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Abstract

This work presents a deformable point set registration algorithm that seeks an optimal set of radial 

basis functions to describe the registration. A novel, global optimization approach is introduced 

composed of simulated annealing with a particle filter based generator function to perform the 

registration. It is shown how constraints can be incorporated into this framework. A constraint on 

the deformation is enforced whose role is to ensure physically meaningful fields (i.e., invertible). 

Further, examples in which landmark constraints serve to guide the registration are shown. Results 

on 2D and 3D data demonstrate the algorithm’s robustness to noise and missing information.

Index Terms

Point set; deformable registration; particle filter; simulated annealing; constrained optimization

I. Introduction

A problem that frequently arises in computer vision is the registration of two point sets. One 

seeks to obtain a transformation that maps a measured point set to a fixed model set. Point 

sets are often generated in the field of computer vision; for example, as output of a feature 

detector applied to an image [20], from higher level user input used to identify meaningful 

“landmarks” [12], [21], or as output of a scanning device. Once salient point features are 

extracted, registration on these point sets can be used for a variety of computer vision 

applications: determining stereo correspondences, image set matching [6] for panoramic 

stitching, surface registration [27], or medical imaging [43], [5]. Medical imaging benefits 
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from modeling an anatomical structure with a point cloud: the registration task is simplified 

and the computed deformation can be applied for atlas based segmentation.

Registration is an ill-posed problem and assumptions about the deformation field must be 

made or knowledge about the expected deformation must be available to compute a 

particular registration field. The non-rigid registration problem considered in this paper is 

challenging because the correspondences and the deformation are unknown; if the 

correspondences were known, one could perform landmark-based registration by fitting a 

smooth function to the data [38]. In [13], the authors propose using novel radial basis 

functions (RBFs), the Wendland functions, to perform landmark based registration; these 

functions have compact support and can capture fine deformations without affecting distant 

areas of the domain. Another sophisticated representation for the deformation field is the 

GRID model [16], [33].

Frequently, point sets undergoing registration are sparse representations of real objects. 

Physically, these objects cannot experience a deformation that is self-intersecting; thus, the 

field must be constrained to be diffeomorphic. Furthermore, prior information may be 

available (e.g., user input, rigidity constraints [29], etc.) and can provide strong clues to 

guide the registration algorithm. The proposed framework can easily incorporate these types 

of constraints. We focus on constrained, deformable registration and devise an algorithm 

that avoids local minima and limits the model complexity.

This paper is organized as follows. Section II reviews related works. Section III provides the 

background necessary for Section IV. The stochastic point set registration algorithm (SPSR) 

is presented in Section IV, with implementation details provided in Section V. The 

performance of the algorithm on 2D and 3D data sets is shown in Section VI. Section VII 

summarizes the results and describes future research directions.

II. Existing Work

Heuristic Methods

One of the best known and widely used point set registration algorithms is the iterative 

closest point (ICP) algorithm [3]. ICP is a popular rigid registration method for performing 

least squares minimization on the distance between two point sets; as for any gradient 

descent algorithm, a close initialization of the transformation must be provided to reach a 

global minimum. In fact, Besl and McKay [3] show that this iterative, heuristic approach has 

convergence properties similar to methods using explicit vector gradients, such as steepest 

descent. In [10], the authors propose a non-rigid robust point matching algorithm. The 

deformation is parameterized with thin plate splines (TPS) [19] and instead of assigning 

binary correspondences of data to model points, as ICP does, the authors use soft-assign 

[36]. Nevertheless, the iterative minimization approach in [10] is quite similar to ICP, but by 

using fuzzy correspondences and controlling the degree of the fuzziness with deterministic 

annealing, the authors obtain a more robust performance especially in the presence of 

outliers.
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Gradient Descent Methods

Influence of outliers on the chosen energy functional is a concern for registration; in [40], 

Tsin and Kanade propose a cost function based on “kernel correlation,” analyze its 

robustness to outliers, and demonstrate results with rigid registration examples. In the same 

spirit, Jian and Vemuri proposed the Robust Point Set (RPS) registration [24] that forms 

Gaussian mixtures from the model and data points and computes the integral of the squared 

difference between the mixtures. In [14], Glaunes et. al employed the large deformation 

framework to perform diffeomorphic registration on distributions and point sets. This 

variational framework represented the point sets as a summation of Dirac functions and used 

a kernel based norm to compute the distance between point sets. Wasserman et. al [44] 

proposed a novel definition of density for a point cloud: a mixture of non-uniform kernels 

whose shape is application specific. These densities are aligned with the optimization 

approach used in the state of the art symmetric image normalization (SyN) algorithm [2] for 

diffeomorphic image registration.

Probabilistic Methods

In [9], Chui and Rangarajan obtain the registration field by representing a template point set 

as a Gaussian mixture model and transforming the data points such that they are maximally 

explained by the template points. They extend the approach to the non-rigid case and 

perform optimization with the expectation maximization( EM) method. An elegant approach 

to unlabeled, diffeomorphic point set registration is proposed in [18], [17]. The authors use 

the deterministic EM approach to iteratively cluster points and estimate the diffeomorphism 

linking the cluster pairs. This approach gives excellent results if the point clouds have a high 

signal to noise ratio but it is expected that outliers will degrade performance because their 

influence is not accounted for explicitly. Most recently, Myronenko et al. [32] introduced 

the coherent point drift (CPD) algorithm. They replaced the use of TPS in [9] and 

parameterized the deformation with Gaussian functions instead. The algorithm can be used 

for data in dimension higher than three where TPS are not defined. Also, [32] removed the 

simulated annealing step controlling the search range around each model point within the 

EM algorithm by estimating the parameter instead.

Filtering Methods

The filtering approach to registration was introduced in [30] with the unscented particle 

filter (UPF) applied to rigid registration. The authors use the ICP algorithm to establish 

correspondences, compute the distance between data sets, and determine the likelihood for 

the UPF. The Euclidean distance underlying ICP is susceptible to outliers and hence, not 

always a reliable measure of fit between data sets. In [39], Sandhu et al. utilize particle 

filtering but select an inner product as a similarity measure between the two Gaussian 

mixtures (one is from the model point set and the other from the data point set). Outliers 

have local influence leading to a likelihood measure that is more robust. The authors also 

use a dynamical model to improve convergence speed and robustness. Their method only 

works for rigid registration. If elastic deformations are allowed, this similarity metric 

incorrectly moves the data set points toward the mode of the model set’s Gaussian mixture 

density.
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Contribution

In this work, a deformable registration framework is described. The approach presented here 

is not limited to a particular metric or parameterization for the deformation field. For 

evaluation, an energy for point set registration is selected, the one used in [24]. However, 

another cost function can replace it within the same optimization setting (e.g., the Fisher-

Rao metric [35]); in fact, even differentiability of the function is not required. The only 

condition imposed is that the energy can be evaluated at any point in the domain.

Our work makes three contributions. First, we propose a stochastic approach based on 

simulated annealing for optimizing the cost function and introduce a generating function for 

the next state relying on particle filters; the merits of this optimization approach can be seen 

in Section VI-A where, using the same distance metric as RPS, SPSR achieves more 

accurate registration results because it find a better minimum for the energy. In the RPS and 

CPD approaches, the optimization is done by gradient descent and EM, respectively; both of 

these optimization techniques are known to be susceptible to local minima and the 

registration algorithms inherit their convergence properties.

Second, we demonstrate how the proposed optimization framework allows for the inclusion 

of a variety of constraints on the registration. Two types of constraints are presented, but 

other prior information can be easily incorporated in a similar fashion. First, the optimal 

deformation is restricted to be a diffeomorphism onto its range. Without the constraint, a 

deformation may not be feasible due to regions with overlap, see Fig. 2; hence, it is crucial 

in any application aiming to register physically meaningful data and makes the registration 

approach applicable to a wider class of problems. In other scenarios, it may be known that 

certain image regions can only deform rigidly while others undergo non-rigid deformations 

or that particular image areas should remain stationary. We show how to take into account 

this prior knowledge.

Third, we introduce a novel method to regularize the deformation field; instead of a 

parameter controlling global smoothness as in the RPS and CPD approaches, regularization 

is implicit through control of the number of basis functions. This difference is vital for 

accurate registration of data experiencing spatially varying deformations. This problem 

arises frequently in medical imaging where changes in anatomy are local, requiring a non-

smooth deformation field while the remaining domain undergoes smooth, global changes 

where regularization is needed to avoid over-fitting. Gaussian radial basis functions 

(GRBFs) are frequently used to represent a deformation [42]; typically, the bases are 

uniformly distributed throughout the domain or located at all landmark points. In this 

formulation, the GRBFs composing the deformation are not restricted to being centered on 

data points, and the bases have independent covariance matrices, as opposed to [24] and 

[42]. This formulation allows a small number of basis function to be used in the 

representation.
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III. Preliminaries

A. Point Set Registration Problem

Given a point set and a target point set, registration is the task of finding a mapping between 

the two sets with the appropriate properties. The target point set is called the model M with 

M = {m1, ...,mK}, and the given point set is called the data D with D = {d1, ..., dL}. The 

points mi, dj ∈ ℝl where l = 2 or 3 for our experiments. The objective is to find a mapping 

ℒ : ℝl → ℝl that minimizes the distance, d, between the sets M and D:

(1)

B. Defining a distance metric

The distance d will depend on the representation chosen for the point sets. Here, the data and 

model sets are represented as kernel density estimates (KDEs), as in [23]. Identical, 

symmetric Gaussian kernels are placed around each point in the set to define the Gaussian 

mixture model for each point set,

(2)

(3)

The point sets are maximally aligned when their corresponding kernel density estimates are 

maximally similar. A variety of information theoretic metrics exist to quantify the similarity 

between densities [24] and the SPSR framework presented in this work is not dependent on 

a particular choice. For the experiments, however, the L2 or integrated square error (ISE) is 

used,

(4)

because a closed form expression for the distance can be computed by setting ΣT = Σ1 +Σ2 

from the identity:

(5)

C. Parameterizing the Displacement Function

The space of non-rigid transformations is infinite-dimensional, which complicates the 

optimization of Eq. (1). To improve the tractability of the optimization, we limit the degrees 

of freedom of the deformation field ℒ by defining the transformation to be an additive 
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composition of a rigid transformation and a collection of non-rigid basis transformations 

through a GRBF network,

(6)

The optimization in Eq. (1) is now over the rigid transformation parameters and the GRBF 

parameters. Finding the optimal ℒ is equivalent to determining the parameters Θ:

(7)

for the 3D case (the 2D case is simpler). The parameters Ap are quaternion coordinates that 

generate the scaled, rigid transformation matrix A. By representing ℒ(·) as in Eq. (6), the 

problem in Eq. (1) becomes one of parameter estimation:

(8)

The representational capacity of the deformation by a GRBF network is guaranteed by the 

universal approximation theorem for radial basis function networks.

Theorem: [34] Let the family S  consist of functions q : ℛr → ℛ, 

, N ∈ , σ > 0, wi ∈ ℛ, ti ∈ ℛr. Let  : ℛr → ℛ be an 

integrable bounded function such that  is continuous almost everywhere and ∫ℛr (x)dx ≠ 

0. Then family S  is dense in Lp(ℛr) for every p ∈ [0,∞).

The symmetric Gaussian function satisfies the properties required of . Relaxing the 

constraint of equal σ, it is still possible to find an N such that ||f −ℒ||L2 < ε, for a given ε. The 

number of basis functions N in the term ℒnl of Eq. (6) regularizes the deformation. Since 

registration is an ill-posed problem, changing the regularization (varying N) leads to 

different deformation fields. Although with a sufficiently high N the linear term in Eq. (6) is 

unnecessary, it is included to reduce the number of GRBFs needed; the rigid transformation 

terms account for global movement and the GRBF network represents local deformations. 

While a large N would lead to increasingly accurate non-rigid registration, we use a small to 

moderate value of N (10 to 20) to limit variation in the transformation and prevent fitting to 

noise or other sources of error.

D. Particle Filtering

Sequential Bayesian filtering estimation with Monte Carlo simulation, called particle 

filtering, was first introduced by Gordon [15]. In recent years, it has proven to be a powerful 

Kolesov et al. Page 6

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scheme for non-linear and non-Gaussian estimation problems due to its simplicity and 

versatility.

It is common to receive measurements at discrete time points k, and the discrete-time 

filtering problem is formulated as follows. Let xk be an unobservable state and x1:k be the 

history of states up to time k; similarly, let yk be observable measurements and y1:k be the 

history of these measurements. Then, the transition equation Eq. (9) and the measurement 

equation Eq. (10) for the general Markov state-space model are

(9)

(10)

and the conditional distributions are

(11)

(12)

Here, fk, hk are (potentially) time-varying non-linear functions and uk, vk are independent 

and identically distributed (iid) random variables representing noise in the state and 

measurement equations, respectively, with known probability density functions. Thus, Eq. 

(9) and Eq. (10) implicitly define the state transition and measurement probabilities p(xk|

xk−1) and p(yk|xk), respectively.

In applying the PF for registration, the history of states is not important and the aim is to 

estimate p(xk|y1:k), the marginalized version of p(x1:k|y1:k). To begin, N samples are drawn 

from initial state distribution, p(x0) and a transitional prior is assumed. Then, the algorithm 

can be decomposed into two steps [8]:

Predict: Chapman-Kolmogorov Equation

(13)

Update: Bayes Theorem

(14)

Thus, the equation incorporating a new measurement yk is
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E. Particle Filtering for Global Optimization

The static problem of finding the global minimum  through stochastic 

optimization can be phrased in a principled manner as a Bayesian filtering problem 

discussed in Section III-D. One formulation is presented in [45]; below, we present a 

different formulation. To this end, the following state-space model is defined:

(15)

(16)

where uk, vk are i.i.d. random variables uk ~ (0,Q) and vk ~ (0, 1). These variables 

represent the uncertainty in the state update and the state measurement; they implicitly 

define the probabilities

(17)

(18)

It is assumed that the measurements yk are equal to the optimal value of R(x), i.e., yk = R(x*) 

∀k ∈ {0, 1, ...}. Of course, x* is unknown a priori as is R(x*). Instead, yk = g is used where g 

is a lower bound for R(x) :

(19)

From Eq. (18), if  then . Thus, as k→∞, the filter 

converges to

(20)

In the case of Eq. (8), an obvious choice for g is g = 0 since the integral L2 distance is 

always positive. A trivial choice for the state dynamics, d(·), is d(xk) = xk, which corresponds 

to a random walker, according to Eq. (15). More sophisticated local exploration approaches 

can be used (e.g., [22]) to explore the state space efficiently.

Stochastic optimization is naturally formulated as state estimation of a dynamical system. 

The particle filtering framework allows for arbitrary system dynamics, given a state xk it is 

sufficient to know the resulting xk+1, and the only requirement on the measurement function 

hk(·) is that it can be evaluated. This flexibility makes inclusion of constraints 

straightforward, with little modification to the optimization framework, and allows one to 

easily incorporate prior knowledge, such as severity of the deformation, by modifying the 
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system dynamics. On the other hand, this field is mature and there are strong convergence 

results guaranteeing that the sequential Monte Carlo method will solve the filtering problem.

F. Simulated Annealing

Simulated annealing is a Markov Chain Monte Carlo (MCMC) method for global 

optimization [26] that samples the sequence of probability distributions {pk(x)}k∈  with = 

{1, ..., b},

(21)

Suppose it is desired to obtain the global maximum of a distribution p(x). One inefficient 

solution is to sample from p(x) using a Markov chain Monte Carlo (MCMC) approach to 

produce samples Xi ~ p(x) for i ∈ [1, ...,N] and choose the maximum according to

(22)

Unless p(x) has significant probability mass near the optimum, the sampler will likely spend 

much of the computation time in regions distant from the global mode. Instead, an annealing 

approach can be used: samples are taken from the sequence of pdfs in Eq. (21) to encourage 

sampling from around the global maxima of p(x) [11] as Tb → 0.

Simulated annealing (SA) is the basis of the stochastic method proposed in this work to find 

the minimum x* of an objective function R(x). To this end, we set p(x) ∝ e−R(x) in Eq. (21); 

then, as b→∞ samples are drawn from around the global maxima of p(x) [11]. Extensions to 

continuous variables are described in [28], [41]. The general continuous simulated annealing 

(CSA) algorithm for finding a globally optimal solution is presented in Algorithm 1.

Algorithm 1

Continuous Simulated Annealing.

1: Initialize state variable: Θ0, s0 = {Θ0}, k = 0, t0 = 1

2: Generate the candidate state: Θk̃+1 ~ G(Θk,Θk+1)

3: Accept/reject candidate state with the following rule:

 Generate p from a uniform distribution (0, 1) 
tk is temperature of annealing at time k

4: Record traversed states until time k: sk+1 = sk ∪ {Θk}

5: Cooling schedule determines tk, tk+1 = U(k + 1)

6: If stopping criteria not reached, k = k + 1 go to Step 1

SA is a Metropolis-Hastings (M-H) algorithm for which the stationary distribution pk(x) is 

defined in Eq. (21). The acceptance function is defined as
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and if the transition kernel is reversible (i.e., G(xk|x̃k+1) = G(x̃k+1|xk) ), it can be simplified to

In the M-H formulation [37], [1], the detailed balance, which leads to an acceptance function 

requiring a reversible kernel, is stated as follows

This condition is sufficient (not necessary) to ensure that the function from which the 

MCMC is sampling remains the desired invariant distribution p(x) since

(23)

However, since the temperature Tk is being changed at each time, Eq. (23) does not hold and 

maintaining detailed balance by restricting the transition kernel to be reversible is not 

necessary. We relax this constraint.

Furthermore, simulated annealing can be seen as sampling from a sequence of distributions 

 [11] using a single particle and the SMC framework. There are no 

restrictions placed on the transition kernel. And, since sampling from the sequence pk(x) 

exactly is not necessary for finding the optimum, the only desired property is that the chosen 

kernel asymptotically samples from around global maxima of p(x).

IV. Constrained, Stochastic Point Set Registration Algorithm

A. Examples of Useful Constraints

A measure of similarity between two point sets was presented in Section III-A; along with 

other examples in [24], [10], [32], the corresponding algorithms optimize the unconstrained 

problems to achieve registration. Registration is an ill-posed problem and the commonly 

used Tikhonov approach is not the only way or the best way to regularize the problem. This 

work focuses on meaningful regularization of the deformation field by adding constraints to 

the existing objective functions (e.g., Eq. (8)). Constraints are useful for enforcing 

smoothness(e.g., maintaining a positive definite Jacobian) and restricting the allowed 

deformations. We recognize these needs and the optimization approach proposed in Section 

IV-B is well suited to include constraints. In this section, two examples of frequently 
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applicable constraints are presented; they are not required to execute SPSR but are often 

useful in the types of problems that are considered. Also, the constraints are not the only 

ones possible within the proposed registration framework but are meant to serve as 

examples.

The first type of constraint is the injectivity constraint. The data points considered in this 

work, are sparse representations of real objects with physical meaning (e.g., landmarks in a 

medical image). Hence, the deformation should align the two sets as well as possible while 

respecting physical constraints. One such constraint is that two different points in space 

cannot map to the same point. When the constraint fails, the deformation field appears to 

overlap itself, as per Fig. 2. This constraint requires a one-to-one mapping of the domain 

under ℒ. A second constraint is that the transformation must preserve the orientation of the 

space. These constraints are not strictly enforced by any state-of-the-art registration 

algorithms discussed in Section II. Uniqueness of the mapping and preservation of 

orientation is tested through the Jacobian J of ℒ from Eq. (6). In particular, enforcing the 

constraint

(24)

will ensure an orientation preserving and one-to-one transformation [31]. The function det(·) 

is the determinant, and S ⊂ Rl is an open subset containing the region of interest.

Another constraint arises from the necessity to keep certain points/regions in the domain 

stationary while the remainder are free to move in the direction minimizing the energy 

functional. The local rigidity constraint [29] states that points in a subdomain can undergo 

only a rigid deformation and points outside can move non-rigidly. This constraint can be 

reduced to the problem of fixing points in a subdomain to be stationary by: rigidly aligning 

the point sets according to the constrained regions and performing deformable registration 

subject to the deformation being the identity within these regions. The next example of 

constraints that can be incorporated into the proposed optimization framework is a landmark 

constraint. Suppose two subsets of corresponding points, each containing C points, have 

been identified: Mc̄ = {m̄1, ..., m ̄C} from the model set and D̄
c = {d̄

1, ..., d̄
C} from the data 

set. First, we register the full point sets using just the landmark correspondences (e.g., [5]) to 

find the deformation ℒc(x⃗); applying this deformation to the moving set D̄
c, it is guaranteed 

that ℒco(d̄
i) = m̄i for i ∈ [1, ...,C] . After landmark based registration, the resulting model set 

M and data set D will be aligned using the proposed approach subject to the constraints that 

the aligned landmark points Dc̃ = {d̃
1, ..., d̃

C} = {ℒco(d̄
1), ...,ℒco(d̄

C)} = M̄
c do not move. 

Explicitly, user constraints that prevent chosen points {d1̃, ..., d̃
C} from moving are stated as 

ℒ(d̃
i;Θ) = d̃

i for i ∈ [1, ...,C]. The optimization problem becomes

(25)
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(26)

(27)

We add Gaussian basis functions of width  centered at the points {d̃
1, ..., d̃

C} to the 

original parameterization of ℒnl in Eq. (6):

(28)

(29)

and w⃗Ci satisfy

(30)

The weights for these new basis functions w⃗Ci depend on the parameters Θ and are 

computed such that ℒ̂(d̃
i; Θ) = d̃

i for i ∈ [1, ...,C] . When ℒ̂ is equal to the identity, w⃗Ci = 

0→. As ℒ̂ changes from the identity at the constraint point, the linear system of equations in 

Eq. (30) is solved for w⃗Ci .

To enforce some/all of the constraints from Eq. (26)–(27), optimization of a cost function 

R(Θ) is performed instead of the unconstrained similarity metric in Eq. (8). Three choices 

for R(Θ) are presented in Eq. (31)–(33)

(31)

(32)

(33)

where r(Θ) = det(J(ℒ(x⃗; Θ))), m is the function m(x⃗;M) from Eq. (2), and the rationale for 

these choices is described in the subsequent paragraph.
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First, for unconstrained optimization of Eq. (8), R(Θ) = R1(Θ) is chosen. Second, the 

injectivity constraint only, in Eq. (24), is enforced by selecting R(Θ) = R2(Θ) for 

optimization. In SPSR, optimization of the function R(Θ) is performed using a particle filter, 

as described in Section III-E. The cost function R2(Θ), in Eq. (32), imposes a soft constraint 

on the injectivity of ℒ. This soft constraint holds exactly as B → ∞: if r(xn) ≤ 0, then, p(yn|

xn) ≈ 0, which leads to the rejection of candidate particles resulting in non-physical 

deformation fields by setting their likelihood to zero. Finally, choosing R(Θ) = R3(Θ) 

ensures that the optimal deformation will be invertible and will satisfy the landmark 

constraints in Eq. (26) by evaluating the likelihood of Θ using the deformation field ℒ̂ (x⃗;Θ).

B. Optimization Algorithm

A gradient descent method cannot be employed to minimize the cost functions in Eq. (32)–

(33) because they are not differentiable and a satisfactory initialization is unavailable. 

Instead, a stochastic, hierarchical approach is used to find the parameters in Eq. (7). The 

similarity transformation parameters (rigid rotation, scale, and translation) Θs are computed 

first. Since the dimensionality is low, the global PF optimization from Section III-E is used 

directly to find

(34)

Now, we introduce the stochastic point set registration (SPSR) algorithm to perform the 

following optimization:

(35)

The overall strategy is shown in Fig. 3, whose details follow. It is known that the sufficient 

number of particles for estimating distributions using a particle filter grows exponentially 

with the dimensionality of the state space. The parameter vector Θg of R(·) is large; there are 

seven parameters per basis function. However, while parameters belonging to the same basis 

are highly related, there is a weaker correlation between parameters of different bases. 

Blindly applying a particle filter to correlated variables does not take into account this prior 

information about their dependence. Hence, rather than optimizing over the entire state 

vector Θg in Eq. (7), we group elements of the state vector into zones as

(36)

and minimize R(·) with respect to a single zone θi⃗ at a time:

(37)
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The optimization in Eq. (37) is accomplished over the lower dimensional space with the PF, 

as per Section III-E. In this case, the state xk being estimated is xk = θi⃗.

The optimum with respect to the entire parameter vector Θg is achieved using the CSA 

approach described in Section III-F; this section details the functions (·), G(·, ·), and U(·). 

The generator function G(Θk̃+1,Θk) determines how the transition from the current state Θk 

to a proposed state Θ̃k+1 is made. The particular generator function used for SPSR is defined 

by Algorithm 2. Here, generating a proposed state involves perturbing a single zone in Eq. 

(36) while keeping the others constant. In particular, at the kth iteration, this perturbation is 

made by optimizing the objective function over parameters in zone i = mod(k,N), as written 

in Eq. (37), which correspond a single Gaussian basis function.

Algorithm 2

The generator function G(Θ̃k+1,Θk).

1: Compute i = mod(k,N),

2: Set Θ¬i = [θ⃗
1, ..., θ⃗i−1, θ⃗

i+1, ..., θ⃗N]

3: Use PF (Section III-E) to find 

4: Set 

The acceptance function used is the Metropolis function

, and the cooling schedule chosen is

where the ⌈·⌉ is the ceiling function. The generator function proposed in this section is 

clearly not reversible, G(Θk+1,Θk) ≠ G(Θk,Θk+1). In Metropolis-Hastings (M-H), detailed 

balance is maintained by construction to ensure sampling from a time-invariant distribution. 

In simulated annealing, since homogeneity is violated due to the time dependent probability 

distribution, detailed balance is no longer maintained [1]. Thus, there is no requirement to 

enforce detailed balance through a symmetric transition kernel [25]. We cannot prove that 

the exact global minimum will be found with the chosen generator function and cooling 

schedule, but the proposed algorithm can accept states that cause the cost function R(·) in 

Eq. (8) to increase and thus, escape local minima. Also, results in Section VI-A empirically 

Kolesov et al. Page 14

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



show that better minima are found, since the algorithm outperforms other state of the art 

registration approaches.

C. Illustration of the Registration Process

This section demonstrates the effect of changing the number of basis functions N that are 

used to represent the deformation field in Eq. (6) and illustrates the registration process 

presented in Section IV-B. An example of two misaligned point sets of a giraffe are shown 

in Fig. 4(a); misalignment is large around the head of the animal and becomes increasingly 

small moving towards the tail. In this experiment, three values of N were used N = 2, 6, 10, 

and a registration using R2(Θ) from Eq. (32) was run to convergence for each value of N. 

The results are shown in Fig. 4(b)–4(d), respectively. It is expected that misalignments 

making the largest contribution to the cost function will be corrected first, and increasing the 

degrees of freedom by raising N will allow the algorithm to capture small errors in 

alignment. Results of the experiment in Fig. 4 support this intuition: with just two basis 

functions in the deformation, the majority of misalignment is captured. Increasing the 

number of basis functions to six captures smaller contributions to the energy function by 

aligning the back and legs of the giraffe. Finally, with ten basis functions, the point set are 

almost perfectly aligned; small errors are present around the giraffe’s ears, which, if desired, 

can be corrected by increasing N further. For most applications, the results in Fig. 4(d) 

would be deemed sufficiently close and increasing N unnecessary.

The sequential nature of the SPSR registration algorithm is illustrated in Fig. 5; this figure 

should be read simultaneously with Fig. 3. Each subfigure 5(a)–5(f) is the result of 

generating a state at time k, Θk and warping the domain according to the deformation ℒ(x⃗;

[Θ̂s,Θk]) ; the transition between states is made according to G(Θ̃k+1,Θk) in Algorithm 2. For 

simplicity, it is assumed that the point sets are rigidly aligned and a purely non-rigid 

component of the deformation is sought-after.

An optimization “level” K is complete when all of the basis function have been “placed.” 

Initially, the means and weights of all bases are trivially initialized to zero; a basis function 

is said to be “placed” at the current “level” after its parameters have been optimized. For N = 

10, the first level is complete when i = 10 since all bases have been placed, and the Kth 

optimization level begins by optimizing over parameters of the first basis, keeping the rest 

constant according to the values found during level K − 1. For example, Fig. 5(a) shows the 

registration result when parameters for the first four bases have been optimized while the 

others remain trivially initialized. At K = 1, i = 10 in Fig. 5(b), all bases have been 

optimized. For the second level K = 2, Fig. 5(c) shows registration results after parameters 

for the first six bases have been optimized, one at a time, with respect to the other bases. In 

this manner, various states continue to be explored until registration is terminated at the end 

of level three, Fig. 5(f), and alignment is achieved.

V. Implementation Details

A. Parameter Selection

It was sufficient to set bandwidth σ of the Gaussian kernel in Eq. (2) and Eq. (3) according 

to the following rule
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for all experiments in Section VI. The example in Fig. 6 illustrates the effect σ has on the 

registration. We use scaled versions of σ to explore the effect of this parameter: , σ2 = 

σ, σ3 = 4σ. Performance is robust when the kernel width is set to values around σ but the 

algorithm starts to break down if σ is significantly reduced or increased. The covariance 

matrix Qi specifying the noise model uk in Eq. (15) was chosen to be

as the covariance matrix for optimizing the similarity transformation parameters and

as the covariance matrix for GRBFs’ variables, where i ∈ [1,N]. These choices assume that 

data is scaled to lie in the unit cube, and they were used for all experiments.

B. Evaluating the Injectivity Constraint

Smoothness of a deformation can be enforced by checking that, in the domain S, ∀x⃗ ∈ S the 

condition

(38)

holds. If the greatest lower bound of dJ (x⃗) is Glb = 0, from Eq. (24), the deformation is 

injective everywhere. A smoother deformation can be found by setting Glb to a value greater 

than zero and requiring that Eq. (38) holds. A related problem was considered in [7]: finding 

all of the maxima of a Gaussian mixture. In this work, the minimum of the derivative of a 

Gaussian mixture is desired for checking Eq. (38), which can be seen from Eq. (40). 

Furthermore, the global minimum only is required.

The scaled, rigid transformation in Eq. (6) can be represented as a matrix

(39)

Then, for the two dimensional case,
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(40)

and  can be computed similarly. An analytic solution for the minimum of dJ (x⃗) in 

Eq. (40) does not exist. Instead, a numerical approach for finding the minimum is presented. 

While the 2D case is described in detail, the algorithm similarly extends to higher 

dimensions.

Minimization of dJ (x⃗) is presented in Algorithm 3: it is performed iteratively by dividing an 

initial domain S and bounding the function over the subdomains. From the symmetry of 

Gaussian basis functions, it is known that the minimum of the mixture will lie in the convex 

hull of the maxima of the individual Gaussian partial derivatives that compose the mixtures 

in Eq. (40).

Algorithm 3

Algorithm to bound det(J(ℒ(x ⃗; Θ)))

1: function TEST_GLB(Θ, ε,Glb) ▷ find the greatest lower bound of dJ (x⃗)

2:  S = {Ω0} ▷ Ω0 = convex hull of all derivative of Gaussian peaks

3:  bdRange = 2ε

4:  while bdRange > ε do ▷ Run until can approximate det() within ε everywhere

5:   N = numberOfElements(S)

6:   for i=1:N do

7:    Ωc = S(i)

8:    S = S\ {Ωc} ▷ Remove Ωc from the list

9:     [UΩi, LΩi ] = computeBounds(Ωc,Θ )

10:    if (UΩi <= Glb) | ( (LΩi ≤ Glb) & (UΩi − LΩi ≤ ε) ) then

11:     return 1 ▷ Zero crossing detected or within ε of crossing

12:    else

13:      [ΩN+1, ...,ΩN+4] = splitDomainUniformly(Ωc) ▷ Split into 4 regions

14:     S = {S,ΩN+1, ...,ΩN+4} ▷ Add to the list

15:

     

16:   if S == ∅ then ▷ No subdomain contains zero crossing, det() > 0

17:    return 0

The algorithm initializes the list S containing subdomains of interest to the convex hull Ω0 of 

all maxima/minima of the components making up the mixtures in Eq. (40). In line 9, the 

upper bound UΩi and lower bound LΩi for dJ are computed for each subdomain in S. If the 

current sudomain Ωc cannot be ruled out (i.e., Eq. (38) may be violated in Ωc), Ωc is 

subdivided evenly into four subdomains, line 13, for further consideration. If a subdomain is 

found to violate Eq. (38) or be within ε of doing so, the function exits with a true value. 
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Otherwise, the test terminates with a false value in two cases: S is empty, line 16, and no 

violations were found, or no violations are found and dJ has been bounded within ε, line 15.

Bounding dJ by UΩc and LΩc over Ωc ⊂ Ω0 involves making several conservative estimates. 

First, we bound

(41)

(42)

(43)

(44)

The remaining three parts of Eq. (41) are computed similarly to Eq. (42). Then, the partial 

derivatives  are bounded to find  and  in Eq. (42)–Eq. 

(44):

(45)

Further, the value  in Eq. (45) is computed as

(46)
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and the computation is similar for  of Eq. (45). The bounds on  of Eq. (46) 

(similarly on ) are

(47)

To determine the bounds for  and  in Eq. (46) and compute Eq. (47), the 

domain is broken into zones as shown in Fig. 7; the corner points Pj = [Pjx, Pjy], j ∈ {1, ..., 

4} determine the boundaries. Now, the quantities in Eq. (47) can be bounded as

(48)

Finally, bounds on the Gaussian functions within Ωc are computed using Table I. This table 

is made by examining Fig. 7(a). For example, if a Gaussian function is located in Zone 3, its 

maximum value is located at the boundary of the green line and Ωc and the minimum is 

either at P3 or P4. All possible scenarios for the location of a Gaussian function and the 

corresponding bounds are listed in Table I.

VI. Results and Experiments

A. Examples in 2D

a) Bhattacharyya Registration—In this example, we show that the stochastic 

optimization method can be applied to a variety of cost functionals for registration. The 

Bhattacharyya distance [4] measures how similar two PDFs are to each other. It is defined as

(49)

(50)

and p(x), q(x) are the two PDFs being compared. The Bhattacharyya coefficient lies in the 

interval 0 ≤ Bc ≤ 1, and values closer to 1 indicate that PDFs are more similar. In the case of 

point set registration, we have two probability distributions: m(x⃗;M) and c(x⃗;ℒ(D)) from Eq. 

(2)–(3). Registration is achieved by minimizing the energy

(51)
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A registration result using the Bhattacharyya energy defined by Eq. 51 is presented in Fig. 8. 

The optimization process, described in Section IV-B, is illustrated by showing energy values 

at each stage of the optimization. All other experiments in this paper are based on the energy 

defined in Eq. (4).

b) Noisy and Incomplete Data 2D—The first set of tests demonstrate the ability of the 

proposed algorithm to handle missing points where no correspondences exist and noisy data 

sets, with additional points not belonging to the structures of interest. The ground truth data 

was generated by taking a model point set (from http://www.cise.ufl.edu/~anand/students/

chui/research.html) and deforming it to create an ideal data set, both depicted in Fig. 2(a). 

The test data was created by adding varying levels of noise as presented in Fig. 10(a) or by 

removing points from the two sets as in Fig. 10(d).

The baseline algorithms used for comparison are: CPD [32], RPS [24], and RPM [10] (see 

Section II). For RPS, the authors proposed two parameterizations for the deformation: TPS 

and GRBFs, labeled ‘TPS L2’ and ‘GRBF L2’, respectively, in Figs. 9(a) and 9(b). For 

CPD, the user selects values for two parameters: the regularization weight λ and the 

Gaussian basis width β. For RPS using TPS, the user sets λ and σ, the width of the kernel in 

Eq. (2)–(3). For RPS using GRBFs, λ, β, σ must be chosen. Finally, for RPM the initial 

temperature T0 and the annealing rate r must be set. In our experience, these parameters had 

to be adjusted for each noise level and missing point level to obtain the best registration. 

Since it is not obvious what the settings should be, a parameter sweep was performed for 

each of the competing approaches using 56 parameter pairs. ‘GRBF L2’ has three 

parameters, so 392 parameter triplets were tried per registration. Thus, the best possible 

results are reported in Fig. 9 for the competing approaches. Outside of the constants set in 

Section V-A and the number of particle and iterations for the particle filter (defined once 

and used for all experiments), the stochastic point set registration (SPSR) algorithm has just 

one parameter: the number of basis functions. The user only has access to this parameter and 

changing it has the intuitive effect of improving registration accuracy, explained in Section 

IV-C, at the cost of increased computation time. For all experiments, N = 10, which was 

empirically determined as reasonable compromise between running time and accuracy.

The plot of error as a function of noise level, depicted in Fig. 9(a), was generated by creating 

ten synthetic examples at each noise level plotted, performing the registration, then plotting 

the average error rate of the ten trials. Similarly, the error as a function of the missing points 

ratio, in Fig. 9(b), was generated by removing a certain percentage of points from each data 

set and computing the registration error. Given the ground truth, the error is computable by 

taking the average of the Euclidean distance between all points and their correspondences in 

the stationary set (error vectors are shown as green arrows in Fig. 10(b) and Fig. 10(e)).

The SPSR performs favorably compared to the competing algorithms in both tests while at 

the same time maintaining a non-overlapping deformation field Eq. (24) (not guaranteed by 

any of the competing approaches). In a real application, the competing approaches will 

likely not achieve the theoretical performance shown in Fig. 9 because ground truth is not 

available, and requiring a human to perform a parameter sweep and select the best of 56 

registrations is time consuming and is not trivial.
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c) Landmark Constrained 2D Example—This section demonstrates an example in 

which user constraints greatly simplify the registration problem. The original, misaligned 

point sets are depicted in Fig. 11(a). Two maps were created by projecting the earth’s 

surface onto a plane according to the Lambert and Mercator projections. The resulting shape 

of the South American continent differs widely; to create the point sets, images of South 

America, from the two projections, were sampled uniformly. Additionally, the coordinates 

of the following four cities, denoted by pentagons and squares, were marked in each image: 

Brasilia, Buenos Aires, Manaus, and Ushuaia. Thus, the registration problem consists of 

aligning the point sets subject to the condition that location of the cities match exactly.

The first step of registration establishes a rough alignment using just the four pairs of 

corresponding cities. Using the known correspondences, an optimal interpolating thin plate 

spline (TPS) was computed. Then, the point sets were aligned using the TPS deformation 

field. The results in Fig. 11(b) clearly show that four correspondences are insufficient to 

align the point set exactly; however, the gross alignment errors have been corrected. At this 

point, it is known that the location of the cities match; consequently, using the approach in 

Section IV-A these points are fixed for the remainder of the registration process. Subject to 

these constraints, the SPSR algorithm is applied to achieve the final registration in Fig. 

11(b).

B. Examples in 3D

a) Synthetic Example—The extension of SPSR to 3D is straightforward; it involves a 

mild increase in the optimization space of three degrees of freedom for the rigid parameters 

and two degrees of freedom per Gaussian basis. Since the increase is moderate, we expect 

similar performance in 3D as for 2D. In the first experiment, a point cloud of an elephant 

was generated with 3,093 points and was deformed to create the two point clouds in Fig. 

12(a). The deformation is large in magnitude and twists the trunk of the elephant in 3D. The 

local nature of the transformation was intentional. We see that the SPSR algorithm correctly 

focuses on the region around the trunk and only deforms space in this region without 

altering far away areas.

b) Real 3D Example—For the second experiment, computed tomography (CT) image 

volumes of two different patients were obtained. With a simple threshold, bone label maps 

were extracted; these labels were then uniformly sampled to generate point clouds consisting 

of 14,832 and 14,723 points. The initial point sets are shown in Fig. 13(a), and despite a 

rigid alignment, significant differences exist. Here, the target application is atlas based 

segmentation (i.e., align the CT volumes using just the sampled point clouds and transfer 

label maps from the reference patient to the incoming patient). The results of registration are 

shown in Fig. 13. In this example, ground truth label maps for the mandible, larynx, and 

spinal cord are available for both patients, in Fig. 13(e). Using the computed deformation 

fields from the point set registration, the label maps of the reference image were deformed. 

Clearly, in Fig. 13(f), the organ labels are well aligned.

c) Landmark Constrained 3D Example—Despite accurate registration of the bony 

structures and organs around them, in areas where no information was available (i.e., no 
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points present to guide the registration), there is no guarantee that the original CT image will 

be aligned. A second stage of registration is performed to align these regions by first 

warping the initial CT volume according to the deformation computed in Fig. 13. At this 

stage, a label map of the patients’ flesh was made, again using a simple threshold operation. 

The point clouds that are a result of sampling the masks are shown in Fig. 14(a) and Fig. 

14(b).

This problem is complicated by the fact that registering the flesh point clouds would likely 

undo the alignment of the bone achieved in Fig. 13. We can mitigate this complication by 

introducing a set of constraints, as in Section IV-A. The constraint points are chosen as a 

subset of the aligned skeleton point clouds and do not move at all during the subsequent 

registration. Thus, regions belonging to the bone tissue are restricted in their motion. To 

generated the deformation field in Fig. 14, 67 points serve to constrain the problem. Subject 

to the constraints, registration is performed and the deformation field in Fig. 14(c) and Fig. 

14(d) are computed. Finally, the originally misaligned CT volumes from Fig. 14(e) are 

registered using a composition of the two deformation fields from Fig. 13–14 to obtain the 

registration visualized in Fig. 14(f).

C. Performance

The experiments were all done on an Intel Core i7-2600K processor. For the smaller, 2D 

examples in Fig. 9, the computations were completed in 10 minutes. The most 

computationally intensive example was the landmark constrained registration in Fig. 14; this 

example took 16 hours to compute. There was no attempt to optimize the algorithm’s 

performance. Significant performance improvements can be achieved by doing the 

computations in parallel. The proposed framework is perfectly parallelizable: each particle 

can be computed independently. Making the computations in parallel, on a graphics 

processing unit(GPU), for example, is expected to result in roughly a two orders of 

magnitude speed improvement.

VII. Conclusion, Discussion, Future Work

This work presented a stochastic registration methodology and demonstrated it on 

registration of point sets. The resulting registration framework was robust for scenes with 

noise and missing points; it can be applied to points clouds of arbitrary dimension. The 

deformation field ℒ consisted of the additive composition of a rigid transformation and a 

non-rigid transformation through a GRBF network. The key parameter, N (the number of 

basis functions), can be increased to improve the registration with increased run time being 

the only detrimental effect. The effect of increasing N is intuitive since it simply allows the 

algorithm to treat increasingly finer deformations as opposed to a smoothness penalty 

employed by state of the art point set registration algorithms (e.g., RPS and CPD). 

Additionally, important constraints on the transformation ℒ are imposed to ensure 

physically realistic deformations. This last point is essential for medical imaging and other 

applications that obtain point sets from physical objects. Further work includes 

experimenting with cost functions and constraints to expand the applicability of the 

proposed framework.
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Fig. 1. 
Point clouds generated from computed tomography (CT) volumes of two patients are shown. 

The points are sparse representations of the human skeleton. Any deformation that proposes 

to relate them must be injective.
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Fig. 2. 
This figure shows the importance of physically realistic non-rigid deformations; registration 

results for CPD [32] and RPS(GRBF parameterization) [24] when parameter settings do not 

provide sufficient regularization can be seen in Fig. 2(c) and 2(d), respectively. Although the 

points match well, the mapping violates fundamental physical principles; these settings, 

unknown ahead of time, should be avoided.
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Fig. 3. 
The SPSR registration algorithm described in Section IV-B.
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Fig. 4. 
Illustration of the effect changing the number of basis functions N in Eq. (6) has on 

registration results. Starting from the original point sets, Fig. 4(a), the final registration for 2, 

6, 10 Gaussian basis functions are show in in Fig. 4(b)–4(d), respectively. Registration 

accuracy is improved as N increases; however, a larger N provides increasingly marginal 

improvement. Notice the alignment around the giraffe’s head, back, and legs in each figure.
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Fig. 5. 
The registration process described in Fig. 3 is illustrated. The number of basis functions in 

Eq. (6) is kept constant at N = 10. Each subfigure is the result of an instantiation of the state 

vector Θg.
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Fig. 6. 
Illustration of the effect changing the kernel width in Eq. (2)–(3) has on the registration. The 

corresponding m(x⃗;M) is also shown.

Kolesov et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
To find bounds for derivative of Gaussian functions over Ωc (shown in gray) the 2D/3D 

space is divided into zones. The circle/sphere show the center of a sample Gaussian 

function. Clearly, the minimum for this function is located at a point at the end of a blue line 

and the maximum at the end of the green line.
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Fig. 8. 
Registration is performed by minimizing the Bhattacharyya cost function defined in Eq. 51. 

Energy values at the end of each optimization round, described in Section IV-B are shown.
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Fig. 9. Fish Data
Plot of the registration errors for data corrupted by noise and data with missing 

correspondences; the original data points are shown in Fig. 2(a). SPSR is the approach 

proposed in this work; its is compared to CPD [32] , RPS [24] (GRBF L2 and TPS L2), and 

RPM [10]. A parameter sweep is performed for CPD, RPS, and RPM and settings 

corresponding to the lowest error while producing a one-one mapping are used to generate 

the graphs. In Fig. 9(b), the graph for CPD has missing data points because it failed to find a 

non-overlapping mapping for all 56 parameter settings.
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Fig. 10. 
The synthetic examples that were used to produce Fig. 9 are shown. The starting point sets 

are in Fig. 2(a). These sets were corrupted by random noise; Fig. 10(a) shows an example 

with noise to data ratio of 1.2 . In the other test, one of the sets had points removed from the 

front and the other from the back; Fig. 10(d) shows an example where 18% of points were 

removed from each set. Registration results are shown and the errors we measure 

represented by green arrows.
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Fig. 11. 
An example of constrained registration in 2D is shown here. Two misaligned point sets, 

along with four corresponding pairs of points are seen in Fig. 11(a). A rough alignment is 

performed using TPS and the four pairs of corresponding points, shown in Fig. 11(b). The 

landmarks are aligned and constrained not to move during the final step. Results of doing 

point set registration subject to known points remaining stationary are in Fig. 11(c).
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Fig. 12. 
A 3D point cloud of an elephant was deformed by applying a known deformation to create a 

synthetic data set. The sets are composed of 3,093 points. In Fig. 12(b) and 12(c), the 

computed deformations are not self-overlapping and are local around the misaligned points, 

as desired.
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Fig. 13. 
Real point clouds (14,832 and 14,723 points) generated from CT volumes of different 

patients. Clearly, a rigid registration is insufficient as there is large variation in the tilt of the 

heads (vertebral columns don’t align), the shape of the skull, and the shape of the jaws. 

Medical image registration is the targeted application, and a non-overlapping field is 

particularly important.
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Fig. 14. 
Point clouds of 6,842 and 6,877 points were generated from CT volumes by sampling the 

label maps of patients’ flesh. Constrained registration was performed to align the point 

clouds representing flesh while keeping points on the registered skeletons from Fig. 13 

stationary. The original misalignment and the 67 constraint points marked with green 

diamonds are displayed in Fig. 14(a) and Fig. 14(b). Finally, the deformations from Fig. 13 

and Fig. 14 were sequentially applied to the original CT volume. The starting misalignment 

is seen in Fig. 14(e) and the result of the two step registration is in Fig. 14(f).
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Table I

Bounds on a Gaussian function over the domain Ωc in 2D. The bounds depend on which zone relative to Ωc , 

from Fig. 7(a), the function is located in.

Zone

1 1

2

3

4

5

6

7

8

9
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