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Abstract

Purpose—The goal of this project was to quantify the articulatory distinctiveness of eight major 

English vowels and eleven English consonants based on tongue and lip movement time series data 

using a data-driven approach.

Method—Tongue and lip movements of eight vowels and eleven consonants from ten healthy 

talkers were collected. First, classification accuracies were obtained using two complementary 

approaches: Procrustes analysis and support vector machine. Procrustes distance was then used to 

measure the articulatory distinctiveness among vowels and consonants. Finally, the distance 

(distinctiveness) matrices of different vowel pairs and consonant pairs were used to derive 

articulatory vowel and consonant spaces using multi-dimensional scaling.

Results—Vowel classification accuracies of 91.67% and 89.05% and consonant classification 

accuracies of 91.37% and 88.94% were obtained using Procrustes analysis and support vector 

machine, respectively. Articulatory vowel and consonant spaces were derived based on the 

pairwise Procrustes distances.

Conclusion—The articulatory vowel space derived in this study resembled the long-standing 

descriptive articulatory vowel space defined by tongue height and advancement. The articulatory 

consonant space was consistent with feature-based classification of English consonants. The 

derived articulatory vowel and consonant spaces may have clinical implications including serving 

as an objective measure of the severity of articulatory impairment.
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Introduction

Intelligible speech is characterized by the ability to produce discernible distinctions between 

sounds. The acoustic distinctiveness of vowels and consonants has been studied extensively 

by investigators from a variety of fields including computer science (i.e., automatic speech 

recognition), psycholinguistics, neuroscience, and communication sciences and disorders. 

These studies have been motivated by the need to understand not only the phonetic basis of 

sounds (Stevens & Klatt, 1974) but also how neuronal processing (e.g., Yoder et al., 2008), 

auditory perception (e.g., Johnson, 2000), and speaking rate change as a function of 

speaking task difficulty (e.g., Tsao & Iqbal, 2005), speaking environment (e.g., noise), and 

talker characteristics (e.g., age, health) (Lindblom, 1990). One commonly used measure of 

distinctiveness among vowels is the acoustic vowel space area, which is defined by the first 

and second vowel formants. This measure has been used extensively to investigate declines 

in speech intelligibility (Neel, 2008; Kim, Mark Hasegawa-Johnson, & Perlman, 2011; 

Turner, Tjaden, & Weismer, 1995; Weismer, Jeng, Laures, Kent, & Kent, 2001), articulation 

rate (Zajac et al., 2006), developmental changes in speech (e.g., Lee, Potamianos, & 

Narayanan, 1999; Rvachew, Mattock, Polka, & Ménard, 2006), and exaggerated speech 

directed to infants (Green & Nip, 2010; Green, Nip, Mefferd, Wilson, & Yunusova, 2010; 

Kuhl et al., 1997; Kuhl & Meltzoff, 1997).

In comparison to acoustic-based measures of phoneme distinctiveness, articulatory-based 

measures have received little attention, due to the logistical difficulty of obtaining 

articulatory data (e.g., Electromagnetic Articulography, or EMA, is an expensive system and 

requires careful calibration, compared to, for example, acoustic recordings). Yet articulatory 

measures have many important clinical and scientific implications including (1) quantifying 

the degree of articulatory impairment in persons with speech disorders by articulatory 

information (rather than by acoustic information), (2) advancing knowledge about 

articulatory-to acoustic relations (Mefferd & Green, 2010), and (3) enhancing phoneme 

recognition accuracy for speech recognition in noisy environments (King et al., 2007; 

Livescu et al., 2007) and in disordered speech (Rudzicz, 2011), as well as for silent speech 

recognition from articulatory movements (Denby et al., 2010; Wang, 2011). Moreover, 

some research has indicated that articulatory control and coordination may not manifest in 

speech acoustics. For example, the spatiotemporal variations in tongue movement time-

series are not apparent in associated formant time-series (Mefferd & Green, 2010). The 

development of articulatory-based measures is particularly needed for identifying changes in 

articulatory control that occur during normal development, treatment, or disease (Wang, 

Green, Samal, & Marx, 2011).

To date, the articulatory distinctiveness of different phonemes has predominantly been based 

on the classification of their presumed distinctive articulatory features such as lip rounding, 

lip opening, lip height, lip contour, and lip area (Potamianos, Neti, Gravier, Garg, & Senior, 

2003; Sadeghi & Yaghmaie, 2006; Shinchi, 1998), tongue tip and tongue body height 

(Richardson, Bilmes, & Diorio, 2000), lip opening and lip rounding (Richardson, Bilmes, & 

Diorio, 2000; Saenko, Livescu, Glass, & Darrell, 2009), lip width and lip area (Heracleous, 

Aboutabit, & Beautemps, 2009; Visser, Poel, & Nijholt, 1999), maximum displacement 

(Yunusova, Weismer, & Lindstrom, 2011), and vocal tract shape geometry (Fuchs, Winkler, 
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& Perrier, 2008; Honda, Maeda, Hashi, Dembowski, & Westbury, 1996). Most of these 

classification approaches for articulatory data (without using acoustic data) have resulted in 

only poor to moderate classification accuracy; only a few achieved accuracy of 80% 

(Yunusova, Weismer, & Lindstrom, 2011). Two significant limitations of the feature-based 

approaches are that (1) classification is dependent on accurate feature identification and (2) 

the approaches assume there are isomorphic, simple mappings between chosen features and 

phonemes. These approaches are also limited because they have typically relied on 

articulatory features, which do not account for time-varying motion pattern information. 

More direct approaches such as in this study, where articulatory movement time-series are 

mapped directly to phonemes, may overcome these limitations.

The goal of this project was to provide a better understanding of the articulatory 

distinctiveness of phonemes, which has been a long-standing empirical challenge – one that 

required the development of a novel analytic technique for quantifying the subtle across-

phoneme differences in articulatory movements. Specifically, we evaluated the accuracy of a 

direct-mapping approach for classifying and quantifying the articulatory distinctiveness of 

vowels and consonants based on articulatory movement time-series data rather than 

articulatory features. Classification accuracies using statistical shape analysis (Procrustes 

analysis) and machine learning (support vector machine) on articulatory movements were 

obtained as a measure of how well the set of vowels and consonants can be distinguished 

based on articulatory movements. Procrustes distance was then used to quantify the 

articulatory distinctiveness of vowel and consonant pairs. Finally, the quantified articulatory 

distinctiveness of vowels and consonants were used to derive both an articulatory vowel 

space (an articulatory parallel to acoustic vowel space) and an articulatory consonant space.

Methods

Participants

Ten monolingual females, native speakers of English, participated in the study. The average 

age of the participants was 23.60 years (SD = 9.48, range from 19 to 50). No participant 

reported hearing and speech problems and prior history of hearing or speech impairments. 

They were all from the mid-west region of the United States.

Stimuli

Eight major English vowels in symmetrical consonant-vowel-consonant (CVC) syllables, / 

bab/, / bib/, / beb/, / bæb/, / bɅb/, / bɔb/, / bob/, / bub/, were used as vowel stimuli. The 

eight vowels are representative of the English vowel inventory and were chosen because 

they sufficiently circumscribe the boundaries of the descriptive articulatory vowel space 

(Ladefoged & Johnson, 2011). Therefore, these vowels provide a good representation of the 

variety of tongue and lip movement patterns. The consonant context was held constant 

across stimuli to minimize the influence of consonant coarticulation effects on vowel 

identity. The context / b/, a bilabial, was selected because it had minimum co-articulation 

effect on the vowels, compared with other consonants such as / k/ and / t/ (Lindblom & 

Sussman, 2012).
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Eleven consonants in symmetrical vowel-consonant-vowel (VCV) syllables (i.e., / aba/, / 

aga/, / awa/, / ava/, / ada/, / aza/, / ala/, / ara/, / a3a/, / ad3a/, / aja/) were used as 

consonant stimuli. These consonants were selected because they represent the primary 

places and manners of articulation of English consonants. Consonants were embedded into 

the / a/ context because this vowel is known to induce larger tongue movements than other 

vowels (Yunusova, Weismer, Westbury, & Lindstrom, 2008).

Speech Tasks

All stimuli were presented on a large computer screen in front of the participants and 

prerecorded sounds were played to help the participants to pronounce the stimuli correctly. 

Participants were asked to repeat what they heard and put stress on the middle phoneme 

(rather than the carriers) for each stimulus. Participants were asked to rest (about 0.5 second) 

between each CVC or VCV production to minimize the co-articulation effect. This rest 

interval also facilitated segmenting the stimuli prior to analysis. The stimuli were presented 

in a fixed order (as listed above in Stimuli section) across participants. The stimuli were not 

presented in a random order because it draws too much attention of the participants. 

Mispronunciations were rare, but were identified by the investigator and excluded from the 

data analysis.

Each phoneme sequence was repeated multiple times by each participant. On average, 20.9 

valid vowel samples were collected from each participant with the number of samples for 

each vowel varying from 16 to 24 per participant. In total, 1672 vowel samples with 209 

samples for each vowel were obtained and used for analysis. The average number of valid 

consonant samples collected from each subject was 19.4 varying from 12 to 24 per subject. 

In total, 2134 consonants samples (with 194 samples for each consonant) were collected and 

used for analysis in this experiment.

Data Collection

The Electromagnetic Articulograph (EMA, Model: AG500; Carstens Medizintechnik, Inc., 

Germany) was used to register 3-D movements of the tongue, lip, and jaw during speech. 

The spatial accuracy of motion tracking using EMA (AG500) was 0.5 mm (Yunusova, 

Green, & Mefferd, 2009). EMA registers movements by establishing a calibrated 

electromagnetic field in a volume that can be used to track the movements of small sensors 

within the volume. The center of the magnetic field is the origin (zero point) of the EMA 

coordinate system.

Participants were seated with their head within the calibrated magnetic field. The sensors 

were attached to the surface of each articulator using dental glue (PeriAcryl Oral Tissue 

Adhesive). The participants were then asked to produce the vowel and consonant sequences 

at their habitually comfortable speaking rate and loudness.

Figure 1 shows the placement of the 12 sensors attached to a participant's head, face, and 

tongue. Three of the sensors were attached to a pair of glasses. HC (Head Center) was on the 

bridge of the glasses; HL (Head Left) and HR (Head Right) were on the left and right 

outside edge of each lens, respectively. The movements of HC, HL, and HR sensors were 
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used to calculate the movements of other articulators independent of the head (Green, 

Wilson, Wang, & Moore, 2007). Lip movements were captured by attaching two sensors to 

the vermilion borders of the upper (UL) and lower (LL) lips at midline. Four sensors - T1 

(Tongue Tip), T2 (Tongue Blade), T3 (Tongue Body Front) and T4 (Tongue Body Back) - 

were attached approximately 10 mm from each other at the midline of the tongue (Wang, 

Green, Samal, & Marx, 2011). The movements of three jaw sensors, JL (Jaw Left), JR (Jaw 

Right), and JC (Jaw Center), were recorded but not analyzed in this study.

Data Preprocessing

Prior to analysis, the translation and rotation components of head movement were subtracted 

from the tongue and lip movements. The resulting head-independent tongue and lower lip 

sensor positions included movement from the jaw. The orientation of the derived 3-D 

Cartesian coordinate system is displayed in Figure 1. Because the movements for the simple 

vowels and consonants contain only very low frequency components, a low pass filter of 10 

Hz was applied to the movement traces prior to analysis (Green & Wang, 2003).

Acoustic signals were recorded simultaneously with kinematic signals directly onto a hard 

drive of a computer at the sampling rate of 16 kHz with 16 bit resolution. A high quality 

lapel microphone (Crown Head-worn microphone CM311) was mounted on the forehead 

approximately 15 cm from the mouth during the recordings. Acoustic recordings were used 

for segmenting articulatory movement data and for extracting F1 and F2 formant values. 

First, sequences of movements were aligned with acoustic waveforms. Then the onset and 

offset of the whole CVC and VCV utterances were identified visually based on acoustic 

waveform data using a customized Matlab software program (MathWorks Inc. Natick, MA). 

All manual segmentation results were double checked by the investigator. Occasionally, 

erroneous samples were collected due to sensor falling off during recording or sounds were 

not produced correctly. These erroneous samples were excluded in analysis.

Only y (vertical) and z (anterior-posterior) coordinates of the sensors (i.e., UL, LL, T1, T2, 

T3, and T4) were used for analysis because the movement along the x (lateral) axis is not 

significant during speech of healthy talkers (Westbury, 1994).

Analysis

Three analyses were conducted: (a) classification using both Procrustes analysis (Dryden & 

Mardia, 1998) and support vector machine (Boser, Guyon, & Vapnik, 1992; Cortes & 

Vapnik, 1995), (b) quantifying the articulatory distinctiveness of vowels and consonants 

using Procrustes distance, and (c) deriving articulatory vowel and consonant space from the 

distance (distinctiveness) matrices obtained in (b) using multi-dimensional scaling (Cox & 

Cox, 1994).

Procrustes Analysis

Procrustes analysis is a robust shape analysis technique (Sibson, 1979), which has been 

successfully applied for object recognition and shape classification (Jin & Mokhtarian, 

2005; Meyer, Gustafson, & Arnold, 2002; Sujith & Ramanan, 2005). In Procrustes analysis, 

a shape is represented by a set of ordered landmarks on the surface of an object. Procrustes 
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distance is calculated as the summed Euclidean distances between the corresponding 

landmarks of two shapes after the locational, rotational, and scaling effects are removed 

from the two shapes (or Procrustes matching; see Dryden & Mardia, 1998). A step-by-step 

calculation of Procrustes distance between two shapes includes (1) aligning the two shapes 

using their centroids, (2) scaling both shapes to a unit size, and (3) rotating one shape to 

match the other and obtaining the minimum sum of the Euclidean distances between their 

corresponding landmarks (Wang, Green, Samal, & Marx, 2011).

An equivalent, but faster method for calculating the Procrustes distance using a complex 

number representation for the landmark coordinates was used in this experiment. Suppose u 

and v are two centered shapes represented by two sets of complex numbers. Real and 

imaginary parts of a complex number represent the two coordinates (y and z of sensor 

locations) of a landmark. The Procrustes distance dp between u and v is denoted by Equation 

(1), where u* denotes the complex conjugate transpose of u. Proof of Equation (1) is given 

in Dryden & Mardia (1998).

(1)

Procrustes analysis was designed for analysis of static shapes (i.e., shapes do not deform 

over time). However, a simple strategy was used to extend Procrustes analysis to time-

varying shape analysis. In this paper, shapes for phonemes were defined by their sampled 

motion paths of articulators. First, motion path trajectories (i.e., y and z coordinates) of each 

articulator were down-sampled to 10 locations spread evenly across time. The predominant 

frequency of tongue and lip movements is about 2 to 3 Hz for simple CVC utterances (Green 

& Wang, 2003), thus 10 samples adequately preserve the motion patterns. Then, the sampled 

motion paths of all articulators were spatially integrated as a composite shape representing 

each phoneme. The composite shape, integration of 10 locations from each of the six 

sensors, was used to represent a phoneme shape. Thus, in Equation (1), u is a 1 × 60 matrix 

of complex numbers; u* is a 60 × 1 matrix of the complex conjugates; the result dp is a real 

number within the range between 0 to 1. A similar strategy of spatially integrating shapes at 

different time points was used for recognition of human motion represented using images 

(Jin & Mokhtarian, 2005). Figure 2a gives an example of continuous articulatory 

movements of / bab/; Figure 2b illustrates the corresponding shape in which the 60 circles 

represent 60 landmarks (10 locations × 6 sensors) of the movements of six sensors sampled 

to ten time points.

The following steps, similar to the generalized Procrustes analysis (Gower, 1975), were 

performed to classify the composite shapes of vowels and consonants for each subject: (1) 

the average shapes of all samples for each phoneme were calculated and used as references 

for the phoneme. Average shape of a phoneme is the averaged coordinates of corresponding 

landmarks of all samples for the phoneme; (2) for each test sample (shape), the Procrustes 

distances between it and all the average shapes were calculated; and (3) the phoneme that 

has the shortest distance between its average shape and the testing sample was considered as 

the recognized phoneme.
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Classification accuracy is defined as number of correctly recognized phoneme samples 

divided by the total number of samples. A classification matrix was used to show how many 

of the samples from each vowel or consonant were classified into another vowel or 

consonant. In a classification matrix, a number at row i and column j in the matrix is the 

percentage of samples of i'th phoneme was classified as j'th phoneme. The classification 

matrix for a perfect classifier would have 100% along the diagonal and 0% for all the non-

diagonal entries.

Then, Procrustes distances between the average shapes of phoneme pairs were calculated 

and used as a measure of distinctiveness between the pair. Two distance (distinctiveness) 

matrices (for vowels and consonants, respectively) were obtained from a dataset from each 

subject. The average distance matrices of all subjects defined the quantified articulatory 

distinctiveness of vowels and consonants (Wang, Green, Samal, & Marx, 2011).

Support Vector Machine (SVM)

A machine learning classifier (i.e., SVM) was used to provide additional information on 

classification accuracy to that of Procrustes analysis. SVM, rather than other classifiers, was 

selected because our prior work showed that SVM outperformed other approaches such as 

neural networks and decision trees for this application (Wang, Samal, Green, & Carrell, 

2009).

In machine learning, a classifier (computational model) predicts classes (or groups, 

categories) of new data samples on the basis of a training data set, in which the classes are 

known. In this classification method, a data sample is defined by an array of values 

(attributes). A classifier makes predictions regarding data classes by analyzing these 

attributes. The accuracy of the prediction is quantified based on pattern consistency in the 

data and the classifier's success. SVM is a classifier that tries to maximize the distances 

between the boundaries of different classes in order to obtain the best generalization of 

patterns from training data to testing data. SVM classifiers project training data into a higher 

dimensional space and then separate classes using a linear separator (Boser, Guyon, & 

Vapnik, 1992; Cortes & Vapnik, 1995). The linear separator maximizes the margin between 

groups of training data through an optimization procedure (Chang & Lin, 2011). A kernel 

function is used to describe the distance between two samples (i.e., r and s in Equation 2). 

The following radial basis function was used as the kernel function KRBF in this study, 

where λ is an empirical parameter (Wang, Samal, Green, & Rudzicz, 2012a, 2012b):

(2)

For more details, please refer to Chang & Lin (2011), which describes the implementation of 

SVM used in this study.

In this study, a sample (e.g., r or s in Equation 2) is a concatenation of time-sampled motion 

paths of articulators as data attributes. Initially, the movement data of each stimulus (a 

vowel or consonant) were time-normalized and sampled to a fixed length (i.e., 10 frames). 

The length was fixed, because SVM requires the input samples to be fixed-width array. 
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Subsequently, the arrays of y or z coordinates for each articulator were demeaned and 

concatenated into one sample for each vowel or consonant. Table 1 illustrates how a sample 

was organized, where ULy1, one of the attributes, specifies the y coordinate of UL at 

(normalized) time point one. Overall, each sample contained 120 (6 articulators × 2 

dimensions × 10 frames) numbers of attributes. An additional integer (e.g., 1 for / a/, and 2 

for / i/) was used for labeling the training data (Table 1).

Cross validation, a standard procedure to test classification algorithms in machine learning, 

was used to evaluate the accuracy of articulatory movement classification using SVM. 

Training data and testing data are unique in cross validation. In this study, Leave-N-out 

cross validation was conducted, where N (= 8 or 11) is the number of vowels or consonants, 

respectively. In each execution, one sample for each stimulus (totally N samples) in the 

dataset was selected for testing and the rest were used for training. There were a total of m 

executions; where m is the number of samples per phoneme. The average classification 

accuracy of all m executions was considered the overall classification accuracy (Wang, 

2011).

Multi-Dimensional Scaling (MDS)

Multi-dimensional scaling (Cox & Cox, 1994) was used to derive articulatory vowel and 

consonant spaces based on the distinctiveness matrices of vowels and consonants. MDS is 

widely used to visualize high dimensional data in a lower dimensional space. Given a set of 

items and their pair-wise distances (in a symmetric distance matrix), MDS can generate the 

locations of the points in a coordinate system in which the distance relationships between 

the items are preserved. The orientation of the space is random and hence does not hold any 

physical significance. Green & Wang (2003) also used MDS to generate a consonant space 

based on pair-wise covariance of movements of pellets attached on the midsaggital line of 

tongue (also named T1, T2, T3, and T4) tracked using x-ray microbeam.

In our use of MDS, the number of dimensions was specified with the input data (i.e., 

dissimilarity matrix), and then MDS output optimized results in the given number of 

dimensions. Given an input dissimilarity matrix of phonemes (diagonal numbers are zeros), 

MDS assigns a location to each phoneme in a N-dimensional space, where N is pre-specified 

by the user. That is, if N=2, MDS will visualize the data in a 2D space; if N=3, MDS will 

visualize the data in a 3D space. In this study, the distance matrices between the phonemes 

were used as dissimilarity matrices. The implementation of MDS in Matlab (MathWorks, 

Inc. Natick, MA) was used in this analysis. The effectiveness of an MDS outcome can be 

evaluated by a R2 value resulting from a linear regression between the distance matrix 

obtained from the MDS outcome and the original distance matrix. R2 (between 0 to 1) 

indicates the similarity between the two distance matrices. A larger R2 value indicates a 

better fit between the MDS outcome and the original distance matrix.
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Results

Classification Accuracy of Vowels

The average classification accuracy of vowels computed across individual speakers was 

91.67% (SD = 5.34) and 89.05% (SD = 11.11) using Procrustes analysis and SVM, 

respectively. A two-sided t-test was applied on the classification accuracies using the two 

approaches for each participant. The t-test result showed that there was no significant 

difference (p < .26) between the accuracies obtained using Procrustes analysis and SVM, 

which means Procrustes analysis has the similar power as a widely used classifier (i.e., 

SVM) in vowel classification.

Tables 2 and 3 show the average classification matrices (in percentage) of all subjects using 

Procrustes analysis and SVM.

Articulatory Distinctiveness of Vowels

Table 4 shows the average distance matrix (articulatory distinctiveness) computed across all 

subjects. A larger distance between a vowel pair indicated they are more articulatory 

distinct. For example, the distances between / a/ and / i/ and that between / a/ and / u/ 

(0.2506 and 0.2024, respectively) are the largest, suggesting that these vowels are the most 

articulatory distinct; the distances among / Ʌ/, / ɔ/, and / u/ are the shortest, suggesting that 

these vowels are least articulatory distinct.

Quantitative Articulatory Vowel Space

The symmetric distance matrix shown in Table 4 was used as a dissimilarity matrix for 

generating a vowel space using MDS. Figure 3a shows the derived 2-dimensional 

quantitative articulatory vowel space. As explained previously, in this derived space, the two 

coordinates are the two optimized dimensions of an MDS solution. Pair-wise distances 

obtained from the derived space accounts for a large amount of the variance in the original 

distances as indicated by a regression that yielded a very high R2 value of 0.98. MDS can 

also generate a 3D space (not shown in this paper). However, the third dimension did not 

contribute significantly to the vowel distinctiveness (R2 is also 0.98).

Acoustic Vowel Space

The first and second formants (F1 and F2) of the same eight major English vowels obtained 

from the synchronously collected acoustic data were used to derive an acoustic vowel space 

(Figure 3c). The vowel formant values obtained in this study were consistent with those in 

literature (e.g., Bunton & Story, 2010; Neel, 2008; Rosner & Pickering, 1994; Tsao & Iqbal, 

2005; Turner, Tjaden, & Weismer, 1995). Possible slight variation between the formants in 

this study and those in literature may be due to the dialect or accent effects. As mentioned 

previously, all our participants are from the mid-west region of the United States. The 

formant values in Figure 3c are provided in Appendix.

Classification Accuracy of Consonants

The across-talker average accuracies of consonant classification were 91.37% (SD = 4.04) 

and 88.94% (SD = 6.07) using Procrustes analysis and SVM, respectively. A one-sided t-test 
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showed that the accuracy obtained using Procrustes analysis was significantly higher than 

that obtained using SVM (p < .01). Tables 5 and 6 show the average classification matrices 

using Procrustes analysis and SVM, respectively.

Articulatory Distinctiveness of Consonants

Table 7 shows the average distance (articulatory distinctiveness) matrix for consonant pairs 

computed across all subjects. A larger distance between a consonant pair indicates they are 

more articulatory distinct. The distance between / b/ and / j/ (0.2586) was the largest, 

representing the greatest articulatory contrast between any two consonants. The distance 

between / 3/ and / d3/ was the shortest distance (0.0641), representing the least amount of 

articulatory distinctiveness among any two consonants.

Articulatory Consonant Space

The distance matrix shown in Table 7 was used as a dissimilarity matrix for generating a 

articulatory consonant space using MDS. Figure 4a gives the derived 2D articulatory 

consonant space. Similarly to the derived vowels space, the two coordinates in the consonant 

space are the two optimized dimensions in an MDS solution, which contributed most to the 

distinctiveness of consonants. An R2 value 0.94 was obtained in a regression between the 

pair-wise distances obtained from the derived space (Figure 4a) and the original distance 

matrix (Table 7). A 3D articulatory consonant space was also generated using MDS (Figure 

4b). Pair-wise distances between consonants obtained from the 3D space yielded an R2 value 

of 0.98.

Discussion

High classification accuracies obtained using Procrustes analysis for both vowels and 

consonants (as similarly high as those obtained using SVM, a widely used classifier) 

indicate Procrustes analysis is well suited for this articulation analysis. The articulatory 

distinctiveness of eight English vowels and eleven consonants were then quantified using 

Procrustes analysis on sparsely sampled lip and tongue movement represented as time series. 

The dissimilarity matrices for vowels and consonants, when visualized using MDS, were 

consistent with descriptive schemes that are commonly used to distinguish phonemes based 

on their unique features (Ladefoged & Johnson, 2011). The scientific and clinical 

implication of the derived articulatory vowel and consonant spaces are also discussed below, 

as well as limitations of our approaches.

Classification of Vowels and Consonants

Articulatory position time-series data from multiple articulators were directly mapped to 

vowels and consonants. This approach differs from prior efforts to classify phonemes from 

articulatory information, which have primarily been based on extracted articulatory features. 

The use of statistical shape analysis (i.e., Procrustes analysis) to quantify the differences 

among phonemes in their articulatory movements is also novel.

The results of this study indicated that both methods (i.e., Procrustes analysis and SVM) 

were able to classify vowels and consonants accurately and consistently across talkers. The 
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data presented in the classification matrices (Tables 2 and 3) and the distance matrix (Table 

4) for vowels indicated that / i/, / e/, / æ/, and / u/ were easier to distinguish than were / Ʌ/, / 

ɔ/, / o/, and / a/. This result supports the previous findings that low tongue vowels (e.g., / a/) 

have more articulatory variation than high tongue vowels (e.g., / i/ and / u/, see Perkell & 

Cohen, 1989; Wang, Green, Samal, & Carrell, 2010). More specifically, our results suggest 

high and front vowels (i.e., / i/, / e/, / æ/, and / u/) are more articulatory distinct than low 

and back vowels (i.e., / Ʌ/, / ɔ/, / o/, and / a/). Neel (2008) found that high vowels tend to be 

more acoustically distinct than low vowels based on the first and second formants of ten 

representative vowels. Our findings then suggest that more acoustically distinct vowels are 

also articulated more distinctly, which also agreed with a previous finding in a study on 

formants and tongue tip locations of two vowels / a/ and / i/ (Mefferd & Green, 2010).

The classification matrices (Tables 5 and 6) and distance matrix (Table 7) for consonants 

using both approaches indicated that errors occurred most frequently between / r/, / 3/, / d3/, 

and / j/; this result might be because these sounds are produced with a similar, but not 

identical, place of lingual articulation.

The high classification accuracies obtained in this study motivates further inquiry into the 

usefulness of classification for a variety of applications. For example, additional research is 

required to determine if classification accuracy is a sensitive metric for quantifying the 

severity of speech impairment or the articulatory changes that occur under different 

speaking conditions (Mefferd & Green, 2010). In addition, further work is planned to 

determine if the classification approaches are suitable as the recognition engine for silent 

speech interfaces (Denby et al. 2010; Fagan et al., 2008; Hueber et al., 2010; Wang, Green, 

Samal, & Carrell, 2010; Wang, Samal, Green, & Rudzicz, 2012a, 2012b) to facilitate oral 

communication in patients with moderate to severe speech or voice impairments. Finally, 

although only female talkers were investigated, we anticipate that the classification of male 

talkers' vowels and consonants would produce similar results.

Quantified Articulatory Vowel and Consonant Spaces

Although the quantitative articulatory vowel space (Figure 3a) was remarkably consistent 

with existing qualitative depictions of articulatory vowel space (Figure 3b), the / u/ appeared 

to be closer to the /i/ in the quantitatively-derived articulatory vowel space than in the 

descriptive articulatory vowel space (Figure 3b). This finding might be interpreted to 

suggest that, compared to the /u/, the other back vowels are produced with a more posterior 

tongue posture. Another explanation, however, may be the backing feature of /u/ was not 

adequately captured because our most posterior sensor was only on the back of the tongue 

body and not on the root. More explicitly, both / i/ and / u/ are high tongue vowels, thus 

tongue backing may be the major information to distinguish them. Because our most 

posterior sensor was actually on tongue body back rather than tongue root, our approach 

may not adequately capture the difference between them.

The articulatory vowel space (Figure 3a) was also strikingly similar to the acoustic vowel 

space obtained from the same participants (Figure 3c). These similarities suggest that, 
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despite the extensive processing of the articulatory movement data, the distinguishing 

aspects of vowel articulation were preserved in vowel acoustic output.

The 2D articulatory consonant space (Figure 4a) clustered consonants based on place of 

articulation along Dimension 1. For example, bilabial sounds (i.e., / b/, and / w/), alveolar 

sounds (i.e., / l/, / z/, and / d/), and post-alveolar sounds (i.e., / 3/ and / j/) were grouped 

from left to right along Dimension 1. The 3D articulatory consonant space (Figure 4b) 

clustered the consonants based on the place of articulation as well. For example, alveolar 

sounds (i.e., / l/, / z/, and / d/), post-alveolar sounds (i.e., / 3/), and bilabial sounds (i.e., / b/, 

and / w/), were grouped by place of articulation. Based on the data clusters, the manner of 

articulation did not appear to be represented in the either the 2D or 3D space. Future efforts 

that encode differences among consonants in their duration may provide a basis for 

improving the detection of manner differences; duration information was not preserved in 

our kinematic signals because the articulatory movements were time normalized to the same 

length prior to classification. In addition, we could not determine if the approaches could 

distinguish among voiced and voiceless consonants, because our speech samples did not 

include voice cognates.

The observation that consonants tend to cluster based on place of articulation is not 

surprising and is consistent with findings reported by Green & Wang (2003), who compared 

differences among consonants based on tongue and lip movement coupling patterns. Green 

& Wang (2003) also derived a 3D articulatory consonant space using MDS, but only 

obtained an R2 value of 0.70, which was much lower than the R2 (0.98) obtained for the 3D 

fit in our study. One possible reason that our approach has achieved a better fit than theirs is 

our approach relied on two dimensions of articulatory movements, rather than only the 

vertical dimension that was used by Green & Wang (2003).

Another interesting finding was that two principal components were sufficient to capture the 

variance in articulatory vowel space (R2=0.98), but three components were required to 

capture the variance in articulatory consonants space (R2=0.98 for 3D space as compared to 

0.94 for 2D space). This finding is also consistent with feature-level descriptions of 

phonemes, which emphasize that two major factors (i.e., tongue height and tongue front-

back position) determine the distinctiveness of vowel production but more factors (e.g., 

manner of articulation, place of articulation, voiced and voiceless, nasality) contribute to the 

distinctiveness of consonants.

Limitations

The analysis used in the current study provided only a coarse level analysis of the patterns of 

classification. Additional work is needed to investigate the patterns of misclassification, 

which may provide more details about the articulatory distinctiveness between those 

phonemes.

Duration and temporal information play an important role in distinguishing a number of 

vowels and consonants. However, Procrustes analysis, a spatial analysis, may not encode 

important temporal features based on, for example, manner-of-articulation. In Procrustes 

analysis, shapes are required to have the same numbers of data points. Thus, we sampled the 
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articulatory movements for all phonemes to a fixed length (i.e., 10 data points), and 

consequently lost the duration and temporal information when the phonemes were compared 

in this study. Future efforts are considered on extending standard Procrustes analysis to 

compare time-varying shapes with different lengths.

Consonant classification may be enhanced by including distinguishing features such as 

voicing and nasality. These additions, however, would require the integration of data from 

sensors that record information about voice and resonance.

In addition, because all of our speech stimuli were embedded in either / b/ context (e.g., / 

bab/) or an / a/ (e.g., / aba/), the extent to which the current findings generalize to other 

consonant and vowel contexts is unknown. Additional research is required to determine 

potential context effects.

Clinical and Scientific Implications of the Derived Articulatory Vowel and Consonant 
Spaces

The current investigation was not only conducted to improve knowledge about the 

articulatory distinctiveness of vowels and consonants, but also to develop articulation-based 

methods that could be used in future studies to quantify the severity of speech motor 

impairment (Ball, Willis, Beukelman, & Pattee, 2001; Wang, Green, Samal, & Marx, 2011). 

Just as acoustic vowel space has been extensively used to explain the variance in 

intelligibility scores for speakers with dysarthria (e.g., Higgins & Hodge, 2002; McRae, 

Tjaden, & Schoonings, 2002; Tjaden & Wilding, 2004; Weismer, Jeng, Laures, Kent, & 

Kent, 2001), the derived articulatory spaces may also contribute to understanding 

intelligibility deficits in clinical populations. In contrast to acoustic analyses, the articulatory 

level of analysis can be used to directly determine the contribution of specific, compromised 

articulators to the speech impairment (Yunusova, Green, Wang, Pattee, & Zinman, 2011).

The derived articulatory spaces could also be useful for approaches that seek to intervene in 

disorders such as apraxia of speech or dysarthria by means of providing EMA visual 

augmented feedback (e.g., Katz & McNeil, 2010; Katz, Syrika, Garst, & Mehta, 2011). 

Another potential application is quantifying L2 (the second language) instruction using 

EMA visual feedback (Levitt & Katz, 2010) or via augmented reality (AR) tutors ‘talking 

heads’ (e.g. Badin, Elisei, Bailly, & Tarabalka, 2008; Engwall, 201; Kröger, Graf-

Borttscheller, & Lowit, 2008; Massaroe, Bigler, Chen, Perlman, & Ouni, 2008; Massaro & 

Light, 2003).

Summary

Classification of eight vowels and eleven consonants based on articulatory movement time-

series data were tested using two novel approaches, Procrustes analysis and SVM. 

Experimental results using a data set obtained from ten healthy native English speakers 

demonstrated the effectiveness of the proposed approaches. The articulatory distinctiveness 

of the vowels and consonants were then quantified using Procrustes analysis. The quantified 

articulatory distinctiveness of vowels and consonants were used to derive articulatory vowel 

and consonant spaces, which provided a visual representation of the distinctiveness of 
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vowels and consonants. The clustering of those vowels and consonants in the derived spaces 

was consistent with feature-level descriptions of differences among the vowels and 

consonants. For example, the quantified articulatory vowel space resembles the long-

standing descriptive articulatory vowel space in classical phonetics. The quantified 

articulatory distinctiveness of vowels and consonants, and the derived articulatory vowel 

and consonant spaces have several significant scientific and clinical implications.
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Appendix

Mean and standard deviation of F1 and F2 values (Hz) across participants in Figure 3c.

/ a/ / i/ / e/ / æ/ / Ʌ/ / ɔ/ / o/ / u/

F1 Mean 901 391 553 919 759 834 575 412

F2 Mean 1349 2450 2329 1812 1408 1227 1210 1469

F1 Std. Dev. 67 101 71 87 60 96 63 43

F2 Std. Dev. 107 362 220 139 146 80 101 179
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Figure 1. 
Sensor positions, picture adapted from “Articulatory-to-acoustic relations in response to 

speaking rate and loudness manipulations,” by A. Mefferd & J. G. Green, Journal of Speech 

Language and Hearing Research, 2010, 53(5), p. 1209. Sensor labels are described in the 

text.

Wang et al. Page 18

J Speech Lang Hear Res. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Continuous articulatory movements of / bab/ produced by a single subject; (b) the 

sampled articulatory movements that form a shape of / bab/ (landmarks are represented by 

red circles). Articulator labels are described in text.
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Figure 3. 
Quantified (a) and descriptive (b) articulatory vowel spaces, and (c) acoustic vowel space 

including eight major English vowels, picture in panel (b) adapted from A course in 

phonetics (p. 34), by P. Ladefoged & Johnson, 2011. (6th ed.) Independence, KY: Cengage 

Learning. Dimensions in panel (a) are the results of the MDS solution. See Appendix for the 

formant values in panel (c).
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Figure 4. 
Quantitative articulatory consonant space. Dimensions are results of the MDS solution, 

which maintain the distance relationships between the data points.
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