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 Members of the acyl-CoA binding domain (ACBD)-
containing protein family are involved in the mainte-
nance of diverse cellular functions and can interact with 
a multitude of proteins implicated in a variety of cellular 
functions such as neural stem cell self-renewal, neurode-
generation, stress resistance, lipid homeostasis, intracellu-
lar vesicle traffi cking, organelle formation, viral replication, 
and apoptotic response. Several ACBD members have 
been reported to associate with proteins such as GABA A  
( 1 ), Numb ( 2 ), DMT1 ( 3 ), TSPO, PPM1L ( 4 ), the mHtt/
Rhes complex ( 5 ), giantin/golgin-160, HNF4 �  ( 6 ), SREBP1 
( 7 ), plant AtEBP ( 8 ), and several viral proteins ( 9–14 ). 
Plant ACBD members are also implicated in a multitude of 
functions such as embryogenesis and resistance to various 
stresses ( 15–17 ). However, the requirement and role of 
the acyl-CoA ligand bound to the conserved N-terminal 
ACBD for the interaction with other proteins is poorly un-
derstood. Human ACBD6 is a modular protein with the 
N-terminal ACBD linked to a nonconserved and nones-
sential carboxy-terminal domain carrying two ankyrin-repeat 
motifs ( 18 ). ACBD6 binds medium- to long-chain acyl-
CoAs and several site-directed mutants have been obtained 
that affect this binding ( 19 ). 

 The role of ACBD6 in lipid metabolism of mammalian 
cells has not been established. Previous studies have shown 
that expression of the human ACBD6 protein was elevated 
in hematopoietic progenitor cells and erythrocyte precursors 
( 18 ) and that ACBD6 mRNA was higher in hematopoietic 
progenitors, as compared with other lineage-committed 
cells ( 20, 21 ). In human cells infected with the bacterial 
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[5,5 ′ -dithio- bis -(2-nitrobenzoic acid)] (DTNB), acyl-CoAs, and 
fatty acids were from Sigma-Aldrich. All other compounds used 
were reagent grade. The peptide Hs pp60src#2-9 (GSNKSKPK, 
C-term amide; MW of 843.99) ( 37 ) was synthesized by YenZym 
Antibodies, LLC (South San Francisco, CA). 

 Cloning and site-directed mutagenesis 
 Cloning of human ACBD1 and ACBD6 was previously reported 

( 18, 19 ). Human NMT2 isoform 1 (NP_004799) was cloned by 
PCR from NM_004808.2 into pBIND vector and human ACBD6 
was cloned into the pACT vector (Check-Mate Mammalian two-
hybrid system; Promega). As previously described ( 37, 38 ), the 
membrane targeting signal present in the fi rst 97 residues of 
NMT2 was removed to produce an active cytosolic form of the pro-
tein in  Escherichia coli  (also known as ecNMT2, see below). Site-
directed mutagenesis experiments were performed with the 
QuikChange Lightning site-directed mutagenesis kit (Agilent 
Technologies) according to the manufacturer’s instructions. Prim-
ers were designed with the QuikChange® primer design program. 
The presence of the intended nucleotide change(s) and the ab-
sence of unwarranted mutations were verifi ed by full-length se-
quencing of the constructs. N-terminally tagged green fl uorescent 
protein (GFP) and hemagglutinin (HA) fusion of full-length 
ACBD6 and full-length NMT2 were obtained in the pAcGFP1-C1 
and pIRESneo vector (Clontech Laboratories, Inc.), respectively  . 

 Protein expression and purifi cation 
 All proteins and mutant forms were produced as hexahistidine 

fusion forms. ACBD1 and ACBD6 were expressed in the  E. coli  host 
BL21(DE3) cells (Novagen) and ecNMT2 was produced in Roset-
taDE3 cells (Novagen). Proteins were purifi ed by affi nity metal 
chromatography with the addition of 0.2% Triton X-100 in all the 
buffers for the ecNMT2 protein. The purifi ed proteins were stored 
at  � 80°C in Tris-HCl [50 mM (pH 8.0)], NaCl (0.1 M), EDTA (5 
mM), and glycerol [10% (v/v), with 0.2% Triton X-100 for ec-
NMT2]. Prior to isothermal titration calorimetry (ITC) measure-
ments, proteins were dialyzed in the ITC buffer (see below). 

 Affi nity purifi cation MS 
 Affi nity purifi cation followed by LC-MS/MS was used to identify 

candidate protein interactions of ACBD6 following identical meth-
ods to those previously published ( 11, 39 ). Briefl y, ACBD6 was 
cloned into the pcDNA4TO expression vector encoding a C-terminal 
2×-StrepTag and then transiently expressed in HEK293 cells 
following reported methods ( 39 ). The cells were harvested and 
lysed, and the Strep-tagged protein was captured on StrepTactin 
Sepharose under native conditions, and then eluted with 1× des-
thiobiotin (IBA Technology, Gottingen Germany) as reported ( 11 ). 
This protein sample was processed by in-solution digestion and 
analyzed by LC-MS/MS peptide sequencing as reported ( 11, 39 ). 

 MS data were searched using Protein Prospector software ver-
sion 5.10.17 ( 40 ) against the Refseq NCBInr human database 
(downloaded July 29, 2015   from ftp://ftp.ncbi.nlm.nih.gov/
refseq/H_sapiens/mRNA_Prot/) containing 99,857 sequences, 
concatenated with 99,857 additional randomized decoy sequences 
for calculation of the false discovery rate (FDR) ( 41 ). The FDR was 
<1%, using a protein score of 22, a peptide score of 15, a protein 
expectation value of 0.01, and a peptide expectation value of 
0.001. Modifi cations allowed were: fi xed carbamidomethylation of 
Cys and the following variable modifi cations: oxidation of Met, 
start-Met cleavage, oxidation of the N terminus, acetylation of the 
N terminus, and pyroglutamate formation from Gln. 

 Protein identifi cations from ACBD6 affi nity-purifi cation experi-
ments were performed over four biological replicate experiments. 
Proteins were reported as specifi c interacting proteins if observed 

pathogen  Chlamydia trachomatis , ACBD6 protein was associ-
ated with cytosolic lipid droplets and was transferred to the 
parasitophorous vacuole resulting in its removal from the 
cytosol ( 22 ). Inside the vacuole, ACBD6 regulates the activity 
of a bacterial acyltransferase essential for lipid metabolism 
of the pathogen. A related fungal fatty acyl-CoA binding 
protein (ACBP) from the human pathogen  Cryptosporidium 
parvum  is required by the fungus for growth in human cells, 
as confi rmed using chemical inhibition of acyl-CoA binding 
to this ACBD protein ( 23 ). 

 Co-translational  N -myristoylation of the glycine +2 resi-
due of nascent peptides, following removal of the initiator 
methionine by the human  N -myristoyltransferase (NMT) 
enzymes (NMT1 and NMT2), can affect the association of 
the acyl-proteins with membranes ( 24–26 ). The addition of 
a 14-carbon long aliphatic tail can act as a lipid anchor and 
mediates oligomeric assembly and interaction with other 
proteins. Although amide linkage of the myristate to the 
glycine residue appears irreversible, a structural conforma-
tional property of some acyl-proteins, called the myristoyl-
switch, can remove the aliphatic tail from the lipid bilayer 
and dissociate the proteins from their membrane-bound 
location ( 25, 27 ). The acyl-transferase activity of the NMT 
enzymes is specifi c toward myristoyl-CoA (C 14 -CoA) and is 
essential for the intracellular development of pathogens 
( 28–36 ). Chemicals inhibiting myristoylation of proteins 
are potent drugs against parasitic protozoa and fungi. The 
catalytic reaction is a multistep process initiated by binding 
of C 14 -CoA to apo-NMT, which triggers a conformational 
change exposing the peptide binding site ( 26, 28 ). C 14 -CoA 
is then hydrolyzed and CoA is released. The aliphatic tail is 
transferred to the glycine +2 residue of the peptide, which 
is then released. NMT proteins can bind palmitoyl-CoA 
(C 16 -CoA), but a 16-carbon chain cannot be transferred to 
the glycine +2 residue by the myristoyl-transferase ( 26, 28, 
29, 33 ). It is unclear how NMT enzymes are able to perform 
myristoylation in vivo using a very rare acyl-donor (C 14 -CoA) 
in the presence of a very abundant acyl-CoA competitor 
(C 16 -CoA). Thus, a process to prevent binding or trigger re-
lease of this competitor from the C 14 -CoA binding site of 
NMT seems essential to warrant its activity in vivo. 

 We determined that ACBD6 was associated with the two 
human NMT enzymes in human cells, with a stronger in-
teraction with NMT2 than NMT1. The C-terminal domain 
of ACBD6 interacted with a C-terminal region of NMT2. 
Our results further show that ACBD6 protected the 
enzyme from competitive binding by C 16 -CoA and that 
lipid-bound ACBD6 stimulated NMT2 activity toward its 
substrate, C 14 -CoA. Together, these results establish a phys-
iological role for the binding property of a member of the 
human family of acyl-CoA carriers, and determine how 
NMT enzymes can perform their function in vivo. 

 MATERIALS AND METHODS 

 Materials 
 The No-Weigh format of disuccinimidyl suberate (DSS) was 

purchased from Thermo Fisher Scientific. Ellman’s reagent 
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19 ). All experiments were performed in ammonium acetate 
(25 mM, pH 7.4), supplemented with 0.1% Triton X-100 to prevent 
precipitation of ecNMT2, at 30°C. The proteins were dialyzed in 
the same buffer and fresh 10 mM stocks of the ligands were pre-
pared from powder with the dialyzing buffer. For NMT2 ( Fig. 
6B ), measurements were performed with 28 injections of 10  � l of 
165  � M ligand every 150 s. The chamber contained the protein 
at an initial concentration of 5.5  � M. For ACBD6 � C measure-
ments ( Fig. 6A ), protein was at a concentration of 30  � M and was 
injected with 600  � M of C 16 -CoA and 300  � M of C 18:2 -CoA  . For 
data presented in  Fig. 6C , proteins were at a concentration of 
10  � M and C 16 -CoA at 100  � M. Control experiments were run by 
injecting buffer into the cell containing the protein and by inject-
ing the ligand into the cell containing buffer. Heat generated 
from control runs was subtracted from the data of the experi-
mental set performed under the same conditions 

 NMT activity measurements 
 Real-time measurements of the released CoA from acyl-CoAs 

by purifi ed NMT2 were performed at 30°C in a Cary Avian UV-Vis 
spectrophotometer (50 Bio; Varian) in the presence of DTNB. 
Measurements were made in dual-beam mode against blank buf-
fer and normalized by subtracting values obtained in reactions 
performed in the absence of the target peptide. Reactions were 
performed in 500  � l of 20 mM sodium phosphate buffer at 
pH 8.0 with 1 mM EDTA and 100  � M Hs pp60src#2-9 peptide, 
5–100  � M acyl-CoAs (C 14 -CoA, C 16 -CoA, C 18:2 -CoA), and 0.2 mM 
DTNB. Unless otherwise indicated, a 2:1 molar ratio of ACBD6/
NMT2 was used. Titration of NMT2 was performed to determine 
the optimal concentration of the partially purifi ed proteins to 
maintain linearity of the measurement over a period of 5 min 
(usually 2  � M ACBD6/1  � M NMT2). Kinetic calculations were 
performed with GraphPad Prism 6. 

 RESULTS 

 Interaction of NMT enzymes with ACBD6 
 ACBD6 protein is a modular protein with an N-terminal 

conserved ACBD and two ankyrin-repeat motifs present in 
the nonconserved C-terminal domain (  Fig. 1A  ).  Affi nity 
purifi cation MS was performed using a C-terminally Strep-
tagged ACBD6 construct, transiently expressed in HEK293 
cells, in four biological replicates. From these experi-
ments, the most specifi c interacting proteins were NMT1 
and NMT2, identifi ed with a total of 24 and 14 unique 
peptides, respectively (supplementary Table 1). NMT1 
and NMT2 share high sequence identity (73%, ClustalW 
alignment), thus unique and shared peptide sequences 
were identifi ed to each of these proteins in the MS data 
(supplementary Table 2  ). Suffi cient unique peptide 
counts were obtained to both NMT1 and NMT2 in each 
experiment to confi rm the presence of both proteins at 
comparable levels in this semi-quantitative analysis (sup-
plementary Table 3). Two proteins, CAMK2D and UGGT1, 
were also identifi ed at a lower specifi city threshold, but 
NMT1 and NMT2 were the only proteins that reproduc-
ibly interacted with ACBD6 in all four experiments. The 
specifi city of the association with ACBD6 was further con-
fi rmed with a mammalian two-hybrid interaction assay, 
which established a stronger binding of ACBD6 with NMT2 
than with NMT1, as compared with the related ACBD5 

in at least three of four replicate experiments with more than 
one unique peptide in at least one experiment. These proteins 
were also compared with a list of high-frequency background 
proteins from >2,000 similar affi nity purifi cation MS experiments 
with Strep-tagged proteins ( 11 ), and excluded if the background 
frequency was >0.10. MS data for proteins meeting these criteria 
are reported in supplementary Table 1. 

 Protein interaction assays 
 Mammalian two-hybrid interaction assays were performed 

in HeLa and HEK293 cells grown in 96-well plates with the 
CheckMate system (Promega). Hela cells were transfected with 
TurboFect reagent (Thermo Scientifi c) and HEK293 cells with 
TransIT-LT1 transfection reagent (Mirus Bio). Luminescence 
was quantifi ed with the Dual-Luciferase reporter assay of Pro-
mega, according to the manufacturer’s instructions. The homo-
bifunctional  N -hydroxysuccinimide ester reagent, DSS, reacts 
with primary amine groups and was used to detect interaction of 
purifi ed NMT2 and ACBD6 proteins. DSS was bought in individ-
ual sealed microtubes (Thermo Fisher Scientifi c) and stock solu-
tions of 100 mM in DMSO (further diluted in DMSO as needed) 
were made fresh prior to each experiment. DSS was added in a 
30-fold excess of the protein (mole/mole). Proteins were dia-
lyzed in 10 mM potassium phosphate (pH 7.4) at 4°C. ACBD6 
and NMT2 proteins were mixed at a 1:1 molar ratio (20  � M 
each) in 29  � l of 50 mM potassium phosphate (pH 7.4) at 37°C 
for 20 min. When acyl-CoAs were used, they were added at a fi nal 
concentration of 50  � M. One microliter of DSS was then added 
to the mixture at a fi nal concentration of 1 mM, and subsequently 
incubated for 30 min at room temperature. Untreated control 
reactions were performed with addition of 1  � l of DMSO and 
incubated as described for the DSS-treated samples. Reactions 
were stopped by quenching of DSS with 2  � l Tris-HCl (1 M, pH 
7.4) for at least 15 min at room temperature. Mixtures were then 
boiled in SDS-PAGE loading buffer for 4 min and separated on 
denaturing SDS-polyacrylamide Tris-glycine gels. Proteins were 
detected by staining with GelCode Blue reagent (Thermo Fisher 
Scientifi c) or were transferred on nitrocellulose membrane and 
detected with a HRP-conjugated anti-histidine antibody (INDIA-
HisProbe-HRP antibody; Thermo Fisher Scientifi c). 

 Co-immunoprecipitation experiments 
 Protein samples were made from HEK293 cells grown in 12-well 

plates. For each sample, three wells were cotransfected using the 
TurboFect reagent (Thermo Scientifi c) with the pair HA-ACBD6/
GFP-NMT2 or HA-NMT2/GFP-ACBD6 for 48 h. Cells were lysed 
with lysis immunoprecipitation buffer (Thermo Scientifi c) and 
protease cocktail inhibitor (Thermo Scientifi c) in a fi nal volume 
of 400  � l  . Cleared lysates were stored at  � 80°C. For co-immuno-
precipitation, 200  � g of each protein sample was precleared with 
25  � l protein G-magnetic beads (NEBiolabs) for 1 h at 4°C. Follow-
ing removal of the beads, 5  � g of mouse monoclonal anti-HA anti-
body (Sigma-Aldrich, H3663) was added and incubated for 1 hr at 
4°C. Then, 25  � l of fresh protein G-magnetic beads was added and 
incubated overnight at 4°C. Beads were then washed three times 
with ice-cold PBS and with lysis IP buffer. Complexes were eluted 
by suspending the beads in 60  � l SDS-PAGE loading buffer and 
heating at 70°C for 10 min. After removal of the beads, 10  � l of 
each sample was analyzed by Western blot with rabbit polyclonal 
anti-GFP (Sigma-Aldrich, G1544) and with HRP-conjugated mouse 
anti-HA antibodies (Sigma-Aldrich, H6533) 

 ITC assays 
 ITC measurements of the binding of acyl-CoAs and fatty acids 

were performed on a VP-ITC instrument (MicroCal, LLC) ( 18, 
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shown). When ACBD6 and ecNMT2 were mixed at a 1:1 
molar ratio, most of the ecNMT2 monomeric form disap-
peared, and a new band was detected at approximately the 
calculated mass of a heterodimeric ACBD6/ecNMT2 com-
plex (80 kDa). Addition of the NMT2 substrate, C 14 -CoA, 
and of the ACBD6 ligand, C 18:1 -CoA, did not prevent for-
mation of the complex ( Fig. 3A ). In contrast, the trun-
cated recombinant ACBD6 � C mutant (21 kDa) did not 
form a complex with ecNMT2 ( Fig. 3B ). 

 Ligand binding to ACBD6 stimulates the NMT reaction 
 Activity of purifi ed ecNMT2 enzyme was measured by 

the real-time detection of the release of CoA from C 14 -CoA 
in the presence of a synthetic peptide matching the amino 
terminal myristoylation sequence of c-Src protein ( 24 ) 
(supplementary Fig. 1C, D). Addition of increasing con-
centrations of ACBD6 protein resulted in the stimulation 
of activity of ecNMT2 (  Fig. 4  ).  No inhibitory effect was ob-
served, even with a 20:1 ACBD6/ecNMT2 molar ratio. Un-
der similar conditions, addition of purifi ed ACBD1 had 
only a weak stimulatory effect. Compared with ACBD6, 
two ACBD6 mutant forms, Y 114 A and FKKY-AAAA (dubbed 
FKKY mut ), with defects in acyl-CoA binding ( 19 ) failed to 
stimulate the reaction in the presence of C 14 -CoA, thus 
acyl-CoA binding of ACBD6 is required for the stimulatory 
effect on NMT2 activity (  Fig. 5  ).  The molecule C 18:2 -CoA, 
a ligand of ACBD6, was not an acyl donor for the NMT 
reaction ( Figs. 4, 5 ). In the absence of ACBD6, addition of 
C 18:2 -CoA to C 14 -CoA had a weak inhibitory effect on the 
reaction ( Fig. 5 ). However, in the presence of ACBD6, ad-
dition of C 18:2 -CoA resulted in increased stimulation of ec-
NMT2 activity compared with the activity obtained with 
only ACBD6. This stimulatory effect was not detected with 
the two mutant ACBD6 forms, Y 114 A and FKKY mut . Thus, 
compared with apo-ACBD6, acyl-CoA-bound ACBD6 ap-
peared to be the form enhancing the processing of C 14 -
CoA by NMT2, independent of its binding to C 14 -CoA. 

protein (33% identical in the ACBD), which showed no 
interaction ( Fig. 1B ). 

 Association of NMT2 with ACBD6 was further investi-
gated by co-immunoprecipitation of wild-type and mutant 
constructs of GFP-tagged ACBD6 by HA-NMT2, and of the 
inversely tagged GFP-NMT2 by HA-ACBD6 (  Fig. 2A, B  ).  A 
C-terminally truncated form of ACBD6 lacking the two 
ankyrin-repeat motifs (ACBD6 � C,  Fig. 1A ) did not co-
immunoprecipitate with NMT2 ( Fig. 2A, B ). The C terminus 
of NMT-2 includes residues that bind the target peptide 
substrate ( Fig. 1A ), and the C terminus itself may assist in 
catalysis by deprotonating the ammonium of the acceptor 
glycine residue ( 28 ). An NMT2 form lacking the last 58 
residues, including the signature motif PS00976 (NMT2 � C, 
 Fig. 1A ), did not interact with full-length ACBD6 either 
by co-immunoprecipitation or mammalian two-hybrid as-
say ( Fig. 2C ; supplementary Fig. 1A). Deletion mutants 
of conserved motifs of the ACBD of ACBD6 were also de-
signed ( Fig. 1 , regions H2–4), and these did not prevent 
interaction with NMT2 ( Fig. 2D ). Thus, ACBD6 interacts 
via its C-terminal domain containing the ankyrin-repeat 
motifs with NMT2, and the NMT2 interaction with ACBD6 
is dependent upon its C-terminal region. 

 ACBD6 and NMT2 form hetero-dimeric complexes 
 Association of the two purifi ed proteins was investigated 

using covalent cross-linking with the reagent DSS, fol-
lowed by analysis of the trapped complexes by SDS-PAGE. 
As previously reported ( 18, 19 ), ACBD6 (32 kDa) behaved 
as a monomeric protein, and no high molecular mass spe-
cies were detected after DSS treatment (  Fig. 3A  ).  To pro-
duce and purify NMT2, a recombinant form was expressed 
in  E. coli  without the N-terminal membrane localization 
sequence (also known as ecNMT2 protein) ( 37, 38 ). Puri-
fi ed ecNMT2 (supplementary Fig. 1B) was primarily mo-
nomeric (48 kDa), and few bands of very high molecular 
mass were formed after DSS treatment (>100 kDa, not 

  Fig. 1.  Acyl-CoA binding protein ACBD6 and NMT2. A: The predicted four helices (H1 to H4) of the 
ACBD and the two ankyrin-repeat motifs of ACBD6 are shown. Residues changed to alanine by site-directed 
mutagenesis in the mutated forms S 106 A, Y 114 A, and FKKY-AAAA (also known as FKKY mut ) are shown  . The 
form ACBD6 � C lacked the ankyrin domains. Isoform 1 of NMT2 (NP_004799.1) is shown with the two C 14 -
CoA:protein NMT conserved domains, pfam01233 and pfam02799, and the two signature motifs, PS00975 
and PS00976. The recombinant form produced in  E. coli  (ecNMT2) lacking the fi rst 97 residues and the 
truncated form (NMT2 � C) lacking the last 58 residues are indicated. B: Luminescence interaction quantifi -
cation assays were performed with the mammalian CheckMate system (Promega) in HEK293 cells. Com-
pared with ACBD5, which did not interact with NMT proteins, association of ACBD6 with NMT1 and NMT2 
was 25- and 250-fold stronger, respectively. Error bars represent the standard deviations of three measure-
ments. We previously identifi ed ZNF23 in a yeast two-hybrid screen using ACBD6 as bait ( 62 ), but that inter-
action could not be confi rmed in mammalian cells (supplementary Fig. 1A).   
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domain of ACBD6 is dispensable for ligand binding ( 18 ) and 
we confi rmed that the truncated ACBD6 � C form binds 
C 18:2 -CoA (  Fig. 6A  ).  ACBD6 � C did not interact with ec-
NMT2 ( Fig. 2 ), suggesting that the ankyrin-repeat motifs 
were involved in the contact to the C-terminal motif of 

 ACBD6 interaction is required for NMT2 activity 
stimulation 

 The requirement for protein interaction in the stimula-
tory effect of ACBD6 in the presence of its ligand on the 
NMT reaction was investigated. The carboxy-terminal 

  Fig. 2.  ACBD6 and NMT2 interactions. Western blot analysis of co-immunoprecipitation samples obtained 
with a monoclonal anti-HA antibody from protein lysates of HEK293 cells cotransfected with GFP-tagged 
ACBD6 and HA-tagged NMT2 (A), GFP-tagged NMT2 and HA-tagged ACBD6 (B), and GFP-tagged ACBD6 
and HA-tagged NMT2 � C (C). GFP proteins were detected with a rabbit polyclonal anti-GFP antibody and 
HA proteins with an HRP-conjugated mouse monoclonal anti-HA antibody. As shown in (A), samples were 
also analyzed with a rabbit peptide-raised anti-ACBD6 antibody. Control cells were obtained by transfection 
of the two empty vectors (GFP and HA). For each sample, the signal obtained with 10% of the lysate before 
immunoprecipitation (input) is shown on the left of the signal obtained after pull-down ( � HA). Note that 
the polyclonal anti-GFP antibody nonspecifi cally cross-reacted with a band that did not correspond to GFP-
NMT2, GFP-ACBD6, or GFP-ACBD6 � C. Duplicates of the co-immunoprecipitation of GFP-ACBD6 or GFP-
ACBD6 � C by HA-NMT2 are shown and indicated as samples #1 and #2 in (A  ). D: Densitometry quantifi cation 
of the GFP signal obtained by Western blot analysis of co-immunoprecipitation samples obtained in cells 
cotransfected with GFP-NMT2 and the indicated truncated forms of ACBD6. Data were collected from a 
single representative blot.   

  Fig. 3.  DSS cross-linking of NMT2 and ACBD6. Purifi ed hexahistidine-tagged NMT2 (also known as ec-
NMT2) and ACBD6 recombinant proteins (20  � M each) were incubated in 50 mM potassium phosphate 
(pH 7.4) at 37°C for 20 min. When indicated, C 14 -CoA and C 18:1 -CoA were added at a fi nal concentration of 
50  � M. DSS was added to a fi nal concentration of 1 mM and incubated for 30 min at room temperature. 
Following quenching of DSS with 65 mM Tris-HCl (pH 7.4), proteins were loaded on denaturing SDS-PAGE 
gels. After electrophoresis, protein bands were detected with Gelcode Blue [(A) and right inset in (B)] or 
were transferred onto a PVDF membrane and detected with an anti-histidine antibody [left inset in (B  )]. 
The position of the high molecular mass form observed with ACBD6/NMT2 is indicated with an asterisk in 
the panels. Note the absence of detection of an ACBD6 � C/NMT2 complex in (B).   
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ABCD6 with NMT2 was required for the ligand-mediated 
increase in NMT2 activity. 

 N-terminal ACBD6 domain prevents binding of C 16 -CoA 
to NMT2 

 Purifi ed ecNMT2 binds both C 14 -CoA and C 16 -CoA 
with similar affi nity ( Fig. 6B ). Binding of C 16 -CoA to ec-
NMT2 resulted in cleavage of the ester bond and release 
of CoA (  Fig. 7A  ).  Confi rmation of the strong binding af-
fi nity of NMT2 for this acyl-CoA competitor was obtained 
by the observation that 20  � M of C 16 -CoA produced a 
stronger signal than 15  � M of C 14 -CoA ( Fig. 7B ). Addi-
tion of ACBD6 resulted in the stimulation of the reaction 
with C 14 -CoA, but it decreased the processing of C 16 -CoA 
by ecNMT2 ( Fig. 7A, B ). The mutant S 106 A lacks one of 
the two phosphorylated serine residues of ACBD6 ( 42, 
43 ), and binds to C 16 -CoA with stronger affi nity than 
ACBD6. This mutant stimulated ecNMT2 activity with 
C 14 -CoA as ACBD6 ( Fig. 5 ), but it could prevent the pro-
cessing of C 16 -CoA at much higher concentration than 
ACBD6 ( Fig. 7B ). In contrast, the ACBD6 mutant, Y 114 A, 
which did not bind C 16 -CoA ( 19 ), could not prevent the 
processing of C 16 -CoA by NMT2, even at very low concen-
tration ( Fig. 7B ). 

 NMT2 interaction to the C-terminal ACBD6 domain 
is required for competitor protection 

 As established above, binding of C 16 -CoA to ACBD6 pre-
vented processing of the acyl-CoA competitor by ecNMT2. 
However, the effect of ACBD6 could not be accounted for 
by a model requiring exhaustion of free-competitor in the 
reaction mixture because as little as 1  � M of ACBD6 was 
enough to reduce the processing of 100  � M C 16 -CoA to 

NMT2 ( Fig. 2C ; supplementary Fig. 1A). Compared with 
full-length ACBD6, ACBD6 � C could not stimulate the NMT 
reaction and the ecNMT2 activity rate in the presence of 
the truncated form was similar to those obtained with the 
Y 114 A and FKKY mut  mutants ( Fig. 5 ). Thus, interaction of 

  Fig. 4.  ACBD6 stimulation of the NMT reaction. A: Real-time colorimetric measurements of the ecNMT2 
activity in the presence of increasing concentrations of ACBD1 or ACBD6 were performed at 30°C. Rate 
values are presented relative to the rate obtained in their absence. B: Traces of absorbance at 412 nm of reac-
tions are shown as a function of time in the presence of different acyl-CoA molecules. A molar ratio ACBD6 
and ecNMT2 of 2:1 (2 and 1  � M) was used. The fi nal concentration of C 14 -CoA was 15  � M and of C 18:2 -CoA 
was 50  � M. Reactions were performed in the absence or presence (upward arrow) of ACBD6. For each reac-
tion, control measurements were performed in the absence of the target peptide and values were subtracted 
from the readings obtained in its presence (see supplementary Fig. 1C, D). Error bars represent the standard 
deviations of three measurements.   

  Fig. 5.  Difference in NMT2 activity in the presence of apoACBD6 
and lipid-bound ACBD6. Measurements were performed as de-
scribed in the legend of  Fig. 4  with 15  � M C 14 -CoA, 50  � M C 18:2 -CoA, 
and 15  � M C 14 -CoA in the presence of 50  � M C 18:2 -CoA. The 
ACBD6 recombinant forms added to the reactions are shown in 
 Fig. 1 . Activity rate values are presented relative to the value ob-
tained with 15  � M C 14 -CoA in the absence of ACBD6. Error bars 
represent the standard deviations of at least three measurements.   
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 Displacement of C 16 -CoA by linoleoyl-CoA 
 To confi rm that protection of NMT2 from C 16 -CoA by 

ACBD6 was the result of C 16 -CoA binding to ACBD6, the 
ligand, C 18:2 -CoA, was added to the reaction. ACBD6 binds 
C 18:2 -CoA with greater affi nity than C 16 -CoA ( 18, 19 ). At an 
equal concentration of C 18:2 -CoA and C 16 -CoA (5  � M), 
ACBD6 could no longer prevent processing of C 16 -CoA by 
ecNMT2 and activity rate doubled ( Fig. 7C ). The mutant 
Y 114 A, unable to bind either acyl-CoA species ( 19 ), had no 
detectable effect on ecNMT2 activity, irrespective of the 
C 18:2 -CoA concentrations. The mutant S 106 A, which binds 
C 16 -CoA with stronger affi nity than ACBD6, limited use 
of C 16 -CoA by ecNMT2, even when a 10-fold excess of 

half ( Fig. 7B ). As seen for the C 18:2 -CoA stimulation of C 14 -
CoA processing by ecNMT2, ACBD6/NMT2 complex for-
mation was also necessary to prevent usage of C 16 -CoA by 
ecNMT2. The truncated ACBD6 � C form, which did not 
interact with ecNMT2 ( Fig. 2A and 2B ), but bound C 16 -
CoA ( Fig. 6A , inset), could not prevent processing of C 16 -
CoA by ecNMT2. In fact, that form was even less effi cient 
in protecting ecNMT2 than the mutant Y 114 A ( Fig. 7B ). 
These results suggested that in the hetero-dimeric com-
plex, ACBD6-NMT2 formed through the interaction of 
their C-terminal domains, C 16 -CoA was prevented from ac-
cessing the NMT2 binding site through sequestration to 
the N-terminal ACBD of ACBD6. 

  Fig. 6.  Acyl-CoA binding measurement assays. ITC measurements were performed in ammonium acetate 
(25 mM, pH 7.4), supplemented with 0.1% Triton X-100 when NMT2 was used, at 30°C. The ACBD6 � C and 
ecNMT2 proteins were dialyzed in the same buffer and fresh 10 mM stocks of the acyl-CoA ligands were 
prepared from powder with the dialyzing buffer. Measurements were performed by 28 injections of ligand 
into the chamber containing the protein. In (A), ligand was at 100  � M and protein at 10  � M. Inset: Ligand 
was at 600  � M and protein at 30  � M. In (B), ligand was at 165  � M and protein at 5.5  � M.   

  Fig. 7.  Effect of ACBD6 on NMT2 activity in presence of C 16 -CoA. Measurements were performed as described in the legend of  Fig. 4  with 
1  � M ecNMT2 and 15  � M C 14 -CoA (blue). A: Competing ligand at 5  � M C 16 -CoA was added to the reaction alone (red) or in the presence 
of 2  � M ACBD6 (black). B: The indicated concentration of competing ligand C 16 -CoA was added in the presence of ACBD6 constructs at 
2  � M. C: The fi rst competing ligand, C 16 -CoA, was fi xed at 5  � M, and increasing concentrations of C 18:2 -CoA were added as indicated in the 
presence of ACBD6 constructs at 2  � M. Activity rate values in (B) are presented relative to the value obtained with 15  � M C 14 -CoA in the 
absence of ACBD6. Error bars represent the standard deviations of at least three measurements.   
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Thus, in the absence of a process to modulate binding or 
release of the acyl-CoA competitor from the C 14 -CoA bind-
ing site, compounds such as C 16 -CoA would inhibit the ac-
tion of NMT enzymes in vivo. This is illustrated in   Fig. 8  ,  
which provides a summary of data presented in this study, 
indicating an important role of acyl-CoA binding proteins 
in this process. Several other reports provide evidence that 
other cellular components modulate the NMT reaction to 
ensure that the correct acyl chain is linked to the protein 
substrate. Whereas NMT enzymes are highly specifi c in 
transferring a 14-carbon tail on nascent peptides, C 14:1  and 
C 14:2 , rather than C 14:0 , are the fatty acids used to modify 
proteins such as the  � -subunit of the G-protein photore-
ceptor in retinal photoreceptor cells ( 49–51 ). The acyl-
CoA pools in the retina are not signifi cantly different 
as compared with other tissues; hence a selective system 
needs to account for the unique acylation taking place in 
these cells ( 49 ). It can be hypothesized that acyl-CoA carri-
ers with stronger affi nity to unsaturated myristate control 
the acylation profi le observed in this tissue. 

 In our study, the stimulation of the NMT activity of 
NMT2 in the presence of apo-ACBD6 and C 14 -CoA could 
be explained by the formation of the ACBD6/NMT2 com-
plex ( Fig. 8B ). We speculate that in the ACBD6/NMT2 
complex, the entry of the C 16:0  acyl-chain to the binding 

C 18:2 -CoA was added to the reaction. Thus, selectivity of 
binding of the ACB motif of the acyl-CoA carrier ACBD6 
modulates the NMT reaction by controlling availability of 
acyl-CoA to NMT2 and stimulates its activity via protein 
contact with their respective C-terminal domains. 

 DISCUSSION 

 The acyl-transferase activity of the NMT proteins is 
highly specifi c toward C 14 -CoA. On the other hand, a vari-
ety of glycine-containing nascent peptide chains can bind 
to the C-terminal domain of NMT ( 33, 44–47 ), indicating 
that NMT is less selective toward its protein substrate. The 
catalytic reaction is a multistep process initiated by binding 
of C 14 -CoA to the N-terminal domain of apo-NMT, which 
triggers a conformational change exposing the peptide 
binding site ( 26, 28, 48 ). C 14 -CoA is then hydrolyzed and 
CoA is released. The aliphatic tail is transferred and cova-
lently linked to the exposed glycine residue of the peptide 
substrate, releasing the acylpeptide. Whereas the transfer 
rates of acyl chains other than C14 are extremely slow 
compared with myristate ( 33, 44, 47 ), NMT proteins bind 
the very abundant C 16 -CoA molecule with the same affi nity 
as C 14 -CoA, a minor acyl-CoA in cells ( 26, 28, 29, 33, 49 ). 

  Fig. 8.  Proposed events leading to the protection of NMT2 activity by ACBD6. A: NMT2 will bind both C 16 -CoA 
(C 16:0 ) and C 14 -CoA (C 14:0 ), but can only use C 14:0  to acylate a peptide. The high abundance of C 16:0  in vivo 
effectively inhibits protein myristoylation. B: ACBD6 interacts with NMT2 through binding mediated by its 
ankyrin (ANK) motif to the C terminus of NMT2. The ACBD domain of ACBD6 sequesters C 16:0 -CoA. The 
complex formed by NMT2 and ACBD6 blocks access of C 16:0 -CoA to the acyltransferase site. ACBD6 prevents 
C 16 -CoA inhibition of the myristoylation reaction and stimulates the formation of myristoylated-peptide. A 
red plus sign in the speculated entry site of the ACBD6/NMT2 complex indicates stimulation. C: Protein 
myristoylation is further stimulated by the binding of linoleoyl-CoA (C 18:2 ) to ACBD6. In vivo phosphoryla-
tion of the serine 106 residue (S106) in the ACBD of ACBD6 plays a role in this process. Phosphoserine106 
is shown as a red fi lled circle next to the red plus sign indicating increased stimulation compared with the 
scheme depicted in (B).   
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may offer another strategy to affect the activity of the para-
site NMT and its association to ACBD6 ( 59–61 ). 

 The NMT process in vivo is more complex than ex-
plored in this study. For example, the generation of the 
acyl-donor and acyl-acceptor of the reaction are localized 
processes that require movement of the fatty acyl mole-
cules through membranes and binding to carriers such as 
FABP, their activation to acyl-CoAs by acyl-CoA synthetases, 
and their transport by ACBD proteins to the NMT enzyme  . 
ACBD proteins are involved in a variety of cellular mecha-
nisms through association with a multiplicity of proteins. 
However, to our knowledge, the role of the binding of the 
acyl-CoA ligand to the ACBD function has not been estab-
lished in these processes. The modulation of the NMT re-
action by ligand binding to ACBD6 in the enzymatic 
complex formed with NMT2 provides one of the fi rst ex-
amples of a physiological role for the acyl-CoA binding 
property of a member of the human ACBD family.  
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