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Abstract

Phosphodiesterases (PDEs) are enzymes that regulate the intracellular levels of cyclic adenosine 

monophosphate and cyclic guanosine monophosphate, and, consequently, exhibit a central role in 

multiple cellular functions. The pharmacological exploitation of the ability of PDEs to regulate 

specific pathways has led to the discovery of drugs with selective action against specific PDE 

isoforms. Considerable attention has been given to the development of selective PDE inhibitors, 

especially after the therapeutic success of PDE5 inhibitors in the treatment of erectile dysfunction. 

Several associations between PDE genes and genetic diseases have been described, and more 

recently PDE11A and PDE8B have been implicated in predisposition to tumor formation. This 

review focuses on the possible function of PDEs in a variety of tumors, primarily in endocrine 

glands, both in tumor predisposition and as potential therapeutic targets.

Introduction

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are 

important second messengers in signaling, involved in cell proliferation, cell-cycle 

regulation, and metabolic function. Intracellular cAMP and cGMP levels are controlled both 

at their production, by activated adenylyl-cyclase and guanylyl-cyclase, which catalyze 

conversion of ATP and GTP to cAMP and cGMP, respectively, and at their destruction, by 

cyclic nucleotide phosphodiesterases (PDEs) [1] (Figure 1).

Phosphodiesterases are enzymes that catalyze the hydrolysis of the 3′ cyclic phosphate bond 

of cyclic nucleotides. To date, 11 PDE gene families have been identified, based on their 

amino acid sequences, biochemical properties, and inhibitor profiles. Different PDEs can 

share the same catalytic function, but may differ in tissue expression and intracellular 

localization (Table 1) [2].
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Elevation of cAMP induces activation of cAMP-dependent protein kinase A (PKA). PKA is 

a heterotetramer formed by two catalytic subunits (C) and two regulatory subunits (R) [3]. In 

the absence of cAMP, PKA is inactive. Upon cAMP binding to the R-PKA, the catalytic 

subunits are released and phosphorylate different targets, including the cAMP response 

element binding (CREB) protein, a transcription factor that regulates genes involved in 

metabolism and proliferation [4,5]. Similarly, cGMP activates protein kinase G (PKG) 

which catalyzes the phosphorylation of downstream proteins involved in several physiologic 

functions, such as glycogenolysis, ion channel conductance, and apoptosis [6].

Dysregulation of cAMP homeostasis can be linked to tumorigenesis, both directly and 

indirectly [7]. Some tumor cells overexpress phosphodiesterases and exhibit lower cAMP 

levels [8], whereas other tumor types have increased cAMP levels as a protective 

mechanism against malignancy [9]. Thus, understanding the molecular basis of cAMP 

signaling can provide new insights for improved pharmaceutical targeting of cancer cells 

[10,11].

PDEs and endocrine glands: tumors and other phenotypes

Alterations in cAMP signaling pathways have been linked to tumorigenesis at different 

levels. First, activating mutations of the stimulatory G protein of adenylyl-cyclase, which 

induces high cAMP levels, leads to endocrine and nonendocrine manifestations in McCune 

Albright syndrome (MAS) [12]. Second, inactivating germline mutations in the alpha 

regulatory subunit gene of the PKA gene (PRKARIA) lead to the Carney complex (CNC) 

[13]. CNC is an autosomal dominant disease characterized by skin pigmentary 

abnormalities, cardiac myxomas, schwannomas, and endocrine tumors, the most frequent 

being a type of adrenocortical hyperplasia named primary pigmented nodular adrenocortical 

disease (PPNAD) [14]. PRKAR1A is located on chromosome 17q22–24, and more than a 

hundred different mutations of this gene have been described [13,15•,16–19].

Altered cAMP signaling, somatic PRKAR1A mutations, and somatic losses in the 17q22–24 

locus have all been reported in adrenocortical adenomas and adrenocortical cancer. 

Specifically, 17q22–24 losses were found in 23% and 53% of adrenocortical adenomas and 

adrenocortical cancer samples, respectively. Both cancers and adenomas with 17q losses had 

higher PKA activity in response to cAMP when compared to similar tumors without 17q 

losses [20•].

A third link between cAMP and tumorigenesis is through altered PDEs. Inactivating 

molecular defects in PDEs lead to high cAMP or cGMP levels that in turn generate a 

continuous activation of the cAMP/PKA cascade. In 2006, our laboratory identified five 

PDE11A mutations in a group of 16 patients with adrenocortical hyperplasia. Three of these 

mutations led to premature terminations with truncated proteins, and the other two were 

missense mutations (R804H and R867G), leading to defective proteins [21••].

Although germline PDE11A truncating-protein mutations are seen in the general population, 

they are significantly more common among patients with adrenal hyperplasia [22]. Somatic 

missense mutations are frequently found in adrenocortical tumors: adrenocortical cancer 

(ACA), adrenocortical adenomas, and corticotrophin (ACTH)-independent macronodular 
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adrenal hyperplasia or AIMAH. In line with the above, higher cAMP levels and lower 

PDE11A expression were observed in AIMAH and ACA tissues studied by 

immunohistochemistry [23•]. Interestingly, a higher frequency of PDE11A variants has been 

found in patients with PRKAR1A mutations, suggesting a contribution of PDE11A to adrenal 

and testicular tumor formation in CNC [24•]. More recently, PDE11A genetic defects were 

found to be significantly increased in prostatic cancer patients, compared with healthy 

controls, suggesting that PDE11A genetic variants may play a role in susceptibility to 

prostatic cancer, as well [25••].

A second PDE found to be involved in adrenocortical tumor predisposition was PDE8B; its 

locus on chromosome 5 was the second most highly linked to adrenal hyperplasias in a 

genome-wide study [21••]. A PDE8B missense mutation (p.H305P) was then described in a 

young girl with isolated micronodular adrenocortical disease. Functional studies showed 

high levels of cAMP in HEK293 cells transfected with the mutant gene [26]. Subsequently, 

additional three novel mutations in PDE8B were described in patients with adrenal tumors 

[27]. PDE8 is highly expressed in adrenal tissues [28•], and has an important role in 

steroidogenesis in adrenals, as recently demonstrated [29]. AIMAH and cortisol-producing 

adenomas specimens were found to have high cAMP levels and, interestingly, decreased 

PDE activity was shown in cortisol-producing adenomas [30•].

PDE8 is highly expressed in the pituitary gland [31]. A strong association between high 

TSH levels and polymorphisms in the PDE8B gene was described in a genome-wide 

association study [32]. The segregation of those polymorphic variants in a family with 

micronodular adrenal disease, with a PDE8 defect leading to Cushing syndrome was also 

studied [26]. The analysis revealed separate segregation of an inactivating PDE8B allele 

from the high TSH-predisposing allele, and showed low TSH levels in individuals who carry 

an inactivating PDE8B allele [28•].

An association between PDE10A and hypothyroidism was found in a study comprising 1258 

individuals from three Alpine villages. In this study, a combination of linkage and 

association in families with hyperthyrotropinemia pointed to PDE10A and DACT2 as 

candidate genes. Genome association of the TSH values in a different population set 

supported the involvement of the PDE10A locus [33].

An association between upregulation of PDEs in a growth hormone (GH)-producing 

pituitary adenoma carrying a GNAS mutation has been investigated; increased PDE4C and 

PDE4D expression and activity were discussed as a possible protective mechanism against 

GNAS-dependent activation of the cAMP pathway [34].

PDE inhibitors and cancer

Vinpocetine, a PDE1 inhibitor, is used for the prevention of cerebrovascular disease and 

cognitive impairment, and to date no significant side effects or toxicity have been reported. 

Although the use of PDE1 inhibitors has not been associated with effects on tumorigenesis, 

in vitro cell studies have suggested a role for PDE1 inhibitors in controlling cell malignancy. 

For example, inhibition of PDE1B stimulates apoptosis in human leukemia cells [35]. 
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Likewise, PDE1C is overexpressed in human malignant melanoma-associated cells, and 

growth is inhibited by vinpocetine [1,36,37].

Different PDE2 inhibitors have been experimentally tested but have not been used in 

humans. PDE2 inhibitors have been mainly tested for effects on endothelial permeability, 

and to treat learning and memory disorders in animal studies [38,39]. One of them, EHNA 

(erythro-9-(2-hydroxy-3-nonyl)adenine), has been reported to increase intracellular cAMP 

levels in human umbilical vein endothelial cells (HUVEC) and inhibit angiogenesis, which 

can be associated with tumor development and other proliferative pathologies [40].

Cilostazol (Pletal®), a dual inhibitor of PDE3 and adenosine uptake, is used for the 

treatment of intermittent claudication, due to its anti-aggregant and vasodilator properties 

[36]. Cilostazol has been tested as a tool for the inhibition of breast cancer metastasis in 

mice, due to its ability to restrict the aggregability of mouse platelets [41]. Also, cilostazol 

was reported to block human colon cancer cell motility, and might be effective as an anti-

metastasis drug [42].

Rolipram is a PDE4 inhibitor marketed as antidepressant in several countries [43]. Rolipram 

enhanced the survival of mice bearing xenografts of U87 glioblastoma cells, and augmented 

the antitumor effect of chemotherapy and radiotherapy [44]. Incubation of a human alveolar 

epithelial type II cell line with rolipram resulted in inhibition of epithelial-mesenchymal 

transition (EMT), which is a critical event in the pathogenesis of organ fibrosis and cancer, 

suggesting that this drug can be used to depress EMT in lung cancer [45]. In CLL cells, 

rolipram, in a dose-dependent manner, increased intracellular cAMP levels and induced 

apoptosis [46,47].

Exisulind, a dual inhibitor for PDE4 and PDE5, is a novel drug with proapoptotic properties. 

In colon cancer cells and in rat bladder tumors; exisulind reduced multiplicity and incidence 

of the tumorigenic events [48,49]. Zaprinast was the first PDE5 inhibitor used in humans as 

a mast cell-stabilizer in allergy treatment. Other specific PDE5 inhibitors are sildenafil, 

vardenafil, and tadalafil which are used for treatment of erectile dysfunction [50]. An 

interesting connection between PDE5 and melanoma cell invasion has been described by 

Arozarena et al. [51•]. This study showed that downregulation of PDE5A in melanoma cells 

led to increased cGMP levels, which in turn caused a mild deceleration in cellular 

proliferation, but a larger effect on cell contractility. These events culminated in an 

increased invasion of melanoma cells [51•].

All PDE5 inhibitors weakly inhibit PDE6, which is expressed in rod and cone 

photoreceptors. This inhibition results in mild and transient visual symptoms that correlate 

with the inhibitor plasma concentrations [52,53]. The possible effect of therapeutic levels of 

tadalafil in the physiology of testis and spermatozoids has been a topic of studies that remain 

inconclusive [54,55,56]. In human tissues that express PDE11A (prostate, pituitary, heart, 

liver, skeletal muscle testis, bladder, and adrenal gland), no adverse effects related to the use 

of tadalafil or other PDE5 inhibitors that inhibit PDE11A have been reported to date [21••,

55,57–59].
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The use of PDE5 inhibitors as possible modulators of cell growth, division, and death has 

been reported. Sildefanil has been shown to induce an augmented endogenous antitumor 

immunity in several mouse tumor models [60]. Similar to the aforementioned activity of 

PDE4 inhibitors, vardenafil and sildenafil can induce apoptosis of chronic lymphocytic 

leukemia cells in vitro in an induced caspase-dependent mechanism [61].

Another inhibitor of PDE5, sulindac, can inhibit growth and induce apoptosis in human 

breast tumor cells, through elevation of cGMP and subsequent activation of PKG [62]. 

Sulindac also induces apoptosis in a non-small cell lung cancer orthotopic lung tumor model 

via a mechanism involving PDE inhibition — a finding consistent with a cGMP-regulated 

apoptosis pathway [63]. Furthermore, the use of antisense RNAi that suppresses PDE5 

activity in human colon tumor cells inhibited cell growth by inducing cell apoptosis and 

delaying cell-cycle progression [64].

The effects of sildenafil, tadalafil, and vardenafil were also investigated in human stromal 

cells involved in bilateral prostatic hypertrophy (BPH). Vardenafil significantly inhibited 

human stromal cell proliferation in a dose-dependent manner [65]. A possible underlying 

mechanism involved blocking the degradation of cGMP, thereby augmenting the bioactivity 

of nitric oxide (NO), which, in turn, inhibited NADPH oxidase (NOX) and contributed to 

the reduction of superoxide (O2
−), a free radical thought to be involved in the genesis of 

BPH [66]. However, another study showed that inhibition of PDE5 can induce cell 

proliferation, and enhance new vessel growth and cell migration through activation of 

MAPKs [67,68]. In addition, an intracellular NO-induced apoptosis mechanism, which was 

enhanced by Ca2+-dependent NOX activation, was inhibited by downregulation of calcium 

transport exerted by PDE5 inhibitors [69,70,71].

Regarding the role of PDE7 in cell apoptosis, as previously mentioned for PDE4, the high 

expression of PDE7B in chronic lymphoid leukemia (CLL) cells, and PDE7 inhibitor-

induced apoptosis can imply a new therapeutic target for this entity [72].

A very selective PDE8 inhibitor, PF-04957325 (Pfizer Inc., Groton Laboratories, Groton, 

CT), has been used in the characterization of T-cell adhesion and proliferation [73]. The 

association between PDE8B genetic defects and adrenal hyperplasia was described above, 

and although the use of PF-04957325 is known to potentiate steroidogenesis in Y-1 adrenal 

cell line and in mouse primary adrenocortical cells, no other reference of effects of PDE8 

inhibitors on adrenal hyperplasia or tumorigenesis has been reported [29].

As mentioned, PDE11A defects have been described in different endocrine tumors, and high 

PDE11A immunoreactivity was detected by immunohistochemistry in renal, prostate, colon, 

lung, and breast carcinoma tissues [58]. However, PDE11A-specific inhibitors are not 

available to characterize the role for PDE11A in these tumors.

Conclusions

The continuous interest in PDE research since their discovery goes hand in hand with the 

development of their inhibitors which are used, first, to biologically characterize PDEs in 

different tissues and understand their involvement in various physiological and pathological 
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settings, and, second, to selectively target PDEs in the treatment of diseases, avoiding 

adverse effects. Growing evidence supports a role for cyclic nucleotide signaling pathways 

in endocrine cell growth and proliferation, and possible tumor development. Additional 

studies are needed for more conclusive evidence and for the investigation of the role of 

PDE-modulating drugs in fighting tumor development.
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Figure 1. 
Summary of cyclic nucleotide signaling pathways: cyclic nucleotides are generated by 

adenylyl-cyclase and guanylyl-cyclase; the former, activated by G-protein-coupled 

receptors, and the latter, by molecules such as natriuretic peptide or nitric oxide. In turn, 

cAMP activates PKA and EPAC. EPAC is involved in the regulation of several cellular 

processes, including integrin-mediated cell adhesion and cell–cell junction formation [74], 

exocytosis [75,76,77], and insulin secretion, while PKA is involved in metabolic processes, 

cell growth, differentiation, and proliferation. cGMP activates PKG which in turn mediates 

the phosphorylation of proteins involved in apoptosis, inflammation, and other physiologic 

processes, including smooth muscle contractility [78], the visual transduction cascade, and 

platelet aggregation. By catalyzing hydrolysis of cAMP and cGMP, PDEs regulate their 

intracellular concentrations and, consequently, their myriad biological effects.
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Table 1

Summary of human phosphodiesterases: their substrate, tissue expression, subcellular location and inhibitors.

Family Substrate Tissue/cellular expression
and function

Subcellular localization Commonly used inhibitors

PDE1A
PDE1B
PDE1B1–2
PDE1C1–2

cAMP/cGMP PDE1A: brain and spermatozoa, kidney, 
liver, pancreas and thyroid gland [79–
81].
Heart [82].
Immune cells [83].
Olfactory epithelium [84].

Cytosol Vinpocetine, IC224, SCH51866, 
8-MeoM-IBMX.
Zaprinast
Sildenafil

PDE2A1–3
PDE3B

cAMP/cGMP Adrenal glomerulosa [85].
Heart muscle [86].
Immune System [87]. Endothelial 
permeability and proliferation [88].
Brain [39].
Liver [89].

Membrane: PDE2A3, and 
PDE2A2
Cytosol: PDE2A1

EHNA, BAY60-7550, PDP, 
IC933

PDE3A1–3 cAMP/cGMP Heart [90].
Adiposyte, oosyte, cardiac and vascular 
smooth muscle, myocardium, platelet 
[91].

Membrane
Cytosol

Milrinone, Tolafentrine, 
Cilostazol, Cilostamide, 
Trequinsin, OPC-33540, 
Dihydropyridazinone, Lixazinone
Zardaverine

PDE4A
PDE4B
PDE4C
PDE4D

cAMP Heart and small intestine [92].
Immune cells [93].
Brain [94].

Membrane Cilomilast, Rolipram, Ro20-1724, 
Roflumilast, AWD12281, 
V11294A, SCH35159, 
Denbufylline, Arofylline

PDE5A1–3 cGMP Lung, penis, smooth muscle [15•].
Platelets [95].
Brain [96].
Cardiac muscle [97].

Cytosol Sildenafil, Tadalafil, DA8159, 
E402, Vardenafil, Zaprinast, 
DMPPO, Dipyridamole

PDE6A
PDE6B
PDE6C

cGMP Photoreceptors [98].
Pineal gland [99].

Membrane and Cytosol Zaprinast, Dypyridamole, 
Sildenafil, Verdenafil, Tadalafil

PDE7A1–2
PDE7B1–3

cAMP Immune cells [100].
Skeletal and cardiac muscle [101].
Brain [102].

Cytosol BRL 50481, IC242, Dipyridamole, 
BMS-586353, Thiadiazoles

PDE8A1–5
PDE8B1–3

cAMP Immune cells [103].
Heart [104].
Ovary and testes [105].
Thyroid gland [31].
Placenta, Brain [106].
Adrenal gland [28•].

Cytosol and particulate 
fractions

Dipyridamole

PDE9 A1–6 cGMP Kidney, spleen, gut, prostate [107].
Brain (Rat) [108].

Cytosol and nucleus BAY 73–669, SCH51866, 
Zaprinast

PDE10A1–2 cAMP/cGMP Brain, testis, thyroid [109]. Cytosol and particulate 
fractions

Papaverine, Zaprinast 
Dipyridamole, PQ-10

PDE11A1–4 cAMP/cGMP Testis, pituitary gland, heart.
Kidney, liver [57,110].
Prostate, adrenal, colon [58]

Cytosol Dipyridamole, Zaprinast
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