, myocytes are 

aligned in parallel, in a fiber-like arrangement (with well-defined, transmurally varying 

directionality) and are laterally reinforced, creating 4 to 6 cells-thick laminar layers of 

tightly coupled myocytes separated by clefts of connective tissue, across which there is little 

cell-to-cell connectivity (reviewed in (244)). Current between individual cells in these 

bundles passes through arrays of gap junctions concentrated within intercalated disks, which 

are generally arranged at the cell ends, transverse to the myocyte axis (although some 

individual gap junctions are found along the lateral cell membrane - reviewed in (241)). 

Combined, this tightly organized arrangement of cell orientation and connectivity results in 

the well-described three-dimensional electrical anisotropy of ventricular tissue, with 

electrical activation propagating preferentially along the direction of the myocyte axis, with 

a somewhat slower rate within muscle layers in the transverse direction and an even slower 

rate transverse to the layers (with a 4:2:1 ratio of conduction speeds) (33, 115).

Electrical Effects of Structural Changes Post-MI

After MI, effects of electrical remodeling are exacerbated by 3D structural changes, which 

themselves may provide a substrate for re-entrant ventricular tachyarrhythmias (reviewed in 

(120)). Activation in the infarcted region is characterized by localized delays and 

fractionated, low-amplitude extracellular electrograms (81). This is typically attributed to 

changes in patterns of excitation and conduction due to altered ion channel activity (63) and 

decreased cellular connectivity (240): in the infarct border-zone, myocytes are electrically 

connected to approximately half of the normal number of adjacent myocytes, with a three-

fold greater decrease in lateral versus end-to-end connections due to reduced intercalated 

disk expression along the cell margin (161). However, an alternative, purely structural 

mechanism has been proposed (11), which involves tortuous or ‘zig-zag’ conduction in and 

around infarcted regions through isolated bundles of surviving myocytes (7–9).

Intra-scar Conduction

The orientation, connectivity, and spacing of surviving myocytes affect the speed and 

anisotropy of electrical conduction, as does the presence or absence of a layer of spared 

epicardium (146, 265). Computational studies support the idea that surviving myocyte 

structure within the infarct may explain reported changes in electrical conduction (214). For 

example, Maglaveras and coworkers showed that simulating tortuous propagation pathways 

through an infarct can reproduce experimentally obtained electrograms (164, 165). More 

recently, computational simulations have shown that a uniform decrease in transverse 

conductivity, combined with axial conduction slowing across an infarcted region, can cause 

re-entry (269) and that the presence of strands of viable tissue penetrating and forming 

channels in electrically inert scar are key to ventricular tachyarrhythmia inducibility (3). 

Rutherford and coworkers reconstructed rat infarcts and the surrounding borderzone at high 

resolution (Figure 11A) and used computational simulations to explore the implications of 

the network of connected surviving myocytes (232). They found stimulus site-dependent 

uni-directional propagation and rate-dependent activation delays. A component of this delay 

was caused by tortuous conduction across the scar (Figure 11B) along with regional source-
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to-sink mismatch caused by abrupt changes in strand dimensions. Their simulations also 

predicted conduction block, creating a substrate for re-entrant excitation (Figure 11C).

Heterotypic Cell Coupling

While infarcted tissue is generally thought of as being electrically isolating (10), 

underscoring the importance of healthy tissue strands for conduction in the infarcted region, 

recent evidence supports the potential for electrical coupling between fibroblasts and 

myocytes (reviewed in (141, 142, 229)). In situ, fibroblast-myocyte electrical coupling has 

been demonstrated in the border-zone of isolated mouse hearts using cell-specific expression 

of voltage-sensitive proteins in fibroblasts (213). Fibroblasts may act as current sinks 

(locally affecting myocyte excitability, repolarization, and conduction (137, 179)) or serve 

as short- and long-range conductors between isolated tracts of viable myocytes (82, 96). 

This heterotypic interaction is enhanced after infarction (268) and may contribute to 

electrical wave propagation into transmural scars (274). The importance of heterotypic 

coupling for myocyte electrophysiology has been supported by computational simulations 

(143). Simulations have also demonstrated the importance of electrical interactions between 

fibroblasts and strands of surviving myocytes for post-infarction arrhythmogenesis: at 

intermediate densities, coupled fibroblasts cause action potential shortening and an increase 

in arrhythmia susceptibility, while at high densities they protect against arrhythmias by 

causing myocyte depolarization and blocking impulse propagation, and at low densities they 

have no effect on arrhythmia susceptibility (176). The effects of post-infarction heterotypic 

coupling may also be exacerbated by non-uniformity of ventricular contraction (215), 

through mechano-sensitivity of cardiac fibroblasts. Fibroblasts possess a cation non-

selective stretch-activated current (245), potentially mediated through transient receptor 

potential channels (296), such that stretch results in their depolarization (143) and 

modulation of impulse conduction (262). Fibroblast-mediated stretch-induced changes in 

myocyte electrophysiology and impulse propagation could contribute to initiation of 

ventricular tachyarrhythmias during increases in intraventricular volume (34, 37) and may 

be involved in the elimination of arrhythmias by afterload reduction (64, 184).

Therapeutic Modification of Scar Structure and Properties

Modification of Post-Infarction Inflammation

When considering opportunities to therapeutically modify infarct healing, it is tempting to 

apply intuition drawn from experience in other tissues. Thus, some authors have identified 

inflammation or fibrosis as pathologies that should be mitigated following myocardial 

infarction. Yet this simplistic approach underestimates the potential for unintended 

consequences, as illustrated dramatically by the example of post-infarction steroid 

administration. Initial animal studies showed that post-infarction administration of steroids 

can reduce infarct size, but a clinical trial of post-infarction steroids had to be stopped after 

steroids induced unexpected increases in infarct size, arrhythmia, and death (226). Follow-

up studies in animals showed that a variety of pharmacologic agents that reduce edema and 

inflammation, including high-dose steroids (101, 167) and non-steroidal anti-inflammatory 

drugs (27, 102, 103), also aggravate infarct expansion and lead to a thinner scar. More recent 

studies have shown that macrophage depletion dramatically increases post-infarction 
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mortality in mice, and that mesenchymal stem cells may influence infarct healing in part by 

modulating macrophage phenotype (15). It remains unclear how edema and inflammation 

contribute to infarct material properties and geometric remodeling in the first days after 

infarction, or how their reduction would cause arrhythmias, but these examples underscore 

the risks of modifying features of infarct healing before understanding their functional 

importance.

Modification of Collagen Content

Given the clear importance of collagen content in determining scar mechanical properties, a 

number of studies have sought to therapeutically modify collagen levels post-MI (Figure 

12). Collagen concentration is the balanced result of collagen production and degradation; 

thus, the most obvious targets for pharmacologic modulation are enzymes related to the 

synthesis of collagen and those that regulate degradation. On the synthesis side, several 

groups have inhibited prolyl-4-hydroxylase, achieving an average reduction of 37% in 

infarct collagen content (67, 193). On the degradation side, Villareal et al. used doxycycline 

as a broad spectrum MMP inhibitor, but found only a modest increase in collagen content 

(270); Lindsey and colleagues reported better success with a selective MMP inhibitor that 

does not affect MMP1, which raised collagen content by 70% (159). Koenig et al. knocked 

out a variety of MMPs (MMP 2, 8, 9, 13, 14), and achieved roughly a 30% increase in 

collagen content (140). As an alternate strategy, overexpressing MMP inhibitors has 

produced mixed results: TIMP2 overexpression produced insignificant change (216), while 

TIMP1 and TIMP3 knockouts both decreased collagen ~25-30% (52, 104).

In addition to therapies intended to manipulate collagen content, a number of drugs used in 

patients following infarction may alter collagen content as an unintended side effect. ACEis 

are widely used in post-infarction patients to slow left ventricular remodeling and the 

development of heart failure; however angiotensin signaling also plays an important role in 

regulating fibrosis. Watanabe and colleagues found that the ACEi imidapril resulted in a 

significant decrease (~45%) of infarct collagen content at 28 days post-MI in a rat model, 

while the inhibitor ramipril showed a more modest effect (276). Acting on the same 

signaling pathway, the angiotensin receptor blocker (ARB) candesartan has also been shown 

to decrease collagen content ~35% in a rat MI model (200). Conversely, β-blockers – 

another drug typically given to limit LV remodeling and progression to heart failure – were 

reported to increase collagen content ~60% in 12 week-old rat infarcts (278), while beta-

receptor overexpression in mice reduced the increase in infarct collagen ~35% by day 7 

post-MI (79). The mechanisms of ACEi, ARB, and β-blocker effects on collagen content are 

multi-faceted: while affecting intracellular signaling pathways responsible for collagen 

synthesis, these drugs also have direct and indirect effects on the synthesis and activation of 

MMPs (160, 238, 267).

Modification of Scar Compaction

As described above in Geometric Remodeling: Thinning, Expansion, and Compaction, many 

reports show infarct compaction over time in the circumferential-longitudinal plane. This 

finding suggests an endogenous mechanism responsible for compacting scar tissue, which 

might be amenable to therapeutic manipulation. One plausible hypothesis is that contractile 
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myofibroblasts drive scar compaction through active force generation. Supporting this 

hypothesis, Laeremans et al. and Barandon et al. each modulated the Wnt/Frizzled signaling 

pathway in mice to increase fibroblast density within infarcts and reported increased scar 

thickness and decreased scar circumferential length, despite a concurrent decrease in infarct 

collagen content (12, 150).

Mechanical Unloading

Post-MI remodeling is characterized by infarct thinning and ventricular dilation, both of 

which are thought to be driven at least in part by increases in mechanical loading following 

infarction. Accordingly, global and local mechanical unloading have been explored as 

potential therapies to attenuate both infarct and LV remodeling and improve cardiac 

function. In many cases, the devices employed in these studies were originally developed for 

use in end-stage failing hearts. However, the extremely poor prognosis of post-infarction 

heart failure has motivated a number of investigators to explore the idea of mechanically 

unloading infarcted hearts early after MI, in order to prevent remodeling before it occurs, 

rather than treating it after it occurs.

LVADs—Early post-infarction application of left ventricular assist devices (LVADs) has 

been mostly limited to cases of acute MI complicated by cardiogenic shock. Due to the 

increased risk of LVAD implantation early after infarction (associated with mortality rates 

as high as 75%) (43), many current post-MI studies now use percutaneous devices. 

However, the use of percutaneous LVADs in acute MI patients is primarily as a short term, 

bridge-to-surgery or bridge-to-recovery therapy (260). A meta-analysis of clinical trial data 

comparing the TandemHeart and Impella LP2.5 devices revealed that, despite improved 

coronary index and mean arterial pressure, neither device improved patient mortality 

compared to intra-aortic balloon pumping (45). Because mechanical unloading reduces wall 

stresses and oxygen consumption, some investigators have also explored acute unloading as 

a mechanism for reducing infarct size. Kapur et al. found that TandemHeart support during 

the reperfusion period in a porcine infarct model led to smaller infarct sizes in the LVAD 

group, although the observed myocardial salvage did not translate to improvements in SV, 

CO, or ESP (128). Therefore, although mortality due to cardiogenic shock remains high, 

more data are needed to determine the best choice for active circulatory assistance and to 

assess long-term effects of these approaches on remodeling, pump function, and survival.

Global Restraint—As an alternative to mechanical unloading by active support, several 

passive restraint devices have been used to restrain one or both ventricles in an attempt to 

modulate post-infarction ventricular remodeling (Table 2). The Acorn Corcap cardiac 

support device (CSD) is a mesh-like device that surrounds the heart, covering both the left 

and right ventricles. The knitted polyester device is intended to reduce the degree of 

stretching and the magnitude of wall stress at ED (198). The Paracor HeartNet CSD is 

another passive, bi-ventricular restraint device consisting of a wire Nitinol mesh that wraps 

around both ventricles. A third device, the Myocor Coapsys (Myosplint), applies restraint 

only to the LV. The Coapsys consists of several pairs of rigid pads placed on opposing 

surfaces of the LV epicardium (anterior and posterior walls) and connected through the 

cavity by a tension member. Increasing the tension between the two epicardial pads reshapes 
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the enlarged LV, creating a bilobular ventricle with decreased chamber radius (174). As 

detailed in a recent review (46), a consistent theme emerges among studies of bi-ventricular 

or LV restraint devices: global post-MI restraint reduces LV cavity size and decreases the 

severity of dilation but fails to generate definitive improvements in LV function (20, 21, 42, 

85, 98, 166, 174, 209, 212). A similar trend is also observed with another variation of 

passive LV restraint: optimized and adjustable restraint. Several studies in sheep have 

examined the effects of a fluid-filled bladder device, which can be inflated and deflated to 

achieve an optimum restraint level (87, 153). In a study of optimized, static LV restraint, 

Ghanta and associates found that the degree of restraint decreased over time as the LV 

cavity reverse remodeled, to the point where there was no longer any restraint pressure being 

applied at the conclusion of the experiment (87). A follow-up study by the same group 

compared optimized static restraint to adjustable restraint, in which fluid was added to the 

balloon lumen to maintain a constant restraint pressure over the course of remodeling (153). 

Although adjustable restraint was more effective in limiting LV dilation, no functional 

improvements were observed compared to the static restraint group.

Local Restraint—In addition to global restraint, local restraint of just the infarct region 

has been explored for its potential to limit remodeling and improve function (Table 2). 

Cardiac patches intended for local post-infarction application have taken a variety of forms, 

from synthetic to cell-seeded to completely tissue engineered. Some aim to mechanically 

reinforce the infarct, while others are intended primarily to deliver growth factors or cells to 

the damaged region. Not surprisingly given the diversity of approaches, reports of the effects 

of local infarct restraint on both ventricular remodeling and function are mixed. While 

several studies show a decrease in LV volume, diameter, or cross-sectional area with local 

restraint, there are several other reports in which patch reinforcement fails to reduce dilation, 

suggesting that it may be more difficult to limit LV dilation with local restraint as opposed 

to global restraint (40, 78, 90, 91, 134, 158, 180, 208, 242, 301). As with global approaches, 

studies of local post-infarction restraint have failed to demonstrate conclusive improvements 

in LV function (133, 158, 180, 301). Similarly, a fluid-filled device for achieving optimized 

local restraint of only the infarct attenuated increases in LV volumes but did not improve 

SV, mirroring findings from studies of global adjustable restraint (145).

Polymer Injection

Injection of a variety of materials into the infarct area has also been explored as a potential 

therapeutic approach (Table 2). Aside from delivery of biological or chemical agents to the 

non-perfused infarct, injection of materials of varying stiffness can also directly alter scar 

material properties. Experimental studies employing a variety of animal models have shown 

that injections into the infarct area reduce the degree of radial infarct thinning and in-plane 

expansion (54, 186, 218). Several studies reported sustained improvement in functional 

indices and the degree of remodeling (54, 60, 183, 233), while others suggested that the 

changes in infarct structure following injection do not prevent post-infarction remodeling 

(218). Furthermore, one study that observed reduced LV dilation with injection at 4 weeks 

post-MI found that the degree of dilation in the injection and control groups was similar by 

13 weeks (60). Computational approaches have also been used to evaluate the theoretical 

effects of infarct injection and optimize the distribution of injected material. These models 
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have shown that the best strategy for reducing wall stress in the infarct is to increase the 

volume of injected material, although optimization of post-MI SV required more complex 

injection patterns involving both the infarct and border zone (275, 282). Simulated injection 

of a calcium hydroxyapatite-based tissue filler into the infarct reduced average ES fiber 

stress in the scar by 86% (281). Experimentally, however, injecting infarcts with gels of 

different moduli produced similar functional results: infarcts treated with either an 8kPa or 

43kPa hyaluronic hydrogel showed similar changes in infarct wall thickness, LV volumes, 

EF and CO (118). An extensive summary of materials that have been used in infarct 

injections, in addition to materials that have been used to construct cardiac patches, can be 

found in Rane & Christman (217).

Electrical Modification

The most common structural modification for the treatment and prevention of ventricular 

tachyarrhythmias after MI is the creation of more scar, in order to alter or eliminate potential 

reentrant circuits. Most often, this is achieved through catheter-based tissue ablation, guided 

by electrical mapping (in some cases supplemented by structural imaging) to identify the re-

entrant isthmus (Figure 13; reviewed in (5, 106)). Ablation of tissue thought to be 

responsible for aberrant conduction is usually accomplished by delivering radio-frequency 

energy to the tissue, although cryo-ablation, high-intensity focused ultrasound, lasers, and 

microwaves are also used. In addition, chemical ablation using ethanol and coil 

embolization of small coronary arteries has been reported. Another procedure, surgical 

ventricular reconstruction combined with endocardial resection, is primarily intended to 

improve LV function, but also offers the benefit of arrhythmia elimination by removing re-

entrant pathways (reviewed in (61)).

Novel approaches, aimed at reducing arrhythmia incidence by altering scar structure through 

biological interventions, are also now emerging. These include strategies that aim to 

improve impulse propagation or prolong refractoriness (reviewed in (86)). Under these 

schemes, augmentation of intra-scar conduction is achieved through cardiomyocyte or 

engineered tissue transplantation (to regenerate the infarct), overexpression of sodium 

channels (to increase excitability), or methods for improved intercellular coupling (such as 

engraftment of connexin-expressing cells into the infarcted region). Prolongation of 

refractoriness, on the other hand, is typically realized by gene therapy targeted at 

lengthening action potential duration or by cell therapy using engineered cell grafts 

transfected to express specific potassium channels. An exciting development in the area of 

post-infarction arrhythmia-substrate modification is the potential for ‘homogenization’ of 

ventricular scar to improve impulse propagation by bio-enzymatic ablation of 

arrhythmogenic tissue through topical application of collagenase (290).

Conclusion

Post-infarction healing is a dynamic process. The evolving composition, collagen content 

and cross-linking, collagen fiber orientation, size, shape, and location of the infarct are 

important determinants of heart function, remodeling, and prognosis. Understanding the 

functional implications of specific structural features in vivo requires understanding not only 
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tissue mechanics and heart physiology but also other features of cardiovascular physiology 

including interactions between the heart and the vasculature and reflex regulation of blood 

pressure. One important conclusion from the studies reviewed here is that computational 

modeling is an essential tool for integrating the wealth of information required to understand 

this complex system. As one example, the fact that restraint devices applied early post-

infarction have not improved pump function of the heart may seem surprising, but in fact 

even early computational models anticipated this result when they demonstrated the trade-

off between improved systolic function and impaired diastolic function with increasing 

infarct stiffness.

A second lesson from the studies reviewed here is that understanding the underlying 

physiology of post-infarction healing is essential to designing and interpreting experiments. 

Because pressures, volumes, scar structure and geometry, and reflex compensations are all 

changing throughout the course of healing, no one parameter provides enough information 

to judge changes in heart function. This fact has led to many false claims of improved 

function in polymer injection and stem cell studies where ejection fraction was used as the 

sole measure of LV function. Moving forward, it is essential that animal studies of post-

infarction therapies measure entire pressure-volume relationships or cardiac output curves, 

or at a minimum compare functional indices at matched pressures. Although manipulation of 

hemodynamics is often impractical in the clinical setting, clinical studies must also measure 

pressures whenever possible in order to allow confident interpretation of results.

Finally, looking forward to the potential to devise novel post-infarction therapies, the 

complexity of scar healing means that a broad array of potential targets are available, and 

indeed a diverse array of pharmacologic, mechanical, and electrical modifications are under 

development. On the other hand, the complexity of the system makes predicting effects of 

therapies particularly challenging, and makes purely experimental optimization of these 

therapies financially impractical. Here too, computational modeling has an important role to 

play. As noted above, computational models are increasingly capable of predicting the 

immediate effects of mechanical interventions, accounting for the known interactions 

between the infarct, non-infarcted myocardium, and the circulation. Moving forward, multi-

scale models that can predict responses to drug-device combinations and computational 

models that can predict longer-term effects of therapies on scar and ventricular remodeling 

will be essential to designing and testing post-infarction therapies.
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Figure 1. 
Wound healing after a myocardial infarction is a multi-faceted, dynamic process that results 

in the replacement of necrotic myocytes with collagenous scar tissue. A. This process is 

generally divided into 1) an early inflammatory phase characterized by pronounced chemical 

signaling, resorption of necrotic tissue, and recruitment of myofibroblasts, 2) a fibrotic phase 

characterized by increased myofibroblast number and collagen accumulation, and 3) a long-

term remodeling phase characterized by collagen matrix stabilization and maturation. Panel 

A. adapted with permission from Jugdutt (127). B. Components of infarct scar matrix are 

highly dynamic during the healing time-course. Curves represent the fits of reported data, 

averaged across a number of small animal studies after grouping into the following 

categories: collagen (types I, III, IV, VI) (29, 36, 39, 73, 123, 175, 182, 189, 272, 277, 292, 

300), collagen cross-links (hydroxylysylpyridinium, hydroxylysylpyridinoline) (73, 175, 

272, 300), provisional structure (fibrin, fibronectin, laminin) (39, 58, 139, 162, 182), 

matricellular proteins (tenascin-C, thrombospondin, osteopontin, periostin, SPARC) (76, 

119, 144, 162, 192, 194, 237, 263), glycosaminoglycans (hyaluronan) (58), and 

proteoglycans (biglycan, decorin) (62, 283, 291, 300).
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Figure 2. 
Infarct collagen orientation depends on imaging plane. A. Infarcts are most often sectioned 

in the radial-circumferential (i.e., short-axis) plane, but fiber organization in the 

circumferential-longitudinal plane (parallel to the epicardium) is more relevant to scar 

mechanics. B. In the short-axis view, collagen fibers lie in planes parallel to the epicardium 

and appear to be circumferentially aligned even when the circumferential-longitudinal view 

(C) reveals them to be isotropic. Images are from 3-week old rat infarcts, sectioned, stained 

with picrosirius red, and imaged under polarized light. Reprinted with permission from 

Fomovsky (75).
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Figure 3. 
Correlation between infarct mechanics and scar collagen structure in healing rat infarcts 

(75). A&B. Diagrams showing location of infarcts following permanent ligation or 

cryoinfarction to create infarcts with a range of shapes and locations: circular-apex (C-A), 

circular-midequator (C-M), circumferential ellipse (CE) at the equator, or longitudinal 

ellipse (LE) at the equator. C&D. Circumferential and longitudinal systolic strains were 

negative prior to infarction (control), indicating contraction. During acute ischemia, apical 

infarcts stretched during systole in both directions (C); by contrast, infarcts at the equator 

stretched only in the circumferential direction (D). E&F. Mean collagen orientation 

histograms show isotropic structure in apical infarcts (E) and circumferential alignment in 

equatorial infarcts (F).
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Figure 4. 
Chronic infarct geometric measurements demonstrate substantial remodeling in the 

circumferential dimension. A. When assessed in vivo, studies sometimes report infarct 

expansion (increase in the scar’s circumferential length) and sometimes report compaction 

(decrease in the scar’s circumferential length). B. When assessed in excised, arrested hearts 

(i.e., no longer pressurized), studies typically report compaction. These trends are true across 

multiple animal models and measurement techniques.
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Figure 5. 
Data from Pfeffer et al. on remodeling of end-diastolic pressure-volume relationship 

following myocardial infarction in rats (204). Following small infarcts (those affecting 

5-30% of the LV circumference), effects of changes in infarct stiffness and cavity dimension 

offset, producing little change in the EDPVR from 6 hours (1/4 day) to 15 weeks (106 days). 

By contrast, substantial cavity dilation led to a progressive rightward shift of the EDPVR 

following larger infarcts. Small numbers at the top of each curve indicate the time post-

infarction; error bars are 2*SE for group sizes of 5-10 at most time points and 12-25 at the 

last two time points. Figure slightly modified with permission from Pfeffer et al. (204).
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Figure 6. 
Effect of acute ischemia on the end-systolic pressure-volume relationship (ESPVR). A. Plots 

from Sunagawa et al. showing a progressive rightward shift in the ESPVR as ischemic 

regions of increasing size were created in 6 dog hearts (reprinted with permission (251)). A 

– control; B – distal left circumflex (LCx) artery occlusion; C – proximal left anterior 

descending (LAD) artery occlusion; D – proximal LCx occlusion; E – distal LAD occlusion; 

F – mid-LAD occlusion; G – end-diastolic pressure volume relationship (EDPVR). B. 
Illustration of the compartmental model proposed by Sunagawa et al., for an ischemic region 

affecting 40% of LV mass. The model predicts the ischemic ESPVR as a weighted average 

of the normal ESPVR and the EDPVR, which is assumed to reflect the passive mechanical 

behavior of the acutely ischemic region.
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Figure 7. 
Changes in pressure-segment length curves during acute ischemia. A. Pressure-

circumferential segment length loops recorded in our laboratory from an open-chest 

anesthetized dog with autonomic reflexes pharmacologically blocked. Fifteen minutes of 

ischemia converted the active loop to an exponential, passive curve, induced a rightward 

shift, and increased enddiastolic pressure (EDP). B. Pressure-longitudinal segment length 

loops recorded in our laboratory from an open-chest anesthetized rat with intact autonomic 

reflexes. Thirty minutes of ischemia converted the active loop to a passive curve and 

increased EDP, shifting the segment onto a steeper region of that curve. Blue triangles – 

control end diastole (ED); blue circles – control end systole (ES); red triangles – ischemia 

ED; red circles – ischemic ES.
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Figure 8. 
Changes in regional mechanics during infarct healing. A. Circumferential strains reflecting 

deformation from end diastole to end systole measured using radiopaque markers (pig, 

Holmes et al. (114)) or sonomicrometers (rat, Fomovsky et al. (73); dog, Theroux et al. (258, 

259)) drop to near zero acutely and remain small (usually not significantly different from 

zero) for several weeks after infarction in most studies. However, Theroux and coworkers 

found that shortening partly recovered in dogs with reperfused infarcts (closed squares), in 

contrast to dogs with permanent ligation studied using otherwise identical methods (open 

squares). B. Circumferential strains measured using MRI showed gradual recovery in 

patients with reperfused MI (black curves; (22, 136, 148, 228)) but not in mice with 

reperfused MI (295), or sheep with permanent ligations (147).
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Figure 9. 
Effect of infarct size on left ventricular remodeling. A. Measurements of LV remodeling 1 

year post-MI in patients revealed that end systolic volume is linearly related to acute infarct 

size. Plot reprinted with permission from Chareonthaitawee et al. (41). B. EDPVRs of rats 

with a healed MI were generated by passive inflation of the arrested LV. Shifts in the 

average curves show that for a given LV pressure (LVP), LV cavity volume increases 

monotonically with infarct size. Plot reprinted with permission from Fletcher et al. (71).
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Figure 10. 
Effects of infarct mechanical properties on passive and active left ventricular function. 

A&B. Original model results reprinted with permission from Bogen (23). A. Immediately 

post MI, the non-contractile ischemic area causes severe systolic dysfunction (characterized 

by a rightward shift in the ESPVR) with minimal effect on passive LV behavior. Systolic 

function improves (ESPVR shifts leftward towards baseline) as the infarct stiffens 

throughout healing, but the stiffer scar also impairs diastolic filling (steepening of the 

EDPVR). B. Unfortunately, similar magnitude shifts in these two curves can offset each 

other, leading to minimal improvement in stroke volume as the scar stiffens. C&D. 
Experimental results reprinted with permission from Fomovsky (72). C. Changes in passive 

and active LV behavior with infarction and anisotropic infarct reinforcement. Selective 

longitudinal reinforcement shifts the ESPVR leftward with minimal effect on the EDPVR. 

D. Anisotropic infarct reinforcement improves systolic function without impairing diastolic 

filling, leading to better pump function as indicated by an upward shift in the CO curve.
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Figure 11. 
A. Three-dimensional reconstruction of an infarcted region (2.99×2.68×0.70 mm3 volume). 

B. Representative activation pathways with stimulation at the sub-endocardium (top) or sub-

epicardium (bottom), demonstrating tortuous stimulus site-dependent activation pathways 

through the infarct. C. Sustained re-entry in the infarcted region induced by a stimulus train 

with reducing cycle length applied at the sub-epicardium (red sphere). The sub-epicardium 

and subendocardium were coupled at the network boundary via a path (dashed line) that 

imposed a time delay. Shown are activation maps for beats 1 to 6 (beats 1-2 were paced with 

a cycle length of 157 ms, then, following unidirectional block, re-entrant activation occurred 

in beats 3-6). The marker • indicates the basal sub-epicardium and is used as a fiducial 

reference. Modified with permission from Rutherford et al. (232).
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Figure 12. 
Effect of various therapeutic modulations on collagen content post-myocardial infarction 

(post-MI). Both pharmacologic and genetic perturbations have been utilized to significantly 

modify the collagen content within myocardial scar. Some of these effects resulted from 

intentional modulation of collagen synthesis or MMP-mediated degradation within the scar 

(e.g., via prolyl-4-hydroxylase, MMP, or TIMP activity), while some resulted as bi-products 

of modulating remote cardiomyocyte signaling (e.g., via angiotensin or beta-adrenergic 

pathways). Bars represent means and standard deviations across available studies (see text 

for references).
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Figure 13. 
A. Isochronal map generated from epicardial sock data (black dots indicate location of the 

electrodes) during re-entry (left) and signals from bipolar electrograms at respective 

locations showing progression of electrical activation traveling from point A to I (right). B. 
Three-dimensional infarct geometry reconstructed from high-resolution contrast-enhanced 

magnetic resonance imaging (0.39×0.39×0.39 mm spatial resolution). The infarcted region 

is represented by dark gray and the normal myocardium by pink. Islands of viable 

myocardium within the scar, as well as islands of scar within the viable myocardium, are 

present. C. Combined electrical and structural data showing the re-entrant isthmus located at 

the postero-apical segment of the infarcted region (circumscribed by a broken red line). The 

scar geometry at the isthmus was characterized by scar tissue interspersed with multiple 

tracts of viable myocardium. Possible electrical propagation at the infarct border-zone is 

indicated by the dashed red arrow. Modified with permission from Ashikaga et al. (6).
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Table 1

Potential confounders of functional measures following myocardial infarction; each row indicates a functional 

measure, with an ‘x’ in the columns showing factors that directly affect it. Most available indices of diastolic, 

systolic, and overall pump function are also affected by LV dilation, infarct size and material properties, 

making evaluation of intrinsic LV function quite challenging. The least confounded measures of diastolic 

(EDPVR), systolic (ESPVR), and global (CO curve) function are curves constructed from data at multiple 

levels of preload/afterload; given these curves, appropriate models can help account for effects of variations in 

LV geometry and infarct size/stiffness. The two most widely used indices – stroke volume (SV) and ejection 

fraction (EF) – are also the most difficult to interpret. Contractility refers to contractility of surviving viable 

myocardium, EDV = end-diastolic volume, EDPVR = end-diastolic pressure-volume relationship, ESV = end-

systolic volume, dP/dtmax = maximum rate of pressure generation, ESPVR Emax = slope of end-systolic 

pressure-volume relationship, ESPVR V0 = intercept of end-systolic pressure-volume relationship, CO = 

cardiac output.

Measure Infarct
Size

Infarct
Stiffness Contractility Preload Afterload LV

Dilation

EDV x x x x

EDPVR x x x

ESV x x x x x x

dP/dtmax x x x x x

ESPVR Emax x x x

ESPVR V0 x x x

SV x x x x x x

CO x x x x x x

CO curve x x x x

EF x x x x x x
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