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Abstract

Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird
populations worldwide. Programmable recorders allow recordings to be obtained at all
times of day and year for extended periods of time. Consequently, there is a critical need for
robust automated birdsong recognition. One prominent obstacle to achieving this is low sig-
nal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong
is only one component in a recording, which also includes noise from the environment (such
as wind and rain), other animals (including insects), and human-related activities, as well as
noise from the recorder itself. We describe a method of denoising using a combination of
the wavelet packet decomposition and band-pass or low-pass filtering, and present experi-
ments that demonstrate an order of magnitude improvement in noise reduction over natural
noisy bird recordings.

Introduction

More than 13% (1,373) of bird species are vulnerable or in danger of extinction from causes
such as deforestation, introduction of alien species, and global climate change (International
Union for the Conservation of Nature Red Data List, 2014). In order to conserve bird popula-
tions, wildlife managers require accurate information about species presence and population
estimates derived from monitoring programmes. Although birds are hard to spot visually even
when the observers are in the correct place, they are more vocal than other terrestrial verte-
brates and therefore birdsong is usually the most direct way for humans to detect them. With
the development of acoustic recorders that can be left in the field for extensive periods of time
capturing all songs, including rare ones, traditional call count surveys are being replaced by the
collection of terabytes of data, which can be collected relatively cheaply and easily with limited
human involvement.

The permanent storage of this acoustic data brings the advantage of being able to listen to
the songs and to view their spectrograms again and again, improving the accuracy of both spe-
cies recognition and call counting. However, this work is still largely manual, requiring spectro-
gram reading and listening, which makes it a costly approach that requires well-trained
individuals; it reportedly takes an expert approximately one hour to scan the spectrogram of
ten hours of recording [1] (depending on the quality of the recordings, species being
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monitored, and call rate), which is a daunting task, especially when many recordings are often
collected simultaneously [2]. Consequently, sampling (analysis is done on limited time periods
within a subset of recordings) is favoured in many surveys, but it introduces bias and incom-
pleteness, hence the desire to automate the recognition of bird species from their songs.
Compared to human speech recognition, one of the principle challenges of birdsong recog-
nition—which obviously occurs in natural environments—is noisy recordings. The recorder
picks up all of the noise that is in the environment, not just the birdsong, and the birds are
rarely very close to the microphone. This leads to a low signal-to-noise ratio, making it hard to
even detect the birdsong, let alone recognise it, whether the recognition is done by human or
computer. In this paper we consider the problem of denoising birdsong from a signal process-
ing point of view. We discuss what makes up the various types of sound that birds emit, and
then the sources of noise that can be present. We then consider the signal processing methods
that are available, and compare two methods: a traditional approach based on band-pass/low-
pass filtering, and our own, which uses the wavelet packet decomposition in concert with
band-pass or low-pass filtering. Using songs and calls from different bird species (that cover a
range of vocalisations and frequencies), we demonstrate that we can significantly improve the
quality of recorded birdsong, both individually segmented, and over relatively long periods.

Bird Vocalisation, Categorisation and Spectrogram Patterns

Bird vocalisations play a major role in species-specific communication, including mate attrac-
tion, parent-offspring interaction, cohesion among flocks, and territorial defence [3]. Experi-
ments have shown that birds are capable of recognising conspecifics, individuals, and other
species using songs alone [4]. Each bird species has their own song repertoire, which can vary
from monotonous repetition to innovating new, complex songs (for example, the superb lyre-
bird (Menura novaehollandiae) and brown thrasher (Toxostoma rufum) [5]).

Vocalisations can be categorized into calls and songs, where calls are composed of fairly
simple sounds produced by both sexes, while songs are long and complex and produced more
commonly by male songbirds (order passeriformes). The main difference between calls and
songs is arguably their function: songs are generally viewed as having a role in reproduction,
while calls have an ever increasing number of functions from territoriality, to individual identi-
fication, to communicating complex messages such as type and size of predator presence [6-8].
Songs and calls can be further divided into phrases, syllables, and elements [9], as shown in Fig
1(a). The fundamental unit of sound is the element, with syllables being comprised of one or
more elements that can be separated from the other content of the vocalisation. A series of syl-
lables that are organised into some pattern is referred as a phrase.

There are a number of studies that define the components of bird vocalisations based on the
patterns they generate in a spectrogram [10, 11]. The key acoustic components defined by [10]
are lines (at any angle), warbles, blocks, oscillations and stacked harmonics (examples are
given Fig 1(b)-1(k)).

Spectrogram Analysis

The spectrogram representations of birdsong shown in Fig 1 are based on the frequency repre-
sentation of a discrete recording of the continuous birdsong. Digital recording of birdsong is
based on equally-spaced time sampling of the analogue birdsong. This primary form of acous-
tic data is referred to as the oscillogram or simply the waveform. The oscillogram is two dimen-
sional: the horizontal axis represents time and the vertical axis represents amplitude. It turns
out that signal analysis is generally more effective in the frequency domain than in the time
domain, as is evidenced by the fact that ornithologists prefer the spectrogram representation to
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Fig 1. Spectrogram representations of various bird species showing some of the typical appearances
of sounds. (a) A fox sparrow (Passerella iliaca) song illustrating its syllables, phrases, and elements
(S = syllable and E = element). (b)-(e) show representations of lines: (b) tui (Prosthemadera
novaeseelandiae); (c) the more-pork sound of ruru (Ninox novaeseelandiae); (d) kakapo (Strigops
habroptilus) booming; (e) brewer’s sparrow (Spizella breweri). (f)-(h) demonstrate blocks: (f) (long billed)
marsh wren (Cistothorus palustris); (g) female North Island brown kiwi (Apteryx mantelli) call; (h) kakapo
chinging. (i)-(j) show stacked harmonics: (i) male North Island brown kiwi whistles; (j) ruru trill. (k) oscillations:
North Island saddleback (Philesturnus rufusater).

doi:10.1371/journal.pone.0146790.g001

the oscillogram one. The frequency representation provides information about the frequency
components that comprise the signal, but not about when those frequencies occur. Converting
the waveform into the frequency domain is performed by the Fourier transform, which repre-
sents the signal as a weighted combination of sine and cosine waves at different frequencies.
The Fourier transform is invertible, meaning that processing can be performed in the fre-
quency domain and then transformed back into the time domain, for example to enable the
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Fig 2. Non-stationarity. (a) A non-stationary signal containing 20 Hz, 40 Hz and 80 Hz frequencies and (b) its power spectrum computed using the Discrete

Fourier Transform.

doi:10.1371/journal.pone.0146790.g002

sound to be played. Birdsong is transferred into the frequency domain by applying the Discrete
Fourier Transform (DFT), and in practice the Fast Fourier Transform (FFT), which is a com-
putationally efficient algorithm for the DFT, is used.

Fig 2(a) shows a non-stationary signal. During the first 100 ms the frequency of the signal is
20 Hz, during the second 100 ms the frequency doubles and again during the last 100ms. The
right of the figure shows the power spectrum, which plots the energy per time unit (power)
against the frequency components, and which clearly shows the basic frequencies of the origi-
nal signal. Thus the power spectrum is a good representation of sound, summarising its peri-
odic structure. However, it is suitable only for stationary signals while most signals in the real
world are transient (non-stationary). The reason for this is that the signal is assumed to be infi-
nite in time, and choosing a short time window has the effect of causing aliasing, where signal
from outside the chosen range affects the appearance inside the range.

Segmenting the entire signal into fixed size small time windows and then calculating fre-
quency components from these windows is a common practice based on the assumption that
the signal is stationary over a short duration. Careful use of windows that decay to zero at the
edges of their range and overlapping the windows enables Short Time Fourier Transformation
(STFT) to be used, and this is the basis of the spectrogram. First, the power spectrum of each
window is calculated, and then rotated 90° clockwise, and the amplitude is replaced by a grey-
scale. The complete spectrogram is generated by stacking all those images of subsequent win-
dows appropriately. Provided that the time windows are short enough that the frequency
components are stable in the time window this provides a faithful representation of the fre-
quency components of the data against time, but it comes at a cost, since estimating frequencies
accurately requires time: frequency resolution can only be achieved at the cost of time resolu-
tion and vice versa. The result of this is that larger windows are required for low frequencies,
but STFT cannot deal with these subtleties. This led us to consider wavelets as a representation
of birdsong, as we shall discuss after we consider the types of noise that are present in birdsong
recordings.
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Bird Recording and Noise

Until recently, manual (attended) recording was the method of choice for recording birdsong.
This generally enables the capture of good quality close-range songs provided the recordist has
the skills not only to tune and handle the recorder, but also a good knowledge of the bird being
recorded and how to approach it closely. The advent of waterproof programmable recorders
with good battery life and high recording capacity has enabled a new form of birdsong record-
ing, enabling ecologists to collect every sound in the forest (or other area of interest) without
disturbing the birds or requiring groups of experts to perform call counting in the field. How-
ever, recordings made in natural environments are highly susceptible to a variety of noises.
During attended recordings, some noise can be controlled by careful screening, but in auto-
matic recording this is impossible.

Types of Noise

The sounds that can be heard can be categorised into three broad types: biophony, geophony,
and anthrophony [12]. Biophony refers to any sound produced by biological agents: in the for-
est major biophonies are birds, insects, frogs/toads, and mammals. Because we are only inter-
ested in acoustic activity of birds, all other biological sounds are categorised as noise; with
recordings targeted at particular bird species, even other birdsong is regarded as noise. Geoph-
ony refers to all non-biological, natural sounds in the environment such as wind and its effect
on trees, rain, thunder, and running water. Field recordings are always blended with these geo-
phonies. Anthrophony refers to all sound generated from human-made machines such as air-
craft, vehicles, wind turbines, and the recording device itself: there is always some microphone
and recorder hum. Collectively, these noises contaminate all acoustic data to a greater or lesser
extent, see Fig 3(a) and 3(b). The problems of noise are both that it can mask the signal of the
bird call, and also transform it so that it looks different, making it hard to identify. While there
is some research on features that are invariant to noise, meaning that they look the same even
in noisy data, they are not general, and we will not consider them further here.

We differentiate between denoising of a signal, which is principally the removal/filtering of
consistent noise, from source separation, which is identifying that there are several birds calling
simultaneously and separating the signals into individual birds. We do not consider the second
turther in this paper; [13] provides a survey of approaches to the problem, but notes that very
few of the methods have been shown to work for real-world signals.

There is a theory of noise in digital signal processing (see, for example [14]), which charac-
terises the noise according to its properties into:

White noise has equal energy at all frequencies, meaning that the power spectrum is flat. In
practice, noise is only white over a limited range of frequencies (Fig 3(e)). While not all
white noise is Gaussian, natural white noise can often be modelled as such.

Coloured noise shows a non-uniform power spectrum, with the energy generally decreasing in

proportion to the frequency f. Common types of coloured noise include pink (power o< 1)

f
and brown (power o f%)

Impulsive noise refers to sudden click like sounds that last for a very short period of time (mil-
liseconds), such as switching noise. An ideal impulse generates a horizontal line in the
power spectrum because these sharp pulses contain all frequencies equally.

Narrow-band noise such as microphone hum shows a small range of frequencies.

Transient noise is a burst of noise that occurs for some time, and then disappears.
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Fig 3. Examples of bird calls with various degrees of noise, the effect of band-pass filtering and power
spectrum of white and pink noise. The top row of each sound figure displays the oscillogram and the
second row the spectrogram. (a) A less noisy example of kakapo chinging with limited noise and (b) a noisy
example of kakapo chinging. (c) An original male kiwi whistle and (d) its noise filtered (band-pass) signal.
Noise is visible as a grey background in the spectrogram surrounding the sound depiction and most of the
high-frequency variation in the oscillogram. Power spectrum of (e) white noise and (f) pink noise.

doi:10.1371/journal.pone.0146790.g003

Frequency

An important property of any sound is whether or not it is stationary i.e., its properties do
not change substantially over time. Most noise in natural recordings is at least quasi-stationary,
being geophonic in nature. However, birdsong is not stationary (i.e., it is transient) since it is
generally short-lived and varies quickly. This difference between the properties of the noise
and signal enables noise reduction techniques to be applied.

Noise Filtering

Noise filtering is the most common approach to dealing with noisy recordings. Traditional sig-
nal processing, based on electronics, uses two basic filters, low-pass and high-pass, which allow
frequencies respectively below and above a pre-defined cut-off frequency to pass through, and
attenuate the rest. Combining a low-pass filter and a high-pass filter gives a band-pass filter. If
the noise occupies high frequencies while the bird of interest sings low frequency songs then
this would be sufficient to eliminate noise, but since the spectra of the noise and the signal over-
lap, this is not the case.

Fig 3(c) and 3(d) illustrates the effect of band-pass filtering on a single instance of a male
North Island brown kiwi (Apteryx mantelli) whistle. The spectrogram shows that all the high
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frequency and low frequency noise components have been removed successfully, but all the
noise in the range of the bird’s song frequency (visible as grey background) is still there, con-
firming that this basic filtering is not sufficient to recover birdsong. Further, birds have differ-
ent call categories from different frequency bands. For example, the kakapo (Strigops
habroptilus) generate two types of vocalisation: booming, which is a very low frequency call and
chinging, which is a relatively high frequency call. Designing a common filter to clean hours of
kakapo recordings is impossible because they do not share the same frequency range.

Another traditional approach is the Wiener filter, which generates an estimate of the desired
or target random (Gaussian) process based on linear time-invariant filtering and the minimum
mean square error between the estimated signal and the desired signal by assuming that the sig-
nal and noise are stationary and spectral information is available [14]. This is not true for bird-
song, therefore we did not consider it further here.

Wavelets

We explained earlier that the Fourier transform, while commonly used in birdsong analysis, is
not really suitable because of the tradeoff between temporal resolution and frequency resolu-
tion. An alternative is the wavelet transform, which is a relatively recent development in signal
processing [15], although it has been invented independently in fields as diverse as mathemat-
ics, quantum analysis and in electrical engineering [16]. Wavelets have been applied in many
areas, such as data compression, feature detection and denoising signals [17].

In the Fourier transform the signal is mapped into a basis of sine and cosine waves. The
wavelet transform also uses a basis, but the basis elements are scale-invariant, meaning that
they look the same at all scales, and they are localised in space. The upshot is that in the wavelet
representation different window sizes can be used to see the signal at different resolutions; an
analogy would be viewing a forest and its trees at the same time. If we need to see the whole for-
est we have to see it at a large scale and then we can capture global features. In order to see the
trees, we have to zoom in and to focus on a tree. Zooming more allows us to see leaves. We can
see the forest, trees and even leaves by using different scales. Fig 4(a) and 4(b) highlights the
difference between Fourier and wavelet analysis: the window size in Fig 4(b) is more flexible
(allowing large windows for low frequencies and small windows for higher frequencies), which
is important for broad spectrum non-stationary signals such as birdsong.

There are several choices of basis features (referred to as mother wavelets) ¥, and unfortu-
nately the best mother wavelet for a particular application needs to be determined experimen-
tally. Fig 4(c)-4(e) shows examples of some mother wavelets, including the simplest Haar
wavelet, which is a discontinuous step function. While the discontinuity can be a disadvantage
in some domains, including birdsong, it is beneficial for those that exhibit sudden transitions
like machine failure [18]. Fig 4(d) provides three examples of the Daubechies wavelets (dbN)
showing that the smoothness of the wavelets increases as N increases. Finally Fig 4(e) shows
the discrete Meyer wavelet (dmey).

In order to construct other elements of the wavelet basis the mother wavelet is scaled and
translated by factors a and b using:

v == () 1)

Parameter a # 0 determines the amount of stretching or compression of the mother wavelet
(depending whether a is greater than or less than 1). Therefore, when a is small high frequency
components are introduced to the wavelet family; in return those wavelets can capture high fre-
quencies of the signals. In the same manner, when a is large low frequency components are
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introduced to the wavelet family and help to capture low frequency signals. Parameter b deter-
mines the amount of shifting of the wavelet along the horizontal axis: b > 1 shifts the wavelet
to the right, while b < 1 shifts it to the left. Therefore, parameter b specifies the onset of that
wavelet. Fig 4(f) illustrates the effect of a and b with respect to a given mother wavelet. Accord-
ingly, wavelets are defined by the wavelet function (mother wavelet) and scaling function (also
called the father wavelet). The scaled wavelets are known as daughter wavelets.

Wavelet Packet Decomposition

When wavelets are applied to a discrete signal, low-pass and high-pass filters are used, splitting
the data into a low frequency (approximation) part and a high frequency (detail) part. These
filtered representations of the data can then be analysed again by a wavelet with smaller scale
by creating a new daughter wavelet, typically at half the scale. One modelling choice that can
be made is whether to reanalyse both the approximation and detail parts of the signal, or just
the approximation coefficients. We choose to analyse both, in what is known as the wavelet
packet decomposition [19]. It leads to a tree of wavelet decompositions, as shown in Fig 4(g),
and provides a rich spectral analysis, since there are 2" leaves at the base of the tree when there
are N levels.

However, the question of how many levels to use in the tree still remains. This question is
often answered experimentally, but since we want a method that can work unaided on bird-
song, we need to find a computational approach. We have approached this by considering how
much information about the signal is contained in the approximation at each node, reasoning
that nodes that do not contain information are representing the noise, and so should be dis-
carded. In the field of information theory, Shannon entropy provides the standard measure of
uncertainty or disorder in a system [20], and this is connected to the amount of information
contained in a given signal [21].

The entropy S of a set of probabilities p; is calculated as (using the convention that 0 log
0=0):

H(p) = - Zpi log,p; (2)

where p; is the probability of i"" state in the state space. In wavelets, we used a slightly different
version of this Shannon entropy:

S==3 () (3)

where s; is i sample of the signal [22, 23].

The idea of using entropy for wavelets is to argue that when the entropy is small, the accu-
racy of the selected wavelet basis is higher [23]. We used this computation at each node to
choose whether or not to retain a node, and stopped creating the tree at the point where all of

the nodes contained noise are removed by this computation, meaning that the signal was fully
described.

Previous Uses of Wavelets for Bioacoustic Denoising

The use of wavelets for noise reduction, referred to as denoising, is still an emerging advance in
digital signal processing. While there are some examples of denoising in other audio signal
domains such as partial discharges (PD) signals [24-26], music [27], speech [28], and phono-
cardiography [29, 30], their use in bioacoustic denoising is still uncommon. In addition, the
two studies we know of which used wavelets for denoising animal sounds did not use natural
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noise, but added manual noise to their recordings. [31] denoised West Indian manatee (Triche-
chus manatus latirostris) vocalisations with added boat noise, while [32] attempted to denoise
vocalizations of the ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta),
and humpback whale (Megaptera novaeanglia), with added white noise.

However, wavelets have been used for birdsong recognition: Selin et al. [33, 34] used the
wavelet packet decomposition to extract features from birdsongs from eight species. Interest-
ingly, in [34] they added noise filtering via either a low pass filter or an adaptive filter bank
with eight uniformly spaced frequency bands. These filtered signals were also analysed by
wavelets and compared for recognition accuracy with the unfiltered version. In addition, Chou
et al. [35] used wavelets to represent birdsong in conjunction with Mel Frequency Cepstral
Coefticients (MFCCs) for recognition of 420 bird species; but the dataset in their experiment
was very limited, with only one recording per species (half of each birdsong file for training
and the remaining for testing).

Our Algorithm

To summarise our approach to birdsong denoising, we took the following steps, which are dis-
cussed further next:

1. Find a suitable mother wavelet.
2. Find the most suitable decomposition level based on the Shannon entropy.
3. Apply the wavelet transform to the noisy signal to produce the noisy wavelet coefficients.

4. Determine the appropriate threshold to best remove the noise based on the Shannon
entropy.

5. Invert the wavelet transform of the retained wavelet coefficients to obtain the denoised
signal.

6. Apply a suitable ordinary band-pass or low-pass filter where possible to remove any noise
left outside the frequency range of the signal.

Selecting the Mother Wavelet. Choosing an appropriate mother wavelet is the key to the
successful estimation of the noiseless signal. One approach is to visually compare the shapes of
the mother wavelets and small portions of the signal, choosing the wavelet that best matches
the signal [25]. However, given that we want the method to work with a wide variety of differ-
ent bird calls, eyeball selection is not sufficient.

Another approach is based on the correlation between the given signal and its denoised sig-
nal [36], reasoning that if two signals are strongly linked they should have high correlation.
Therefore, we can expect that the optimum wavelet maximises the correlation of initial signal
and denoised signal. We can compare the correlation under different wavelets and pick the
wavelet that generates the highest correlation. Accordingly, we analysed the correlation given
by different wavelets including the Daubechies wavelets (dbN, where N represents the order)
and the Discrete Meyer wavelet (dmey). Initial experiments showed that the dmey wavelet gen-
erated the highest correlation. For instance, db2 (0.9950) was better than db1 (0.9884), db6
(0.9970) was better than db2, db10 (0.9971) was better than db6, and dmey (0.9973) was better
than db10. Then, we investigated the spectrograms of the denoised examples in order to see the
actual improvement of the songs. Visual inspection (for example Fig 5) also confirmed that the
dmey wavelet (Fig 4(e)), successfully denoised the songs without distorting them with a selec-
tion of different birdsongs, and so we used that for the rest of our experiments.
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Fig 5. Different mother wavelets produce different results. Same excerpt of a male kiwi whistle (a) original whistle and (b)—(e) denoised with different
mother wavelets.

doi:10.1371/journal.pone.0146790.9g005

Selecting the Best Decomposition Level. Because we used Shannon entropy to choose
the decomposition level, different birdsongs will produce trees of different depths: less com-
plex birdsong will have small trees, while more complex birdsong will require larger trees. In
fact, even within single types of call, different depths of tree can be seen. We therefore ran the
depth selection algorithm on every birdsong individually; while this is computationally expen-
sive, it does lead to significantly better results. Methods to speed up this approach will be
investigated in future work. So far we found that the top-down approach (start with a small
tree with level 1 and expand it based on the Shannon entropy) is more efficient than the bot-
tom-up approach (start with a big tree and shrink it); therefore we used the top-down calcula-
tion here. Starting from level 1, decomposition was continued until the maximum entropy of
a parent node (at level L) was lower than the maximum entropy of its child nodes (at level
L+1). At that point the decomposition was stopped, and the best decomposition level was
determined as L.

Selecting the Threshold. Each node in the decomposition tree is represented by its wavelet
coefficients, and the ‘impurity’ of those nodes can be calculated using (Shannon) entropy.
Then, eliminating noisy nodes is done by applying a threshold to each node. There are two
forms of thresholding methods: hard thresholding and soft thresholding. In hard thresholding,
sometimes called the ‘keep or kill’ method [37], coefficients are removed if they are below a
previously defined threshold. In contrast, soft thresholding shrinks the wavelet coefficients
below the threshold rather than cutting them off sharply. Soft thresholding provides a continu-
ous mapping and in our case it demonstrated better noise reduction without information loss
yielding high SnNR (this term will be defined in the section on evaluation metrics) in initial
experiments. Therefore, we used soft thresholding here.

The challenge of setting the threshold remains, however: ideally, the selected threshold
should achieve satisfactory noise removal without significant information loss. If the selected
threshold is too high, then it removes too many nodes from the tree, resulting in a denoised sig-
nal with missing information, while if the threshold is unnecessarily low, it does not remove all
the noisy nodes, resulting in a signal that still has noise in. There will be no globally optimal
threshold, and so we again selected it based on analysis of each birdsong. As was mentioned
previously, many types of noise can be approximated as having a Gaussian distribution, and
this is more obvious in the high frequency parts of the spectrum. We therefore computed the
standard deviation of the lowest level detail coefficients in the tree, and used 4.5 standard devia-
tions as the threshold, which should cover 99.99% of the noise [26].
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Experimental Evaluation

In this section we compare our wavelet-based algorithm with traditional band-pass or low-pass
filtering. We introduce our dataset, and the metrics that we use to compare the results, before
demonstrating the results.

Datasets

Primary Dataset. Initially, three manually generated pure sound examples (one impulsive
‘click’ sound and two tonal combinations) were used to examine the performance of the pro-
posed method against white and different coloured noises. These examples were separately pol-
luted with different levels of these noises manually and then denoised to eliminate the noise.

Secondly, songs of two endangered and one relatively common New Zealand bird species
were considered: North Island brown kiwi, kakapo, and ruru (Ninox novaeseelandiae). Most of
the recordings were collected using automated recorders, but a few were recorded manually.
Most ruru and kiwi calls were obtained by the authors, while some ruru and all kakapo calls
came from other sources (see the Acknowledgements). The spectrogram patterns of these spe-
cies are shown in Fig 1. Birdsongs were segmented manually into syllable level components
(e.g., Fig 6). The dataset (available at http://avianz.massey.ac.nz) contained a total of 700 sylla-
bles from seven basic call types, 100 of each (Table 1). These recordings were polluted with dif-
ferent types and levels of noise while recording. Mainly the noise was wide-band; sometimes it
was concentrated more to low frequencies (for example due to wind and aeroplane noise) oth-
ers to high frequencies and/or to narrow bands (for example due to insect noises like crickets
and weta).

Secondary Dataset. We tested our algorithm on a secondary data set because our primary
data set did not cover all possible spectrogram patterns we expect to see in recordings collected
in the wild. The songs in this data set were mostly collected by the authors using manual
recorders, but the selected recordings include significant amounts of noise. The kaka and tui
songs were recorded using automated recorders by others. The eight species in this dataset (see
Table 2) comprise seven song birds and one parrot, which have complex songs and great song
diversity. We used whole songs instead of syllable level components. Five noisy song examples
of each species were used, except for hihi; this species has very short songs and therefore we
used ten examples.

At
WA et '
22.05 22.05
it | am
KHz 0 w e oy oy KHz 0 m e wors.
initial s denoised : 3
noise initial signal noise denoised signal
(Nb) (Na)
s() 1.02 s0 1.02

Fig 6. An example of kakapo chinging used in the experiment. Top, middle, and last rows represent
oscillogram, spectrogram, and labels indicating the parts of the recording used to calculate the SnNR
respectively. (a) Initial signal and (b) the same signal after denoising and band-pass filtering.

doi:10.1371/journal.pone.0146790.g006
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Table 1. List of species, their call types and frequency range.
Species/call type Observed frequency range (Hz)

North Island brown kiwi

male 500-8,000
female 500-6,500
Ruru

trill 500-8,000
more 500-2,000
pork 500-2,000
Kakapo

booming 0-800
chinging 1,000-12,000

We use the common names given by researchers for the different types of calls.

doi:10.1371/journal.pone.0146790.t001

Further, we were interested to see the performance of this technique over unsegmented
recordings. Therefore, we denoised five series of consecutive calls from each call type from
each species mentioned in the primary data set. Then we compared the calls in the denoised
series to their respective segmented calls.

Another concern when denoising birdsong is the effect of overlapping bird calls. To test this
issue, we selected ten examples of recodings that contained overlapping songs from different
combinations of species. Examples include overlapped male kiwi-female kiwi, male kiwi- ruru
trill, male kiwi-more-pork, two of more-pork-trill, two of male kiwi-female kiwi-more-pork,
tui-more-pork, robin-tui, and kakapo chinging-mottled petrels. Again the dataset is available
at http://avianz.massey.ac.nz.

Evaluation Metrics

The main measurement of true interest in denoising is the Signal-to-Noise Ratio (SNR), which
can be calculated by dividing the power of the signal (S) by the power of noise (N), as given in
Eq 4, which is in units of decibels (dB). The higher the value of the SNR, the less noisy the

Table 2. List of species introduced to the secondary dataset and their song characteristics.

Common name

North Island robin

Tui

North Island kaka
Hihi

North Island
saddleback
Marsh wren

Western
meadowlark

Horned Lark

Scientific name

Petroica longipes

Prosthemadera
novaeseelandiae

Nestor meridionalis

Notiomystis cincta

Philesturnus rufusater

Cistothorus palustris

Sturnella neglecta

Eremophila alpestris

doi:10.1371/journal.pone.0146790.t002

Observed frequency Song structure

range (Hz)

1,700-12,500 Males sing loud songs that have series of phrases. Phrases have variety
of simple notes.

400-18,000 Loud and complex songs: mix of melodious notes with coughs, grunts
and wheezes.

700-15,000 Harsh and grating sound, variety of musical whistles.

1,000-21,000 Variety of 2-3 note whistles. Quiet or aggressive warbles.

800-22,000 Very active and noisy. Loud chattering calls and variety of rhythmical
songs.

500-15,000 Gurgling and rattling trill.

650-12,500 Male sings a complex, two-phrase song, begins with 1-6 pure whistles
then a series of 1-5 gurgling warbles.

1,100-18,000 Musical songs: fast, high-pitched sequence of sharp, tinkling notes.

PLOS ONE | DOI:10.1371/journal.pone.0146790 January 26, 2016
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signal.
S
SNR = 10log ,, N (4)

The challenge for real-world applications such as birdsong is that the signal and noise are
not actually known because they are together in the recording. This means that computing S
and N is not actually possible. Under the assumption that the noise is relatively stationary, we
have estimated the power of the pure noise by isolating parts of the recording without birdsong,
which should theoretically be silent, and modified Eq 4:

SnNR = 10log (#) , (5)

where S + N is the power in the initial signal. By comparing this computation with the denoised
version we can see how effective the denoising is. Fig 6 illustrates the calculation. Notice that to
be able to calculate the initial noise and denoised noise we segmented the recording leaving a
small period of silence at the beginning and/or end of the bird call. A comparison of original
SNR and respective SnNR are shown in Fig 7, where noise and signal are known.

If we recall that the noise is approximately Gaussian, a second possible metric is to measure
its statistical properties, particularly its variance, reasoning that successful denoising should
substantially reduce the variance of the noise. We used the same segments of ‘pure’ noise in the
signal as were used to estimate the power of the noise in the SnNR to compute the variance of
the noise before and after denoising, terming this measure the success ratio:

Var(Nb)) |

var(Na)

Success ratio = log ( (6)
where Nb is the initial noise and Na is the noise after denoising. If the success ratio is greater
than 0, it implies that song denoising has been successful.

A third possibility is to calculate the Peak Signal to Noise Ratio (PSNR), a widely used objec-
tive quality metric in image and video processing [38, 39]. PSNR looks only at the peak value
the signal can reach and the mean-squared error between the reference and the test signals.
Here we used a modified PSNR [40] to compare noise reduced songs with their original noisy
version.

MAX?, MAX,,
PSNR = 1010g 10 MSE =20 log 10 m ) (7)

where MAX;, is the maximum value of the reference signal and MSE is the mean-squared
error. In this calculation we maintained the noisy song as the reference and its recovered song
as the test. PSNR will be relatively lower if the song is less cleaned and higher if the song is well
cleaned.

Results

We implemented our algorithm in Matlab using the Wavelet Toolbox, which is a comprehen-
sive toolbox for wavelet analysis. The code is available at: http://avianz.massey.ac.nz. As an ini-
tial experiment, white noise, pink noise, and brown noise were added to selected tonal and
impulse sounds separately as a percentage of the strength of the signal. These noisy examples
were cleaned using the proposed denoising approach (steps 1-5 only; without filtering), and
the calculated SNR and SnNR of noisy and recovered songs are plotted in Fig 7. Here we can
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Fig 7. Denoising different types of noise. (a) White noise, (b) pink noise, and (c) brown noise.

doi:10.1371/journal.pone.0146790.g007
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calculate the SNR of the noisy examples perfectly because we know the actual noise added as
well as the pure signal. A comparison of conventional SNR and SnNR is illustrated in Fig 7(a)
confirming that both metrics perform almost equally. The same figure also shows that even in
the presence of high levels of white noise, denoising using our approach is very successful. Fig 7
(b) reveals that the proposed denoising approach can deal well with pink noise, but not to the
extent of white noise. However, denoising brown noise still remains a challenge as shown in
the Fig 7(c). This is because of its strong non-Gaussianity.

Each call example in both primary and secondary datasets was treated with three
approaches: band-pass or low-pass filtering alone (F), wavelets alone (D), and wavelets and
band-pass or low-pass filtering (DF). In the case of filtering, the frequency bands were selected
according to Tables 1 and 2. Fig 8 (S1 Audio) demonstrates that our algorithm removed most
of the noise from the birdsong while preserving most of the song information. Success is visu-
ally clear from the spectrograms, for example if we consider Fig 8(a), almost all the background
grey colour (caused by noise) in the original kiwi whistle has been eliminated, while the five
original harmonics are still present without distortion after denoising. We examined visually
and aurally each example individually to confirm whether they were improved after denoising,
and found that all the calls were significantly improved. The improvement in the sound quality
of the songs was successfully reflected by SnNR and Sussess Ratio (Table 3 and Fig 9). The
overall SnNR improved from 0.667 to 3.506, an improvement of more than 5 times while
SnNR improved only up to 1.526 after conventional filtering. Success ratios after filtering alone
and with denoising were 1.071 and 2.170 respectively. Parallel to this, PSNR increased from
10.428 to 10.694. While we have included PSNR (Eq 7) in our results, we do not believe that it
is a particularly useful measure. First, the numerator uses the maximum amplitude (hence the
‘peak’ in the name), which does not change when the signal is denoised, while the denominator
is the root mean square of the error, which is small. This leads to an less sensitive measurement.
For example, denoising alone always generated the highest PSNR because the oscillogram was
not substantially changed after denoising as much as it does with filtering (see Fig 8) leading to
a comparatively small MSE. However, these results altogether confirm that our wavelet denois-
ing approach performs really well for birdsong. Even for the very low frequency kakapo boom-
ing the denoising was still better with wavelets. On the other hand, in the case of less noisy bird
calls, after denoising there was no significant information loss (see Fig 8(g)).

As discussed under Selecting the Best Decomposition Level, our automated method selects the
appropriate decomposition level based on the complexity of the given signal. We classified the
complexity of a song by examining the spectrogram pattern and listening to the sound; songs
with more harmonics and wide frequency range were considered more complex (for example, in
the case of ruru, trill calls are rather complex compared to narrow band more-pork calls). The
results confirm that there is a relationship between the best decomposition level and the complex-
ity of birdsongs: if we order the calls according to their complexity from simplest to complex, the
order is kakapo booming, more and pork, kakapo chinging, kiwi female, kiwi male, and finally ruru
trilling, and this order can be seen in the depth of the tree (WMDL) in the last column of Table 3.

Extensions

Our method achieved impressive noise removal for the birdsongs of the species we considered
in the secondary data set. Table 4 and Fig 9 show that the overall SnNR reached more than
seven fold (2.758) after the treatment compared to their initial SnNR (0.353). Some examples
of these songs are presented in Fig 10 (S2 Audio).

While the main aim of our approach was to denoise individual bird calls, we also considered
two extensions: denoising a series of bird calls in a sequence without segmenting them, and
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Fig 8. Bird call examples of before, after filtering, after denoising using wavelets as described in the text, and after denoising and classical
filtering. (a) A whistle of a male North Island brown kiwi, (b) a call of female North Island brown kiwi, (c) a ruru trill, (d) a ruru more, (e) a kakapo booming, (f) a
kakapo chinging, and (g) a less noisy example of male kiwi.

doi:10.1371/journal.pone.0146790.9g008
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Table 3. Experimental Results—primary data set.

Species/ (o] F D DF WMDL
call type SnNR SnNR S ratio PSNR SnNR S ratio PSNR SnNR S ratio PSNR
Kiwi male 0.666 1.918 1.509 10.849 0.710 0.063 36.145 2.877 2.156 10.935 10
female 0.405 1.379 1.536 11.860 0.423 0.035 39.633 1.690 1.801 11.942 10
Ruru trill 0.341 0.988 1.075 10.902 0.365 0.261 22.569 4.792 3.840 11.695 10
more 0.761 1.940 1.170 10.596 1.121 0.482 25.758 6.463 2.979 10.963 8
pork 0.676 1.702 1.114 9.159 1.034 0.457 24.852 5.520 2.950 9.574 8
Kakapo boom 1.136 1.138 0.032 4.843 1.187 0.080 43.554 1.184 0.105 4.889 6
ching 0.682 0.617 1.059 14.790 0.703 0.036 45.416 2.016 1.360 14.857 9
Total/mean 0.667 1.526 1.071 10.428 0.792 0.202 33.990 3.506 2.170 10.694 9

O = original calls. F = band-pass or low-pass filtered calls. D = wavelet denoised calls. DF = wavelet denoised and filtered calls. S ratio = success ratio,
SnNR = Signal to Noise Ratio and PSNR = Peak Signal to Noise Ratio introduced in Evaluation Metrics. WMDL = Wavelet Mean Decomposition Level.

doi:10.1371/journal.pone.0146790.t003

denoising a signal that is comprised of two or more overlapping bird calls. Table 5 and Fig 11
compare the results of denoising unsegmented series of bird calls to their segmented calls. In
the presence of unsegmented recordings, the mean SnNR of initial, filtered, and denoised songs
were 0.548, 1.204, and 7.326 respectively. This success was confirmed by further analysis of
their spectrograms and sound quality, for example, Fig 10(d) shows a denoised version of a
series of kakapo chinging. These results support the fact that denoising unsegmented long
recordings is also possible and performs nearly equally to denoising their isolated calls.

The method worked very well even when presented with more than two overlapping bird-
songs, with the combination of the birdsongs being retained, but the noise significantly reduced
(Fig 12, S3 Audio). This is also reflected in the evaluation metrics where overall SnNR
improved significantly from 0.556 to 5.222 (more than 9 times) after denoising and band-pass
filtering compared to band-pass filtering alone (1.652-less than 3 times) and denoising alone
(0.634) for the ten examples described at the end of the Section Secondary Dataset. Confirming
the potential, success ratio displayed a significant improvement after treating the examples
with denoising and band-pass filtering (2.994) than filtering alone (1.261) and denoising alone
(0.169). As usual, PSNR was highest with denoising alone (28.543) while filtering (12.818) and
the combination of denoising and filtering (13.205) displayed relatively low PSNR because of
the increase of MSE.

Discussion

The spectrogram has been the basis for much of birdsong analysis for decades, but it suffers
from a fundamental tradeoff between temporal and frequency resolution because it is based on
the Fourier transform. The more modern approach of wavelet analysis does not suffer from
this tradeoft. However, there have been surprising few published studies in the field of birdsong
recognition where wavelet analysis is used [32-34]

In this paper we have investigated the use of wavelets for denoising automatically recorded
birdsong. Denoising is becoming progressively more important as larger numbers of automatic
recorders are deployed worldwide, recording not just birdsong, but every other noise in the
environment. Whether these recordings are analysed automatically or manually, there is a
need to reduce the extraneous noise from the recordings. We have demonstrated that wavelets
are very good at washing out stationary noise from the recordings without distorting the
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Fig 9. Box plot view of the results in (a) Table 3 and (b) Table 4.
doi:10.1371/journal.pone.0146790.g009
Table 4. Experimental Results for the species introduced to the secondary data set.
Species (o] F D DF
SnNR SnNR S ratio PSNR SnNR S ratio PSNR SnNR S ratio PSNR
NI Robin 0.461 1.464 1.324 16.907 0.530 0.202 30.784 4.534 3.552 17.393
Tui 0.320 0.840 0.830 13.977 0.369 0.114 31.907 1.259 1.313 14.218
NI kaka 0.258 0.850 1.214 15.714 0.282 0.085 34.644 1.296 1.747 15.939
Hihi 0.651 1.814 0.745 11.446 1.133 0.692 29.259 3.217 1.884 11.794
NI saddleback 0.505 0.987 0.636 14.563 0.631 0.254 28.981 1.783 1.508 15.038
Marsh wren 0.220 1.910 2.426 16.511 0.219 0.011 41.837 3.423 3.280 16.579
Western meadowlark 0.180 2.277 2.520 12.437 0.181 0.011 41.807 2.906 2.994 12.474
Horned lark 0.225 2.271 2.491 12.356 0.228 0.017 39.846 3.647 3.448 12.402
Mean 0.353 1.552 1.523 14.239 0.447 0.173 34.883 2.758 2.466 14.480
doi:10.1371/journal.pone.0146790.1004
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Fig 10. Denoising entire songs and long series of calls. (a) A North Island kaka song, (b) a marsh wren song, (c) a western meadowlark song, and (d) a
series of kakapo chinging.

doi:10.1371/journal.pone.0146790.g010

22

birdsongs. Even though some of the background noise (such as other animals) are not station-
ary, there is a substantial amount of stationary noise in recordings collected from nature.
Therefore the applicability of this method to clean natural acoustic recordings is high. Further,
much (although not all) natural noise is white or pink, and wavelets work well for removing it.
Both the success ratio and modified SNR (SnNR) are useful measures of noise reduction. How-
ever, PSNR turned out to be a less reliable method to evaluate the success of noise reduction of
audio signals.
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Table 5. Comparing the denoising results—series of calls against their segmented calls.
Species/type # o F D DF
e.g. SnNR SnNR S ratio PSNR SnNR S ratio PSNR SnNR S ratio PSNR

Kiwi (series) male 5 0.584 1.015 0.522 13.325 0.968 0.513 23.453 12.159 3.610 14.172
female 5 0.406 0.657 0.498 14.179 1.447 1.170 21.759 3.583 2.876 15.569

Kiwi (seg.) male 20 0.659 1.187 0.585 11.588 1.359 0.626 20.776 14.128 4.365 12.456
female 18 0.524 0.818 0.483 11.595 3.143 1.790 19.196 8.909 4.108 13.021

Ruru (series) trill 5 0.272 1.269 1.334 13.647 0.288 0.207 25.504 16.453 4.828 14.337
more-pork 5 0.290 1.143 1.689 13.125 0.566 0.375 26.587 7.782 4.088 13.386

Ruru (seg.) trill 14 0.437 1.458 1.184 11.256 0.440 0.287 20.791 17.157 5.465 12.358
more 11 0.464 1.413 1.449 10.337 1.367 0.716 22.830 5.547 3.433 10.689

pork 11 0.308 1.209 1.457 9.157 0.584 0.808 20.865 4.459 4.122 10.040

Kakapo (series) boom 5 1.118 1.129 0.059 8.308 1.202 0.120 43.865 1.207 0.170 8.332
ching 5 0.617 2.009 1.553 13.906 0.640 0.072 39.032 2.769 2.258 14.051

Kakapo (seg.) boom 21 1.184 1.196 0.063 4.810 1.245 0.082 43.037 1.250 0.135 4.838
ching 17 0.768 2.069 1.467 12.286 0.802 0.076 38.627 2.709 2.062 12.426

Mean series 0.548 1.204 0.943 12.748 0.852 0.410 30.033 7.326 2.972 13.308
Mean seg. 0.620 1.336 0.955 10.147 1.277 0.626 26.589 7.737 3.384 10.833

doi:10.1371/journal.pone.0146790.t005

This is one step towards our ultimate goal of automatically recognising birdsong by algo-
rithm, and so our real aim is not the reproduction of a perfectly noiseless birdsong, but to
remove the noise without damage to the signal, so that features of the song can be computed
and used as input to other algorithms. In practice, the major reason for low recall rate or sensi-
tivity (the percent of songs retrieved from the total number of songs in the recording) as well as
low song recognition rate is the noise associated with the recordings: noise mixed with birdsong
tends to hide song information [41, 42]. Therefore, cleaning the recordings prior to call detec-
tion and segmentation would improve any method of song recognition. However, we have dem-
onstrated that our method also allows impressive reproduction of denoised birdsong for use by
biologists. On the other hand, this reproduction capability provides more flexibility to extract
any preferred features for classification and recognition in contrast to the case in [34].

The major challenge of using this method to clean long field recordings is its high computa-
tional cost: it requires significant computer memory and time. The complete analysis of
approximately 2 minutes of calls (the segmented versions in Table 5) took approximately just
over 10 minutes on a 2.4 GHz quad core i7. This can be improved through a compiled imple-
mentation of the method, rather than the general research-focused Matlab code that we have
used here. In addition, we have demonstrated our approach on fairly long recordings so that
we are confident that this method can be used to clean those too. Noise removal from the origi-
nal recordings rather than from extracted isolated songs is really important both in semi-man-
ual and in automated recognition. However, it is important to note that the level of noise, its
nature, and strength of the song can cause significant effect when denoising using wavelets. For
example we observed that denoising tended to remove both signal and noise when presented
with very faded calls embedded in a high level of noise (calls that are hardly visible in the spec-
trogram). We observed the same when we inputted a North Island robin song mixed with
strong noise at high frequencies (Fig 13, S4 Audio). Interestingly, in this case, down-sampling
saved the birdsong. If we initially apply low-pass filtering to filter out the frequencies beyond
birds$ frequency range, we end up with a signal that contains the birdsong and non-Gaussian
noise. This means that when we filter out the high frequency noise, the signal still has capacity
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Fig 11. Box plot view of Table 5. (a) call series and (b) segmented calls.

doi:10.1371/journal.pone.0146790.g011

for high frequencies unless we down sample it. Therefore, wavelet denoising cannot remove
the remaining noise because it is non-Gaussian. In contrast, down sampling restricts the sig-
nal’s frequency range, and automatically removes high frequency noise.

Generally, birds produce vocalisations within the range of human hearing. The dedicated
recording devices we normally use in the field are also made to capture audible frequencies, but
not ultrasonic (> 20kHz) or infra-sound (< 20Hz). However, many species produce sounds
that are outside human and machine range. For example, species like the kakapo, North Afri-
can Houbara bustard (Chlamydotis undulata undulata), and bittern (Botaurus lentiginosus)
generate boomings that are very low frequency signals [43]. These low frequency signals fall
near or below the threshold of human hearing (20 Hz). Birds have relatively greater hearing
sensitivity than humans. For example, pigeons (Columbidae) have exceptional low-frequency
(infrasound) perception [44]. However, current recording devices fail to fully capture these
exceptional bird vocalisations. Accordingly, parallel to the development of birdsong recognis-
ers there is a need of improving recorders and recording techniques.
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Original Recovered

Fig 12. Denoising overlapped songs. Male kiwi, female kiwi, and more-pork are overlapped in (a) and
kakapo chinging overlapped with mottled petrels (Pterodroma inexpectata) in (b).

doi:10.1371/journal.pone.0146790.g012

In this study we have concentrated on birdsong, but automatic recorders also capture the
sounds of other animals. In New Zealand for example, where introduced predators are respon-
sible for the endangered status of many bird and reptile species, automatic recordings could be
used to monitor population of these introduced animals. Our denoising technique would work
well to prepare recordings for identification and estimation of abundance of species such as
stoats (Mustela nivalis), feral cats (Felis catus), rats (Rattus spp) and dogs (Canis familiaris)
whose calls are high frequency.

6.51

(b)

l
— MM»»»}W»W&*

22.05 ‘ 22.05
kHz 0 | kHz 0 e e mes L
0 6.51 0 6.51
’ (c) ’ (d)

Fig 13. A deliberate denoising example. (a) A North Island robbin song (sampling frequency 44,100 Hz)
and (b) its down-sampled song to 22,000 Hz. (c) and (d) are their denoised songs.

doi:10.1371/journal.pone.0146790.g013
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Song detection from long recordings and segmentation is another sub-topic in the field of
birdsong recognition, especially when it comes to practical use. The segmentation method used
to isolate the bird songs has a huge influence on both the recognition rate and recall rate of a
recogniser. Conventional energy based segmentations done using the waveform would easily
skip faded songs in the recordings mainly as a result of overlapping noise or the distance to the
bird from the recording. On the other hand, this type of time domain approaches fail to sepa-
rate bird songs from the background noise as they simply look at the energy and commonly a
thresholding method to cutoff less energy sections. Therefore, this leads to increase false posi-
tives if the recogniser also fails to realise noise and discard them. But we speculate about using
wavelet coefficients to do the segmentation in a more sophisticated manner. Separation of
sound sources is another concept we did not consider in this context. Clearly it is not possible
to separate sound sources easily in the presence of naturally recorded overlapping songs
because the sounds are not linearly mixed even when we assume so, and the number of receiv-
ers (microphones) is always less than the number of sound sources. While the current study
mainly focused on removing the stationary noise, it is essential to devise methods to tackle
transient noise, but this would be more challenging because the birdsongs are also transient.

Future work is to be carried out extending the usability of wavelets to address aforemen-
tioned gaps in this research area. We are currently investigating different feature extraction
methods including MFCC [45] and wavelet coefficients as well as potential machine learning
algorithms and similarity measures for recognition and classification of birdsongs; it is impor-
tant to determine the best combination of features that are strong enough to represent the bird-
songs uniquely. The final goal is to develop a non-species specific, robust and user friendly
automated platform for ecologists to automatically process natural field recordings collected
using any recorder.

Supporting Information

S1 Audio. Bird call examples in Fig 8.
(Z1P)

$2 Audio. Birdsong examples in Fig 10.
(Z1P)

$3 Audio. Overlapped birdsong examples in Fig 12.
(Z1P)

S$4 Audio. North Island robin song example in Fig 13.
(Z1P)
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