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Abstract

Despite significant successes in structure-based computational protein design in recent years, 

protein design algorithms must be improved to increase the biological accuracy of new designs. 

Protein design algorithms search through an exponential number of protein conformations, protein 

ensembles, and amino acid sequences in an attempt to find globally optimal structures with a 

desired biological function. To improve the biological accuracy of protein designs, it is necessary 

to increase both the amount of protein flexibility allowed during the search and the overall size of 

the design, while guaranteeing that the lowest-energy structures and sequences are found. 

DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design 

and can provably enumerate a gap-free list of low-energy protein conformations, which is 

necessary for ensemble-based algorithms that predict protein binding. We present two classes of 

algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we 

analyze the effect of ordering the expansion of mutable residue positions within the A* tree and 

present a dynamic residue ordering that reduces the number of A* nodes that must be visited 

during the search. Second, we propose new methods to improve the conformational bounds used 

to estimate the energies of partial conformations during the A* search. The residue ordering 

techniques and improved bounds can be combined for additional increases in A* efficiency. Our 

enhancements enable all A*-based methods to more fully search protein conformation space, 

which will ultimately improve the accuracy of complex biomedically-relevant designs.
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1 Introduction

Redesigning a protein’s structure or function has vast potential in biomedical research. One 

promising technique for protein redesign is computational structure-based protein design 

(CSPD). Starting from a template protein structure, CSPD algorithms search over amino 

acid sequences and conformations to predict mutations to the native protein sequence that 

will have a desired effect on the protein’s biochemical properties. Despite enormous 

advances in computational power, a major limitation in CSPD is the fact that the 

conformational space grows exponentially as we increase the number of mutable residue 

positions or increase the amount of protein flexibility allowed during the design search [1]. 

Searching these conformational spaces to find protein sequences that will perform 

biologically important functions requires advanced algorithms.

Proteins are dynamic and can exist in many low-energy, near-native conformations at 

physiological conditions. If flexibility is ignored or significantly limited during the design 

search, the search can become brittle and miss biologically favorable conformations and 

sequences [2]. Therefore, we have developed and implemented algorithms in the CSPD 

software package OSPREY to model both continuous side-chain and backbone flexibility 

during the design search [2-5], and to approximate protein binding constants using partition 

functions over molecular ensembles [6]. We showed that incorporating continuous 

flexibility in CSPD improves the recovery of native amino acids and finds novel low-energy 

sequences that are missed by rigid-rotamer techniques [2]. Similarly, ranking sequences 

based on low-energy protein ensembles with OSPREY improves the results of prospective 

designs [7, 8]. Applying these methods has led to many successful experimentally validated, 

biomedically relevant applications, including enzyme design [9, 10], design of 

protein:protein interaction inhibitors [7, 11], drug resistance prediction [12, 13], and the 

redesign of anti-HIV-1 antibodies [14-16].

The CSPD problem that OSPREY and other CSPD algorithms solve can be formulated as 

follows: given the protein design input model (i.e., input protein structure(s), rotamer library, 

energy function, and allowed protein flexibility), find the amino acid sequence that stabilizes 

the fold of the given input structure(s). This optimization problem can be solved by 

computationally searching over amino acid types, side-chain conformations (i.e., rotamers 
[17, 2, 18]), and backbone movements [3-5] that best accommodate the desired protein fold. 

The CSPD problem is an optimization over protein conformation and sequence space to 

find: (i) the global minimum energy conformation (GMEC), (ii) ensembles of low-energy 

conformations to score conformational entropy (the K* algorithm [6]) and/or (iii) a ranking 

of protein sequences for experimental testing. While the CSPD problem is NP-hard [19, 20], 

practical biological designs can be solved with mathematical guarantees by several 

optimization techniques [21-24]. These provable algorithms guarantee that the optimal 

solution is found with respect to the input model.

One of the more prevalent provable CSPD techniques is the branch-and-bound algorithm A* 

[21, 25]. The A* algorithm transforms the CSPD problem into a tree search, where every 

level of the tree represents a mutable residue position, each leaf represents a conformation in 

the search space, and every internal node of the tree represents a protein partial 
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conformation (Fig. 1). The total size of the tree is exponential in the number of mutable 

residue positions. However, the A* algorithm can efficiently search the tree by bounding the 

energy of every partial conformation and using a best-first search to enumerate a gap-free, 

in-order list of low-energy protein conformations. In CSPD, a pre-processing dead-end 

elimination (DEE) pruning step is commonly used before A* to prune rotamers that are 

guaranteed to not be part of any low-energy protein conformations [26, 27, 8]. After 

pruning, A* is used to enumerate the remaining conformations or sequences in order of 

increasing energy.

A* enumeration is essential for all CSPD algorithms implemented in OSPREY, including the 

methods that allow continuous side-chain and backbone flexibility during the design search 

[2-5], and the ensemble-based methods that approximate protein binding constants by 

computing partition functions [6]. Specifically, the ensemble-based algorithm, K*, relies on 

the gap-free, in-order list of conformations generated by A* to provably approximate 

partition functions used to rank protein sequences. The incorporation of ensemble-based 

scoring into protein design better reflects protein dynamics and is crucial for accurate 

designs [7, 13, 28, 29]. A*’s ability to generate a gap-free low-energy ensemble makes it 

uniquely suited for ensemble-based design in contrast to other provable methods that only 

find the GMEC, such as integer linear programming (ILP) [22, 30]. The gap-free list 

generated by A* also allows a set of low-energy sequences to be suggested for experimental 

testing. Due to inaccuracies in the protein design model, it is rarely expected that every 

design prediction will work perfectly. Therefore, generating an ordered list of suboptimal 

sequences is superior to only finding the GMEC [8].

In addition to its use in OSPREY, A* has been used by several other CSPD methods to 

successfully design novel and improved proteins. A* has been used to design stabilized 

variants of Cyanovirin-N [31], optimize the binding affinity of an antibody fragment to the 

integrin VLA1 [32], create calmodulin/M13 variant complexes with novel specificity [33], 

design HIV-1 protease inhibitors [34], improve the endosomal sorting of granulocyte 

colony-stimulating factor [35], select candidate residue positions for diversification that 

improved horseradish peroxidase enantioselectivity [36], design BH3 peptides that can bind 

Bcl-xL [37], and design a novel zinc transporter [29]. As designs become more complex, the 

A* search can become an algorithmic bottleneck in protein design. Improvements to the A* 

algorithm will not only enable more complex designs, but allow CSPD algorithms to more 

comprehensively explore protein conformational space. By improving critical CSPD 

algorithms like A*, protein designers can use more biologically accurate input models, 

which will greatly improve the accuracy of CSPD and unlock the ability to design biological 

functions that were previously unattainable by CSPD methods.

In this work we show how the performance of the traditional A* algorithm [21, 8] can be 

radically improved in two ways: first, by intelligently ordering the search tree (Sec. 2.2), and 

second, by using improved methods to bound the best outcome of each path in the tree (Sec. 

2.3). In Section 2.2 we analyze the ordering of protein residues within the A* tree and the 

effect the ordering has on performance. We propose several alternatives to the traditional 

sequential residue ordering, including predefined orders and a new dynamic ordering 

algorithm (Dynamic A*), that improve the efficiency of A*. In Section 2.3 we focus on 
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improving the lower bounds on the energies of partially defined protein conformations, 

which are used to guide the tree search in A*. We refer to these lower bounds as f-scores. 

We analyze and compare the traditional A* f-score vs. improved f-scores computed using 

established techniques from the field of computational optimization, including linear 

programming (LP) [22], max-product linear programming (MPLP) [38] and local 

consistency (LoC) [23]. In Section 3 we present a large-scale study of 29 difficult protein 

designs that shows the large performance improvements that result from the new residue 

ordering and f-score methods.

Protein design is an important tool in biotechnology. Due to improvements in computational 

structural biology (e.g., more protein structures in the PDB database and improved energy 

functions and rotamer libraries), the protein design problem has been transformed into a 

computational search problem. Some of the most important remaining challenges are 

directly related to our ability to search this space efficiently: searching the continuous 

flexible space of proteins, modeling proteins as dynamic ensembles and enumerating 

multiple sequence candidates for experimental testing. Our improvements to the A* search 

enable CSPD protocols that can specifically address these challenges. We detail two such 

examples in our work. First, we describe a novel A* branching technique, Sequence-A*, that 

allows A* to directly enumerate sequences rather than conformations. Our improvement of 

A* f-scores and residue ordering allows Sequence-A* to accurately bound the energies of 

partial sequences and directly find the best suboptimal sequences. We show that Sequence-

A* can generate a gap-free in-order list of low-energy sequences much faster than traditional 

A* methods. Second, we demonstrate that our improved A* methods can be combined with 

minimization-aware protein design methods [2, 3] to solve problems that had too many 

viable rotamers for traditional A* to solve. By improving the capacity of search algorithms, 

our new methods will allow more accurate and consistent designs, which will translate into 

novel biological designs.

2 Methods

2.1 Background: The A* Algorithm for the Protein Design Problem

In CSPD, a protein conformation can be represented as a vector of n rotamers a = (a1, a2, 

…, an), where n is the number of residue positions allowed to mutate during the design 

search. The total energy for the conformation a is defined as

(1)

where Etempl is the template energy (i.e., the energy of the backbone atoms and side chain 

residues that are not allowed to move or mutate), E(ai) is the internal energy of rotamer ai 

plus the energy of ai with the template, and E(ai, aj) is the pairwise energy between rotamers 

ai and aj. In its simplest form, the goal of CSPD is to find the rotamer vector with the lowest 

energy, known as the GMEC: . To reduce the size of the protein 

conformational search space, DEE can be used to prune rotamers that are guaranteed to not 
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be part of the GMEC [26, 27, 6, 8, 1]. After DEE pruning, many low-energy protein 

conformations remain unpruned and must be searched to find the lowest-energy structures.

To enumerate protein conformations that remain after DEE pruning, a branch-and-bound 

algorithm based on the A* algorithm can be used [21, 6]. A* searches protein conformations 

by representing the design problem as a tree search and traverses only the branches of the 

tree that might lead to the lowest energy structure. Each level of the tree represents a residue 

position in the protein that is being designed (Fig. 1). Each internal node in the tree 

represents a partial rotamer assignment, where the number of assigned rotamers is equal to 

the node’s depth in the tree. Therefore, every leaf node of the tree is a complete rotamer 

assignment. Formally, each node x at depth m in the tree contains a partial rotamer 

assignment p = (p1, p2, ⋯, pm) where pm is the assigned rotamer at the mth residue position. 

The remaining residue positions U = {m + 1, ⋯, n} have not been assigned a rotamer yet. 

Every node x is scored with an f-score, which is the sum of the partially assigned 

conformation’s energy g(x) and a bound on the remaining possible rotamer assignments for 

that node h(x):

(2)

Since g(x) scores the unique partially assigned conformation at node x, the energy of this 

partial conformation can be computed exactly:

(3)

In contrast, h(x) must estimate the minimum energy of all remaining rotamer assignments 

for node x. Any function that provides a lower-energy bound for the protein conformations 

can be used by A* to enumerate low-energy conformations. In [21] the following canonical 

bound is presented:

(4)

We refer to the f-score (Eq. 2) that incorporates the above canonical bound (Eq. 4) as the 

traditional f-score. In Eq. (4), Qj refers to the set of unpruned rotamers that are allowed at 

residue position j.

The A* algorithm proceeds by iteratively finding the A* node with the lowest f-score and 

expanding the node by creating child nodes that assign specific rotamers to the next 

unassigned residue position. To expand a node at depth m in the A* tree, a child node is 

created for each rotamer r at residue position m + 1 with the partial rotamer assignment (p1, 

⋯, pm, r). The A* algorithm progressively expands nodes until the lowest f-score node is a 

leaf node. This leaf node is guaranteed to be the GMEC because the lower bounds for all 

remaining conformations are higher than the leaf node’s energy. If desired, A* can continue 

to enumerate conformations in order of lowest energy, which provides a gap-free, in-order 

list of low-energy conformations. We refer to the A* algorithm described in this section and 

Roberts et al. Page 5

Proteins. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presented in [21] as Trad-A*. In Table 1 we summarize the A* method terminology 

introduced in this section and the remainder of the Methods Section.

2.2 Ordered A* Trees

The A* algorithm was originally developed for motion planning in robotics as a faster 

alternative to Dijkstra’s algorithm [25]. While protein design shares some similarities with 

this motion planning technique, there is a distinct difference between the two problems. In 

motion planning, each edge in the tree corresponds to a planned motion, and the output of 

the algorithm is the complete path from tree root to leaf node, which corresponds to the 

planned robot motion. However, in protein design, only the final leaf node (i.e., the full 

rotamer assignment) is required as output, so the path that was taken to get to the leaf is 

discarded. In other words, the order in which the rotamers are assigned to residue positions 

in the A* tree does not matter for correctness and the path in the protein design A* tree does 

not have any inherent meaning, in stark contrast to motion planning.

While the residue ordering within the A* tree does not affect correctness (final output 

conformation and sequence), the complexity (A* runtime) can be drastically affected by the 

order. Intuitively, if a subtree in the A* tree does not contain the GMEC, it is beneficial to 

prune it and prevent exploration of this subtree. If the algorithm encountered paths with high 

energy bounds early in the search, then A* could avoid expanding an exponential number of 

paths. Encountering paths with high low-energy bounds early can be achieved by ordering 

the tree such that nodes with high bounds are expanded closest to the root of the A* tree and 

all its subtrees. Consider the example in Figure 2. Residues 3, 4, and 5 form a clique, such 

that the choice of a rotamer at one residue significantly affects the choice at the other two 

residues. If the traditional sequential residue ordering is used for the A* search, all of the 

nodes at a depth of 1, 2, 3, 4, and 5 must be created (Fig. 2C) in order to guarantee that all 

other paths do not lead to the GMEC. However, when the ordering is switched (Fig. 2D-E), 

only one or two levels must be explored in the subtrees that do not lead to the GMEC (Fig. 

2D-E). This is well-known in the field of constraint satisfaction problems (CSPs), where 

depth-first search combined with backtracking is used to find a variable assignment that 

satisfies all of the problem constraints. Much work has been done developing variable 

ordering heuristics and evaluating their performance on various CSPs (e.g. [39-41]).

The guiding principle behind a good residue ordering is to order the residues such that the 

number of expanded nodes in the A* tree is small. This can be done by ordering paths so that 

they fail (i.e., have large bounds) as fast as possible. In the protein design A* search, this can 

be done by choosing to expand residue positions that will increase the lower bound on the 

conformations within the tree as much as possible. Based on this idea, we introduce four 

static (predetermined) residue orderings to replace the traditional sequential ordering. We 

also present two new dynamic ordering methods that choose which residue position to 

expand next at each node based on the possible increase in energy bound (i.e., Eq. 2).

2.2.1 Static A* Ordering—The traditional A* enumeration in protein design uses a 

sequential static ordering of residues in the A* tree. Specifically, depth m in the tree 

corresponds to the mth mutable residue in the protein design problem. However, there is no 
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reason why this would be the optimal ordering of residue positions within the tree. We have 

implemented four alternative variable orderings, StaticMinDom, StaticMaxDom, 

StaticDomCmed, and StaticHMean to determine how these ordering methods affect the 

speed and efficiency of the protein design A* search. The StaticMinDom ordering expands 

residue positions in order of increasing variable domain size (i.e., number of available 

rotamers per residue position). By expanding variables with a small domain first this 

greedily minimizes the total size of the A* tree. The StaticMaxDom ordering is the opposite 

of StaticMinDom and expands residue positions in order of decreasing variable domain size. 

By expanding residue positions with many rotamers early in the search, the total number of 

conformations that the h-score must bound for a specific node is reduced, which could lead 

to a more direct convergence to the GMEC. The StaticDomCmed ordering method is 

defined in [23] and chooses the residue position to expand based on the ratio of the 

variable’s domain size divided by the sum of the median pairwise energies to every other 

residue position. By using the median variable costs, this ordering tries to take into account 

the lower bound increase that will occur when a specific variable is chosen and find the 

variable that will increase the lower bound the most. Similar to StaticDomCmed, the 

StaticHMean ordering scores every position based on the harmonic mean of all the 

position’s energetic interactions:

(5)

StaticHMean first normalizes every pairwise interaction between residues i and j by 

subtracting the minimum pair energy for any pair of rotamers at the two positions 

( ). Then, StaticHMean computes the harmonic average for each residue pair 

using the normalized pairwise energies. All the harmonic terms involving a specific residue 

are summed and used as the residue’s score. Residues are then ordered in the A* tree by 

decreasing order of this score.

2.2.2 Dynamic A* Ordering—Dynamic A* reordering allows the A* algorithm to choose 

which residue position to expand next at an A* node based on which residue position will 

move the search closest to the GMEC energy. This removes the correspondence between the 

depth in the A* tree and the residue position that exists in traditional A* algorithms. A 

dynamic A* node contains a set of rotamers P that have been assigned and a set of 

unassigned residue positions U. There is no requirement that the rotamers in P have 

sequential residue positions, in contrast to the definition of the partial rotamer assignment p 
in Section 2.1. Hence, the residue positions in U need not be sequential either. Therefore, 

dynamic A* adds a step to the traditional A* search where the next residue position to be 

expanded is chosen from U. Different strategies can be used to choose the next residue 

position for a given A* node. We tested two ways to choose which residue to expand, 
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DynMin and DynHMean. DynMin chooses the next variable based on the maximum of the 

variable’s minimum f-score. DynHMean chooses the residue with the maximum harmonic 

mean f-score (with respect to the parent’s f-score).

In mathematical terms, the next chosen residue position by DynMin is the position i such 

that:

(6)

The next residue i for the DynHMean dynamic ordering is chosen as:

(7)

A* enumeration with dynamic ordering proceeds by directly choosing the next residue 

position to expand at each node instead of expanding residue positions in a predetermined 

order. The traditional A* algorithm in Section 2.1 can be updated to reflect this change:

(8)

(9)

(10)

2.3 Tighter A* f-score Bounds

The residue orderings for A* described in Section 2.2 are founded on the idea that 

encountering large f-scores early in the search quickly guides the search to low-energy 

conformations. Another way to increase A* f-scores is to tighten the bounds on the energies 

of unassigned conformations (Eq. 4). Recall that the f-score of an inner node in the A* tree 

(e.g., Figs. 1, 2) is a lower bound on the lowest-energy conformation in the node’s subtree. 

Thus, the tightest value of a node’s f-score is the energy of the lowest energy conformation 

in the subtree. Although a polynomial-time algorithm that can compute such a tight bound is 

improbable (because it is as hard as solving the entire problem), it is still possible to tighten 

the A* algorithm’s f-score in polynomial or average polynomial time.
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As defined in the traditional A* search, h(x) is a very overoptimistic bound on the energy of 

the unassigned conformations. Consider the last term of h(x) in Eq. (4): 

. This term finds the rotamer qk with the minimum pairwise energy 

with qj over each of the remaining unassigned residue positions. However, there is no 

consistency constraint: there is no requirement that qk be the same rotamer for all j = m + 1, 

⋯, n. This means different rotamers at position k can contribute to h(x), resulting in a 

physically infeasible conformation. Ultimately, h(x) finds the lowest local pairwise energy 

for every unassigned residue pair and does not consider that two different rotamers can not 

be present at the same residue position in an actual physical conformation. Here we present 

new A* algorithms for protein design that use established techniques from computational 

optimization in a novel way to bound unassigned protein conformations. A*-LP uses linear 

programming (LP) [22] to compute A* f-scores, A*-MPLP computes f-scores with max-

product linear programming [38], and A*-LoC uses local consistency methods to improve 

the f-score [42].

2.3.1 Linear Programming-Based f-score Bounds—The CSPD problem can be 

formulated as an integer linear program (ILP) [43, 44, 22]. If an ILP is relaxed (i.e., the 

variables are not restricted to integers) to a linear program (LP) then the solution to this 

relaxation can be found in polynomial-time [45] or average-case polynomial time (e.g. by 

the simplex method) [46]. The LP relaxation can find non-physical answers to the protein 

design problem because fractional rotamers are allowed at residue positions, but the 

energetic value of the LP solution is always a lower bound on the energy of the protein 

design solution. Thus, the LP solution can be used as a replacement to the traditional A* f-

score.

Here we present the LP formulation of the protein design problem based on [22]:

(11)

subject to

where x(ri), x(ri, rj) ∈ [0, 1] and x is the vector of all x(ri), x(ri, rj) indicator variables. When 

the decision variable x(ri) or x(ri, rj) is set to 1, this corresponds to choosing rotamer ri or 

rotamer pair (ri, rj) respectively. Note that the LP constraints enforce that the sum of partial 

rotamers in a specific residue must add up to one, an improvement over the traditional A* 

algorithm where this sum is unconstrained. The A*-LP algorithm replaces the Trad-A* f-

score with the LP solution.

2.3.2 Message Passing-Based f-score Bounds—In practice, the LP solution 

represents an f-score that tightly bounds the energies of solutions for the protein design 
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problem. However, even though the exact LP bound can be computed in average-case 

polynomial time using the simplex algorithm [46] and in guaranteed polynomial time using 

interior point algorithms [45], in practice the time required to solve the LP can become a 

resource bottleneck. Thus it is desirable to compute f-scores using fast approximation 

algorithms.

One way to approximate the LP bound is to exploit the weak duality property of linear 

programs (for a description of duality and dual linear programs, see for example [47-49], 

and the Appendix of this work). In a linear program any solution that satisfies the constraints 

is called a feasible solution, while the solution that maximizes the objective function is 

called the optimal solution. Every linear program (referred to as the “primal program”) has a 

dual linear program such that any feasible solution to the dual is a lower bound on the 

optimal solution to the primal. Moreover, the protein design LP also satisfies the strong 

duality property, which states that the optimal solution to the dual program has the same 

value as the optimal solution to the primal problem. Thus, any feasible solution of the dual 

program is a lower bound on the LP solution, and a dual feasible solution that approximates 

the optimal of the dual program is a tight lower bound on the LP solution.

Several message-passing algorithms [24, 38, 50-53] use the LP strong duality property to 

compute tight bounds on the LP solution. The Max Product Linear Programming (MPLP) 

algorithm [38], for example, optimizes the dual of the linear programming formulation in 

Eq. (11) (the dual is presented in Eq. (13) in the Appendix). MPLP performs a block-

coordinate descent in the dual by exchanging messages between residues. Each message, 

from residue i to residue j “communicates” the likelihood of each rotamer rj based on the 

current likelihood of the rotamers at residue i. At each step of the algorithm, a set of dual 

variables (residue positions) is optimized, while keeping the remaining variables fixed. 

MPLP is guaranteed to converge, although the convergence value can be lower than the LP 

solution. We have implemented an MPLP solver in OSPREY and incorporated MPLP into A* 

to create the new A* algorithm A*-MPLP.

2.3.3 Local Consistency-Based f-score Bounds—An alternative method to calculate 

A* f-scores can be understood by formulating the CSPD problem as a weighted constraint 

satisfaction problem (WCSP) [23]. A WCSP is defined by a set of variables that can each 

take on a discrete set of assignments. Local cost functions are used to weight all possible 

variable assignments. For the CSPD problem, the WCSP variables are the mutable residue 

positions that are each allowed to mutate to a discrete set of rotamers. The WCSP local cost 

functions correspond to the CSPD intra- and pairwise-energy terms. In WCSPs, the cost 

function can only take on positive integer values, so the CSPD energy function must be 

scaled between 0 and ∞.

WCSPs are often solved by a branch-and-bound tree search similar to A* [54]. At each node 

in the tree, local consistency is enforced on the current subproblem defined by the tree node. 

Local consistency criteria were first developed to solve constraint satisfaction problems 

(CSPs; [55]), which are a special case of WCSPs where each cost function is a constraint 

that can either be satisfied or unsatisfied [56, 57]. In CSPs a complete variable assignment is 

consistent if it satisfies all cost functions. Enforcing local consistency on a CSP 
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progressively eliminates variable assignments that are inconsistent with the constraints, 

making it possible to find a solution to the problem.

Similar to CSPs, local consistency can be applied to WCSPs. However, since WCSP cost 

functions are not binary, the goal of WCSP local consistency is to ensure that at least one 

assignment of each cost function is zero. Two types of local consistency are of particular 

importance to WCSPs: node consistency, which enforces unary constraints (intra-rotamer 

energies), and arc consistency, which enforces pairwise constraints (rotamer pair energies) 

[54]. In practice, node and arc consistency are enforced by transferring energetic costs from 

pairwise energy terms to lower arity (intra-rotamer or template) energy terms. Ultimately, 

enforcement of local consistency increases the zero-arity cost function c∅, which represents 

the minimum energy of all protein conformations regardless of rotamer assignment 

(equivalent to the template energy). By construction, c∅ is a lower bound on the energy of 

the CSPD solution. Therefore, we can use this bound to compute A* f-scores.

Local consistency is enforced by applying equivalence-preserving transformations to a 

WCSP, meaning that the CSPD solution is preserved while the underlying structure of the 

problem is changed. It has been shown that it is NP-hard to find a locally consistent WCSP 

with a maximum lower-bound [58]. Therefore, several techniques have been developed to 

find a tight lower bound, such as DAC, FDAC, EDAC [42], and OSAC [59]. Here, we use 

EDAC to compute A* f-scores in our new algorithm A*-LoC.

2.4 Enumerating Sequences with A*

The A* algorithm used in protein design efficiently generates an in-order, gap-free list of 

low-energy protein conformations. However, the goal of most protein designs is to find low-

energy sequences (rather than conformations) that can be experimentally tested and 

validated for a desired function. To generate a list of low-energy sequences, A* must often 

enumerate many conformations that have the same sequences before a new conformation 

with a unique low-energy sequence is found. To improve the efficiency of searching for 

low-energy sequences, we have developed a new A* algorithm, Sequence-A*, that uses a 

modified node expansion technique to directly enumerate sequences.

In Sequence-A*, when a node is expanded, all child rotamers of the same amino acid type 

are assigned to the same A* node. For example, consider a hypothetical example where three 

valine and three leucine rotamers are allowed at residue position i. When an A* node is 

expanded at position i, Sequence-A* will only create two new A* nodes (one for all the 

valine rotamers and one for all the leucine rotamers), instead of creating six new A* nodes 

and assigning an individual rotamer to each new node. Therefore, internal nodes in the new 

A* search tree represent partially assigned sequences instead of partially assigned 

conformations (as they did in Trad-A*) and leaf nodes now represent fully assigned 

sequences. Because leaf nodes now represent fully assigned sequences, when the lowest-

energy node is returned from the A* tree, this node only represents the lowest-energy 

sequence. To find the lowest-energy conformation for the returned sequence, the side-chain 

placement problem must be solved for the sequence. Since the side-chain placement 

problem is a subproblem of the entire design, it can be solved relatively quickly compared to 

the entire design problem. To distinguish between Sequence-A* and all previous A* methods 
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that directly enumerate conformations, we refer to the conformation-based methods as 

Conformation-A*.

Since Sequence-A* nodes now represent partially assigned sequences, the f-score for each 

node must bound the energy of all sequences that contain the partially assigned sequence. 

The f-score of each node can be found by calculating a lower energy bound for all possible 

conformations with the node’s partially assigned sequence. The A*-LP f-score for Sequence-

A* is:

(12)

subject to

where  is the set of allowed rotamers at residue position i, x(ri), x(ri, rj) ∈ [0, 1], and x is 

the vector of indicator variables. If position i has been assigned a specific amino acid type, 

 will be the set of rotamers in Qi that have that type. If position i has not been assigned 

yet, . Similarly to the A*-LP f-score, it is straightforward to modify the f-score 

methods in A*-MPLP, A*-LoC, and Trad-A* for Sequence-A*. All four Sequence-A* f-score 

methods have been implemented and tested in OSPREY.

2.5 Benchmarking Methods

Benchmarking test set—The protein systems from [2] were used as a test set to evaluate 

the proposed algorithmic improvements. Briefly, crystal structures of protein chains with a 

maximum resolution of 1.3 Å and less than 100 residues in length were chosen using the 

PISCES server [60]. Proteins in the test set were chosen such that they had less than 10% 

sequence identity with all other proteins in the test set. The test set consists of the proteins 

with the following PDB ids: 1AHO, 1CC8, 1F94, 1FK5, 1G6X, 1I27, 1IQZ, 1JHG, 1JNI, 

1L9L, 1LNI, 1M1Q, 1MJ4, 1MWQ, 1OAI, 1OK0, 1PSR, 1R6J, 1T8K, 1TUK, 1U07, 1U2H, 

1UCR, 1UCS, 1USM, 1V6P, 1VBW, 1VFY, 1WXC, 1X6I, 1XMK, 1Y6X, 1ZZK, 2AIB, 

2B97, 2BT9, 2BWF, 2CC6, 2CG7, 2COV, 2CS7, 2D8D, 2DSX, 2FCW, 2FHZ, 2FMA, 

2GOM, 2HBA, 2HIN, 2HLR, 2HS1, 2IC6, 2J8B, 2O9S, 2P5K, 2QCP, 2QSK, 2R2Z, 2RH2, 

2RIL, 2WJ5, 2ZXY, 3A38, 3D3B, 3DNJ, 3FGV, 3FIL, 3G21, 3G36, 3HFO, 3I2Z, 3JTZ, 

3LAG.

Side-chain placements—Side-chain placement runs selected all residues with < 100% 

relative side-chain solvent accessible surface area (SASA) and searched over all wild-type 

amino acid rotamers at each chosen residue position. SASA values were determined with the 

program NACCESS [61]. The number of flexible residues for each system ranges from 45 to 

97 with an average of 71 flexible residues.
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Protein core designs—Protein core design runs selected core residues with < 30% 

relative SASA to mutate during the design search. Each mutable residue was allowed to take 

on its wild-type identity and mutate to the 5-7 most likely amino acid type substitutions 

based on the BLOSUM62 matrix [62]. SASA values were determined with the program 

NACCESS [61]. The number of mutable residues for each system ranges from 11 to 42 with 

an average of 28 mutable positions per design system.

Protein surface designs—The protein surface designs were similar to the protein core 

designs, except that all residues with > 50% relative SASA were chosen to mutate during the 

design search. The number of mutable residues for each design system ranged from 17 to 48 

residues, with an average of 28 mutable positions per design system.

Continuous rotamer side-chain placement—The improved A* methods can also be 

used to improve protein design and side-chain placement with continuous rotamers [2-5]. 

The A*-LoC-DynMin method was combined with the iMinDEE algorithm [2] to repack the 

interface residues of the HIV-1 broadly neutralizing antibody, VRC07, bound to gp120 

(PDB id: 4OLZ). Interface residues were chosen by computing the contact dots between 

VRC07 and gp120 using Probe [63] and choosing all residues with at least one contact dot at 

the interface. In total, 27 gp120 residues and 24 VRC07 residues were flexible during the 

side-chain placement. An 8 Å shell containing all residues within 8 Å of any interface 

residue was input to OSPREY as the starting structure.

OSPREY Parameters—The protein design runs used the Richardsons’ Penultimate 

Rotamer Library [17], while the side-chain placement runs used the Penultimate Rotamer 

Library doped with the crystal structure side-chain conformations. The objective energy 

function consisted of the following terms: the AMBER [64] van der Waals and Coulombic 

potential, EEF1 solvation [65], a hydrogen bond potential [66], an entropic factor [1, 67] and 

reference energies [68]. The following energy function weights were used: 

distDepDiel=true, dielectConst=4.0, solvation=0.40, vdwMult=0.95, hbond=3.0, and 

entropy=5.0. To ensure that a sufficient number of rotamers were present for the 

enumeration step, only Goldstein DEE pruning [27] was used during the pruning stage. Each 

design was run on a single Intel(R) Xeon(R) CPU E5-2695 v2 2.40GHz processor with 4 

GB of RAM (except the continuous designs were allowed 10 GB of RAM). A design was 

considered to have failed if it ran out of memory or did not complete within one day of 

computation. For example, all the difficult side-chain placement and protein core design 

runs conducted with Trad-A* failed because they ran out of memory. For a given protein 

system, the same energy matrix and DEE pruning results are used for each enumeration 

technique. Therefore, to understand the gains from our new enumeration methods, the 

runtimes reported in this manuscript reflect only the enumeration time, i.e., the time A* took 

to solve the problem.

A* Enumeration—All combinations of the seven A* variable ordering methods and the 

four A* f-scores were conducted on each of the design test systems (Table 1). The A*-LP f-

score uses the linear program defined as in Equation (11), except that the decision variables 

for rotamers already assigned at the given node were set to 1. An LP solver was 
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implemented in OSPREY using the Gurobi optimization suite application programming 

interface (Version 5.6) [69]. A*-MPLP uses MPLP [38] to compute its f-scores. We 

implemented MPLP within OSPREY and set the number of message-passing iterations to 

100, which we found to be a good trade-off between running time and f-score bound 

tightness based on previous experiments. The A*-LoC f-score uses the local consistency 

zero-arity cost computed by enforcing local consistency with EDAC on the A* node 

subproblem to bound the conformations allowed at the A* node. For a residue position that 

is assigned rotamer ri within an A* node partial conformation, the costs for all other 

rotamers at that position, {qi | qi ≠ ri}, were set to infinite energy in the WCSP for that node. 

Costs for the remaining rotamers were defined by the computed energy matrix. A version of 

the WCSP solver Toulbar2 [70] (Version 0.9.5) modified to output the results of the initial 

EDAC bound was integrated with OSPREY to find the zero-arity local consistency bound for 

each A* node.

3 Results

We tested all the A* enhancements described in the Methods Section (Table 1) on a test set 

of 73 protein design systems. To assess the benefits of these methods compared to Trad-A*, 

we focus our analysis on difficult problems: those problems that take over two minutes to 

run using Trad-A*. Hence, all problems that were solved by Trad-A* in under two minutes 

were removed from further consideration. We performed two types of designs to test these 

algorithms. To test exclusively the performance of the ordering methods, we performed 

side-chain placement designs and further analyzed the 39 difficult design systems. Side-

chain placement is a variation of CSPD where no mutations are allowed, so the search is 

performed on rotamers of the same amino acid type. Then, all combinations of the new 

methods were tested on protein designs of the cores of the protein test set, 29 difficult 

designs in total.

3.1 Variable Ordering

We evaluated the static and dynamic variable orderings using side-chain placements of the 

test protein systems. All residue orderings were tested using the Trad-A* f-score. Four static 

variable orderings were tested in addition to the standard sequential residue ordering used in 

Trad-A* [21]. Because the sequential Trad-A* ordering does not use any information about 

the variable to choose the ordering, this ordering can be considered a random or arbitrary 

ordering. On the other hand, each new residue ordering is based upon a fail-first principle 

that tries to order the residue positions in a favorable manner.

Out of the 73 systems tested, 39 were classified as difficult. The sequential Trad-A* 

algorithm solved 10 of these problems; StaticMinDom solved 9 problems; StaticDomCmed 

solved 10 problems while StaticMaxDom and StaticHMean solved 13 and 26 systems, 

respectively. In addition, of the 10 problems solved by sequential ordering, the 

StaticMinDom, StaticMaxDom, StaticDomCmed, and StaticHMean orderings were each 

faster than sequential ordering for 8, 6, 9, and all 10 systems, respectively. For the 10 

systems that completed with sequential ordering, StaticHMean and StaticMaxDom required 

the least number of A* nodes (median number of expanded nodes: 3900 and 81000, 
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respectively), while Trad-A*, StaticMinDom, and StaticDomCmed required many more 

node expansions (362000, 109000, and 129000 nodes, respectively). Overall, these results 

show that the StaticMaxDom and StaticHMean methods that specifically focus on quickly 

improving the A* f-score lower bound outperform the other orderings. Our newly proposed 

dynamic orderings improve upon the StaticMaxDom and StaticHMean orders by 

specifically analyzing the f-scores of future nodes to find more favorable residue orderings 

than can be found through static methods.

The dynamic variable orderings, DynMin and DynHMean were able to solve 30 and 31 of 

the difficult side-chain placement problems, improving upon the static variable orderings. 

DynMin and DynHMean performed faster than the sequential ordering for all test systems. 

DynMin and DynHMean expand fewer nodes than the static variable methods in 25 and 29 

cases respectively, achieving up to a 2700-fold reduction in the number of expanded nodes 

(Fig. 3) within the 10 problems that were solved by all methods. The dynamic ordering 

methods require more computation per node to find the efficient paths through the A* tree; 

there is an average 43-fold increase in time needed to expand an A* node (51 expanded 

nodes/second versus 2200 nodes/second). However, the reduction in the number of nodes 

that must be expanded far outweighs the additional time needed to determine which variable 

to expand next.

3.2 Improved f-scores Methods

We tested the new f-score algorithms A*-LoC, A*-MPLP, and A*-LP by performing 73 

protein core designs and selected the 29 difficult designs (i.e., designs that took Trad-A* 

greater than two minutes to complete) for further analysis. For these designs, each mutable 

residue was allowed to take on its wild-type identity and several other amino acid types. In 

this experiment all f-score methods were tested with the sequential variable ordering 

method. The new f-score methods greatly outperform the standard Trad-A* algorithm (Fig. 

4). Trad-A* was only able to solve 5 of the difficult test designs, but A*-LoC, A*-MPLP, 

and A*-LP were all able to solve 28 of the 29 problems. For the systems that the new f-score 

algorithms were able to solve, A*-LoC was the fastest algorithm with a median runtime of 

26 seconds, while the median times for A*-MPLP and A*-LP were 66 and 52 seconds, 

respectively. Overall, A*-LP required the least number of expanded nodes (median of 48 

nodes), while the median number of expanded nodes for A*-LoC and A*-MPLP were 58 and 

57, respectively. A*-LoC was the fastest algorithm, but required the largest number of 

expanded nodes, implying that there is a tradeoff between speed and f-score accuracy. On 

average, A*-LoC expanded 2.2 nodes/s, A*-MPLP expanded 1.0 nodes/s, and A*-LP was the 

slowest at 0.9 nodes/s.

The ability of the new A* f-scores to solve more complex design systems and expand fewer 

A* nodes is directly related to their ability to produce tight energetic bounds during the A* 

search. To investigate the accuracy of the improved f-score algorithms we calculated the f-

score gap, i.e., the difference between the GMEC energy and the A* root node f-score lower 

bound, for every design system (Fig. 5). Ideally, if the f-score bound is very accurate, the 

algorithm can identify the GMEC energy at the root node. This happened 10 times for A*-

LP and 4 times for A*-MPLP, but never occurred when using Trad-A* or A*-LoC. However, 
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as shown in Figure 5 the A*-LoC f-scores were always much closer to the actual GMEC 

energy than the Trad-A* f-scores. The overall accuracy of these f-scores follows a similar 

trend. The average f-score gap for the 29 difficult design systems was 76 kcal/mol for Trad-

A*, while the f-score gaps dropped to 3.9 kcal/mol, 3.1 kcal/mol, and 1.9 kcal/mol for A*-

LoC, A*-MPLP, and A*-LP, respectively.

To better understand the benefits of the improved f-score algorithms compared to Trad-A*, 

we now specifically consider the five difficult designs that Trad-A* was able to solve. For 

these five systems, A*-LoC, A*-MPLP, and A*-LP were all able to solve the designs faster 

than Trad-A*, with an average reduction in runtime of 19-, 11-, and 11-fold, respectively 

(Fig. 4). In addition, the new f-score algorithms drastically reduce the number of nodes that 

A* had to expand compared to Trad-A*. A*-LoC, A*-MPLP, and A*-LP were able to reduce 

the number of expanded nodes by an average of 6000-, 6300-, and 6500-fold, respectively. 

Trad-A* was able to expand nodes faster than the other methods (Trad-A*: 1146 nodes/s; 

A*-LoC: 2.2 nodes/s; A*-MPLP: 1.8 nodes/s; A*-LP: 1.7 nodes/s), but the accuracy of the 

improved f-score methods drastically outweighs Trad-A*’s ability to quickly process A* 

nodes.

3.3 Combining Variable Ordering with Improved f-scores

Combining the dynamic variable orderings with the improved A* f-scores yields additional 

gains over either approach by itself (Fig. 6). All combinations of DynMin with A*-LoC, A*-

MPLP, and A*-LP were able to solve all 29 difficult test design problems. The gains are 

most apparent when analyzing the most complex design systems. Specifically, we consider 

the five systems that finished with the largest number of expanded nodes for A*-LoC using 

sequential ordering. When adding DynMin ordering to A*-LoC, the new A* algorithm A*-

LoC-DynMin has an average 19-fold reduction in runtime compared to A*-LoC. Similarly, 

when adding DynMin to A*-MPLP and A*-LP there is an average fold reduction in runtime 

of 22 and 7, respectively. The number of expanded nodes is also reduced by 15, 12 and 3-

fold when adding DynMin to A*-LoC, A*-MPLP, and A*-LP, respectively. Interestingly, 

adding dynamic variable ordering has a more dramatic effect on A*-LoC and A*-MPLP than 

on A*-LP. This is likely because the f-score gaps for A*-LP are much smaller than those for 

A*-LoC or A*-MPLP. Therefore, if the f-score bounds are already very accurate, a beneficial 

reordering of the A* nodes has a reduced effect compared to looser bounds. This trend is 

supported by the fact that when we analyzed the five hardest problems that the original A* 

algorithm was able to solve, we found that adding dynamic reordering improved the number 

of nodes by an average of 54 fold.

Above, we used protein core packing and protein core design problems as benchmarks to 

measure the benefits of our new A* methods compared to each other and to traditional A* 

techniques. However, our new algorithms are not limited to these types of designs, but rather 

can be used to improve any design that utilizes an A* search. To test the applicability of our 

algorithms, we have applied the A*-LoC-DynMin algorithm to redesign the surface for each 

of the 73 proteins in our test set. Surface residues are expected to be much less spatially 

constrained than protein cores, increasing the total number of biophysically plausible 

rotamers at surface residues, and making surface designs comparably more difficult than 

Roberts et al. Page 16

Proteins. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



core designs. The A*-LoC-DynMin algorithm was able to provably find the global minimum 

energy conformation for each surface design tested. The number of residues designed per 

system ranged from 17 to 48 with an average of 28 mutable residues per system. The median 

number of conformations that remained after DEE pruning and were input to A*-LoC-

DynMin was 1013. The median time to solve each design was 17 seconds. The 10 most 

difficult designs (ranked by the number of A* nodes that had to be expanded), took a median 

time of 2.5 hours to complete. For these difficult designs, a median of 1031 conformations 

per system remained unpruned after DEE pruning. The largest surface design had 1043 

unpruned conformations after DEE pruning, expanded 4875 A* nodes, and took 22.5 hours 

to complete.

3.4 Protein Design Applications Enabled by the New A* Methods

Direct Enumeration of Sequences for Protein Design—One of the key advantages 

of A* is its ability to enumerate conformations and sequences in gap-free order of increasing 

energy. In Conformation-A*, conformations are enumerated in order, but typically many of 

the lowest-energy conformations have the same sequence or belong to a small number of 

sequences. An algorithm that tries to find unique sequences by enumerating low-energy 

conformations will be limited in the number of sequences that it can enumerate because 

most of the conformations will belong to a small number of sequences. Figure 7 shows an 

example of how the number of unique sequences grows compared to low-energy 

conformations for a design of toxin II from Androctonus australis hector (PDB id: 1AHO) 

using an expanded rotamer library (i.e., rotLib1 from [2]). The number of low-energy 

conformations grows much faster than the number of unique sequences. When using 

Sequence-A* (Section 2.4) to directly enumerate sequences, Sequence-A* was able to find 

all 11717 unique sequences within 4 kcal/mol of the GMEC in 62 minutes. However, when 

using the Conformation-A* method A*-LoC-DynMin, the design failed to find all the unique 

sequences within seven days.

Protein Design with Minimization—When minimization is allowed during a protein 

design search [2, 3], many rotamer combinations that were easily pruned during a rigid 

search are now viable and must be considered by A*. The new ordering and f-score A* 

techniques we presented are needed to efficiently search these difficult minimization-aware 

design problems that include many rotamer choices with similar energetics. To measure the 

impact of our new A* algorithms, we conducted a side-chain placement of an antibody-

antigen protein-protein interface (PDB id: 4OLZ). The rotamers were allowed to 

continuously minimize during the search using the iMinDEE algorithm [2]. When using 

iMinDEE, the A* search no longer enumerates conformations in order of increasing energy, 

but rather in order of increasing lower-energy bounds. The A*-LoC-DynMin algorithm was 

able to find the conformation with the lowest-energy bound after expanding a total of 41 

nodes. In contrast, Trad-A* fails to find the conformation after expanding 3.5 million nodes. 

When Trad-A* failed, the best f-score bound was still 21 kcal/mol from the lowest-energy 

bound. To obtain biologically relevant designs it is important to search accurate energy 

landscapes of proteins [2, 3, 71-73, 29], which includes allowing protein minimization 

during the search. Our new enumeration techniques enable the design of complex systems 

that were previously impractical with the current technology.
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4 Discussion

The Trad-A* algorithm is widely used in the field of protein design, but can become a 

bottleneck for complex protein designs. Improvements in both the A* residue ordering and 

accuracy of the f-score energetic bounds lead to large speedups in A* runtime and large 

reductions in the number of nodes explored by A*. The residue orderings designed to 

increase the current bound in the A* tree as quickly as possible outperformed the traditional 

sequential ordering. Moreover, A* f-scores using bounds based on solutions to LP, MPLP, or 

LoC greatly improved upon the traditional A* f-score. All of our new A* enhancements 

focus on efficiently reducing the number of viable paths in the A* search tree. This allows 

A* to explore an extremely small fraction of the exponential search space to enumerate all 

low-energy protein conformations.

The residue ordering and f-score improvements were both designed to increase (i.e., 

improve) the A* bounds as close to the root of the tree as possible, and can be combined for 

synergistic improvements in A* enumeration. For example, the most difficult design in our 

test set (PDB id: 2FHZ; min f-score gap of 26 kcal/mol) could only be solved when novel 

ordering methods were combined with improved f-score techniques. The potential gains 

achieved by combining residue ordering with an f-score method are most evident for f-scores 

that provide large f-score gaps. For f-scores with small f-score gaps, such as A*-LP, the f-

score is often close enough to the actual GMEC that few nodes need to be expanded. When 

only a small number of nodes are required, residue ordering can have minimal effect. 

Indeed, we see the largest benefits of dynamic ordering with Trad-A* and the least clear 

effect with A*-LP. However, designs that allow continuous side-chain and/or backbone 

flexibility during the search [2, 3] result in problems with many low-energy rotamers in the 

search. For these complex problems it is unlikely that f-score methods can obtain a small f-

score gap. In these difficult cases, it will be crucial to have both improved f-scores and 

residue ordering to efficiently solve the problem.

We have demonstrated that our new algorithms can be directly used to improve the 

efficiency of both protein core and protein surface designs. Because the algorithms are 

general, they will likely be useful for many types of real-world design problems, including 

enzyme design [9, 10], protein-protein interaction design [7, 14], and multistate design [12, 

13]. Empirically we have found that tractable problems usually have ≤ 1067 conformations 

remaining after DEE pruning. It is important to note that the number of conformations 

before DEE pruning does not necessarily correlate with the number after pruning, which is 

determined by several factors including the energy landscape of the specific protein system 

(cf. [74]). Here we have focused on using simple and quick pruning methods (i.e., singles 

Goldstein pruning [27]) to demonstrate the gains in conformation enumeration, but it is 

expected that combining sophisticated pruning techniques (such as pairs pruning, 

conformational splitting, and DACS pruning [75-77]) with our new advanced enumeration 

methods will achieve greater gains.

Both the advanced residue orderings and improved f-scores require additional computation 

for every expanded A* node compared to Trad-A*. In general, the more advanced/accurate 

the method, the more computation time is needed for each node. Therefore, there is a clear 
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tradeoff between the amount of time spent per node and the accuracy of the method. For 

example, in an extreme case, an f-score method that guarantees an f-score gap of zero could 

be used, but this is as difficult as solving the original CSPD problem. In addition, the 

optimal variable ordering could be computed, but since there are O(n!qn) ways to order the 

variables with dynamic ordering, finding the optimal ordering is likely harder than the 

original CSPD problem (we conjecture this problem may be NP-hard). On the other hand, if 

very little work is done at each node (e.g., by computing a fast but loose bound or by using 

the traditional sequential order), the computed bound will be poor, resulting in an 

unnecessarily large number of nodes that must be expanded. This tradeoff must always be 

considered when developing new methods to further improve A*. Overall, out of our new A* 

f-score algorithms, A*-LoC was faster than the other techniques despite producing larger f-

score gaps and expanding more nodes than A*-MPLP and A*-LP. By finding the right 

balance between computation time per node and strength of the f-score bound, A*-LoC was 

able to outperform all other techniques.

Our new A* algorithms greatly reduce the bottleneck that can arise when using Trad-A* to 

solve complex biological designs. By reducing the A* bottleneck, new accurate and efficient 

CSPD methods can be developed. For example, Sequence-A* utilized our new A* 

improvements and was shown to generate the lowest-energy sequences at least 162 times 

faster than Conformation-A*. These low-energy sequences can be used to generate a diverse 

set of designs for experimental testing, which increases the chance that a functional design is 

found. We also demonstrated the use of our improved A* algorithms for designs that include 

continuous side-chain and/or backbone flexibility [2, 3]. Allowing continuous flexibility 

during the design search yields many viable rotamers and conformations that would have 

been pruned by rigid rotamer methods [2]. Therefore, when including minimization, A* 

must be able to search through many more conformations compared to less accurate CSPD 

methods. In the section above entitled “Protein Design with Minimization,” we showed that 

our new algorithms were able to reduce the number of nodes A* expanded by at least five 

orders of magnitude.

Computational structure-based protein design has the ability to search large portions of 

protein conformational and sequence space faster than either experimental or competing 

computational methods. There have been many successful protein designs, but as the field 

progresses the demand for larger designs with increased complexity, as well as protein 

backbone and side-chain flexibility, will continue to grow. The A* algorithm combined with 

DEE pruning is an effective methodology that can incorporate both continuous flexibility 

and low-energy ensembles into CSPD. The A* search techniques presented here optimally 

solve a large class of biomedically-relevant CSPD problems that were previously intractable 

for A*. This facilitates the development of increasingly accurate CSPD methods that can 

solve challenging design problems.
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A Relationship between f-score methods and proof that the LP-based f-

score always improves upon the traditional A* f-score

As we showed in Section 3, the performance of provable branch-and-bound algorithms 

improves radically if they can compute tight f-score lower bounds on the energy of partial 

conformations. Tight f-score lower bounds can often be computed by polynomial-time 

algorithms. In this work we have presented four methods to calculate f-score lower bounds 

(Trad-A*, A*-LP, A*-MPLP, and A*-LoC). Readers interested in optimization techniques 

will appreciate that all four f-score lower bounds are related and explore the same 

optimization space. By understanding this relationship, we can understand why some 

methods perform better than others. In this Appendix we describe the relationship between 

the different f-score methods, and prove that the A*-LP f-score always improves upon the 

traditional Trad-A* f-score.

Before understanding the relationship between f-score methods, however, it is essential to 

understand the duality property of linear programs (for a more complete explanation, see 

[47-49]). Every linear program (called the primal LP) is associated with a dual LP. If the 

primal LP is a minimization, then the dual LP is a maximization and vice-versa. For 

example, the LP relaxation for protein design presented in Eq. (11) minimizes the protein 

design objective function. The dual to the protein design LP is a related linear program that 

maximizes its objective function. There are two important properties associated with duality. 

The weak duality property of linear programs states that any feasible solution to the dual 

(i.e., any solution that satisfies the constraints) is a bound on the solution of the primal. In 

the case of the protein design primal and dual programs, any feasible solution to the dual 

program is a lower bound on the primal problem. The strong duality property of linear 

programs [49], which is satisfied for the protein design problem, states that the optimal 

solution to the primal is equivalent to the optimal solution to the dual. Thus, any feasible 

solution of the dual program that approximates the optimal of the dual program is a tight 

lower bound on the LP solution.

The f-scores used by A*-MPLP, A*-LoC, and Trad-A* are computed by optimization 

algorithms that approximate the dual LP of the protein design LP (Eq. 11). First, as we 

described in Section 2.3.2, MPLP directly approximates the optimal solution to the dual of 

the LP program, and therefore provides an f-score lower bound. In addition, it has also been 

shown that enforcement of local consistency (used by A*-LoC) searches through the LP dual 

and approximates the optimal LP relaxation [59]. MPLP and local consistency algorithms 

are often more efficient than algorithms that find the exact LP relaxation solution. Therefore, 

there is a clear tradeoff between speed of the f-score computation and tightness of the f-score 

bound. In addition to these established optimization techniques, in this Appendix we prove 

that the traditional A* f-score also lies within the dual of the LP formulation of the CSPD 

problem. This guarantees that the LP solution better estimates protein conformation energies 

than the traditional A* f-score, and in practice the LP solution is usually a much better bound 

(Section 3). Figure A1 presents an illustrative toy example showing how all four f-score 

methods explore the dual of the protein design LP.
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To prove that the LP f-score is guaranteed to improve upon the Trad-A* f-score we show 

that the Trad-A* f-score (as presented in Eq. 2) is always a feasible point in the dual. Since 

the LP f-score is the optimal value in this dual space, the LP f-score is therefore always 

higher (and tighter) or equal to the Trad-A* f-score (Figure A1).

We first present the dual of the LP program in Eq. (11). The dual derivation of Eq. (11) is as 

straightforward as any dual derivation for a linear program, but for convenience we use the 

dual derived in [38]. Using this derivation, the dual linear program of Eq. (11) can be written 

as a maximization of minimizations:

(13)

subject to the constraints

where β is the vector of all βij variables that are optimized by the dual program. A distinct 

βij(ri, rj) variable is defined for each (ri, rj) pair, i ≠ j. Therefore, the feasible space of 

solutions to the dual program are all possible values of the dual objective function such that 

all βij values still satisfy the dual program constraints:

(14)

subject to the constraints

We now show that the minimization performed by the f-score of Trad-A* (Eq. 2) always 

returns a point in the feasible space of the protein design dual linear program (Eq. 14). We 

first slightly change the f-score of Eq. (2). At the root x0 of the tree, g = 0 and thus f = h:

(15)

Before we show the relationship to the dual of Eq. (13), note the second sum in Eq. (15) 

goes from i+1 to n. However, our dual formulation goes from 1 to n so we will reconcile this 

by introducing a new term,

Because λij is zero for all i ≥ j, we can replace E(ri, rj) with λij in the inner sum of Eq. (15) 

and change the inner sum to add all terms from 1 to n:
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(16)

In addition, we can move the intra-energy term E(ri) into the inner sum. Since the inner 

minimization is independent of the variable ri, we can move E(ri) inside the inner 

minimization as well:

(17)

It is now straightforward to see that . 

Thus, if we set  and , then the minimization 

of Eq. (17) always meets the constraint of the dual in Eq. (13) and is therefore a point in the 

feasible space of the dual. Since the linear program in Eq. (13) maximizes the minimization 

of Eq. (15), this proves that the LP solution is always greater than or equal to the Trad-A* f-

score. Empirically we show in Sec. 3 and Fig. 5 that the LP f-score always results in much 

tighter bounds. For the difficult designs tested, on average the bounds computed by A*-LP 

were over 40-fold better (tighter) than Trad-A*, and tighter bounds greatly increase the 

efficiency of A* (Fig. 4 and Fig. 6).
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Figure A1. Several algorithms compute f-score bounds based on the dual of the protein design 
program
In the relaxation of the LP formulation of the CSPD problem (the primal problem), the 

feasible space of solutions is a high-dimensional convex polyhedron. The dual of this 

formulation is also a convex polyhedron (cartooned here in 2 dimensions in grey) and any 

solution to the dual is a lower bound on the primal (an f-score lower bound). These f-scores 

can be used by algorithms, such as A* to find the optimal integer solution to the CSPD 

problem. The traditional A* algorithm (shown in blue) uses a simple pairwise summation 

(Eq. 4) to bound the protein design score. We show that the traditional A* f-score is a point 

in the dual of the LP and it is therefore a worse bound than the LP solution (Appendix). The 

EDAC algorithm [42] (red) based on local consistency and used in WCSP solvers [70], and 

the MPLP algorithm [38] (green) approximate the optimal LP relaxation solution. These 

algorithms are often more efficient than algorithms that find the exact LP solution, such as 

simplex (in black). Note that in this example simplex finds the optimal solution to the LP 

dual, which is equivalent to the optimal solution of the LP primal.
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Figure 1. Tree representation of protein conformation space
(A) A toy example of three serine residues (shown in orange, blue and grey) belonging to 

the antibody VRC07 (PDB id: 4OLZ [14]), partially shown in white cartoon. (B) A 2D 

representation of (A), and for the purposes of this toy example, we allow each residue to 

mutate to only two rotamers (shown here as a star and a circle). (C) Protein design 

algorithms compute pairwise interactions between rotamers based on an input energy 

function, and these are shown here in matrices between residue pairs. For simplicity, all 

internal rotamer energies are zero, and the pairwise energies not shown have a zero value. 

Roberts et al. Page 28

Proteins. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) The protein conformation and sequence space can be represented as a tree. In a tree 

representation, each level represents a residue, each inner node (each of the nodes between 

the root of the tree, r, and the leaves of the tree) represents a partially assigned 

conformation, and each child assigns a rotamer choice for the next residue. Each leaf 

represents a fully assigned conformation. A näive approach to solve the protein design 

problem would explore this tree completely. The optimal path is shown in red. (E) Branch-

and-bound algorithms such as A* explore a small part of the tree by computing energy lower 

bounds (called f-scores and shown next to each node) on the possible conformations allowed 

at each inner node. A* expands nodes in order of their f-score and guarantees that the 

optimal solution is found (shown in red).
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Figure 2. Toy example that demonstrates the effect of residue position reordering on an A* 
search
(A) Toy design problem where seven residue positions are each allowed to mutate to two 

rotamers (represented by a star and a circle). Each residue position is colored by a unique 

color: orange (position 0), cyan (position 1), grey (position 2), purple (position 3), maroon 

(position 4), green (position 5), and black (position 6). (B) Diagram showing the pairwise 

energies between all rotamers in this toy example. For simplicity, assume that all intra-

rotamer energies are zero and can be ignored, and that the interactions between pairs that are 

not joined by an edge are zero. (C-E) The A* algorithm explores only part of the full 

conformation tree to compute the optimal conformation. A* iteratively expands the node 

with the lowest f-score (shown by the dotted red path for the nodes in the optimal 

conformation path) until a leaf is reached. Each expansion results in the creation of new 

nodes representing the children of the expanded node. To compute the optimal conformation 

efficiently, it is desirable to expand the fewest number of nodes. The number of nodes 

expanded can be dramatically reduced by changing the ordering of the tree. (C) The 
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traditional A* algorithm for protein design (Trad-A*) sorts residues in the arbitrary 

sequential order given by the protein sequence. The bounds on the energies for each inner 

node in the optimal conformation are shown in red, and the path that leads to the optimal 

conformation is marked in a thick, red, dashed line. In this toy example, Trad-A* expands 33 

nodes, and creates 67 nodes (the 33 expanded nodes plus their children). (D-E) Large 

speedups in A* can be achieved by a rational ordering of nodes. The energies of each node 

in the optimal conformation are shown. (D) In a static reordering, residue levels are 

reordered once before A* runs. In this toy example, A* with static reordering must only 

expand 13 nodes and create 25 nodes to compute the optimal conformation. (E) In a 

dynamic reordering, the next level is chosen independently for each path “on the fly” (i.e., 

as the A* algorithm expands nodes). In this dynamic reordering example, at depth m = 2 the 

solution path expands position 3 (purple) while the alternative path expands position 4 

(maroon). A* with dynamic ordering must expand only 9 nodes, and create a total of 17 

nodes, to compute the optimal conformation. (F) The optimal conformation for this example 

is shown.
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Figure 3. The number of expanded A* tree nodes is greatly reduced by improved variable 
ordering methods
Top: The total number of conformations A* had to search through for 31 difficult side-chain 

placement problems. The size of the conformation space shown is the number of 

conformations remaining after dead-end elimination pruning. Bottom: The number of A* 

nodes expanded by three different A* orderings for the 31 side-chain placement problems. 

Data is shown for the sequential residue ordering used in Trad-A* (red circles), the 

StaticHMean static variable ordering (purple pentagons), and DynHMean dynamic variable 

ordering (green squares). The x-axis is labeled by the PDB id used for each side-chain 

placement problem. All of the runs used the Trad-A* f-score. Trad-A* failed to solve 21 

problems (right of the red vertical line) and StaticHMean failed to solve 5 of the problems. 

For visual clarity the x-axis is ordered first by the number of nodes expanded by Trad-A*, 

second by StaticHMean, and finally by DynHMean.
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Figure 4. The A* search runtime is greatly reduced by the improved f-score algorithms
The A* runtimes are shown for the 28 difficult protein core design problems that the new f-

score methods could solve. Each run used the Trad-A* sequential variable ordering method. 

The PDB id for each protein core design is labeled on the x-axis. The three new f-score 

methods, A*-LoC (blue stars), A*-MPLP (green triangles), and A*-LP (black squares), were 

able to solve all 28 problems while Trad-A* (red circles) could only solve five problems (left 

of the red vertical line). For visual clarity the order of designs along the x-axis is sorted first 

by Trad-A* runtime and then by A*-LoC runtime.
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Figure 5. Evaluation of A* f-score accuracy
The quantity E(g) – f(x0), referred to as the f-score gap, is shown for all 29 difficult protein 

core designs, where E(g) is the energy of the GMEC and f(x0) is the f-score of the A* root 

node (i.e., the node with no assigned rotamers). The f-score gap represents how accurately 

an f-score bound approximates the actual GMEC energy. An f-score gap of 0.1 kcal/mol 

indicates that the f-score was able to exactly bound the GMEC energy. Overall, A*-LP 

(black squares) produces the tightest bounds, followed by A*-MPLP (green triangles), and 

A*-LoC (blue stars). The Trad-A* f-score (red circles) always produces the worst bounds 

and is clearly separated from the other three methods.
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Figure 6. Number of “difficult” protein designs solved by improved A* methods
Each cell shows the number of difficult protein core designs (N=29) that were solved using 

the given variable (residue) ordering method combined with the given f-score method. 

Column headings denote the residue (variable) ordering used for the designs. Row headings 

denote the f-score method used for the designs. Cells are colored from red (least number of 

designs solved) to yellow to green (most number of designs solved).
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Figure 7. The new Sequence-A* algorithm enumerates sequences much faster than 
Conformation-A*
To experimentally test protein design predictions, it is often beneficial to predict many low-

energy sequences rather than the single GMEC. Conformation-A* methods enumerate 

conformations in a gap-free, in-order ranking of low-energy conformations. However, most 

of the low-energy conformations often belong to a small set of protein sequences. 

Consequently, Conformation-A* enumerates many more conformations than sequences. The 

number of unique conformations (red) and sequences (blue) are shown for the protein core 

design of toxin II (PDB id: 1AHO). Each plotted data point shows the number of unique 

sequences (or conformations) within the given energy cutoff of the GMEC’s energy. Due to 

the explosion of conformations within 4.0 kcal/mol of the GMEC’s energy, Conformation-

A* was unable to find all unique sequences within 4.0 kcal/mol of the GMEC’s energy 

within seven days. In contrast, by directly enumerating sequences, Sequence-A* was able to 

find all unique sequences in 62 minutes.
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Table 1

Summary of A* method terminology

Term Definition

Residue (Variable) Orderings

Trad-A* (or Sequential) Residue positions in the A* search are ordered by their location in the protein’s
amino acid sequence.

StaticMinDom Residue positions are expanded in order of increasing variable domain size (i.e.,
the number of available rotamers per residue position).

StaticMaxDom Opposite of StaticMinDom. Residue positions are expanded in order of decreasing
variable domain size.

StaticDomCmed Residue positions are expanded based on the ratio of the variable’s domain size
divided by the sum of the median pairwise energies to every other residue posi-
tion [23].

StaticHMean Residue positions are ordered based on the harmonic mean of all the position’s
energetic interactions (Eq. 5).

DynMin The residue position to be expanded is chosen dynamically such that it has the
largest minimum f-score.

DynHMean The residue position to be expanded is chosen dynamically such that it maximizes
the harmonic mean of its f-scores.

f -score Methods

Trad-A* A* nodes are bounded by a sum of the partially assigned conformation’s energy and
a bound on the remaining possible rotamer assignments for that node (Eqs. 2-4).

A*-LoC A* nodes are bounded by the local consistency zero-arity cost function, c∅, com-
puted using EDAC [42].

A*-LP A* nodes are bounded by the solution to the LP relaxation of the CSPD ILP
(Eq. 11).

A*-MPLP A* nodes are bounded using the MPLP algorithm, which approximates the solution
to the CSPD LP relaxation.

A* Branching Methods

Conformation-A* A* enumerates an in-order, gap-free list of low-energy conformations. Each A*
node represents a partially assigned conformation.

Sequence-A* In contrast to Conformation-A*, Sequence-A* directly enumerates protein se-
quences rather than conformations. Each A* node represents a partially assigned
sequence.
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