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This study introduces the use of ‘error-category mapping’ in the interpretation of pharmacokinetic (PK)
model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data.
Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the
treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two
identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM),
using in turn amodel arterial input function (AIF), an individually-measured AIF and a sample-average AIF.
PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd])
conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-
voxel basis, thereby forming a colour-coded ‘error-category map’ for each imaged slice.
These maps were found to be repeatable between patient visits and showed that the eTM converged
adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated
sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-
physical condition ve ≥1 was the most frequently indicated error category and appeared sensitive to the
form of AIF used.
This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control
technique and also has the potential to reveal otherwise hidden patterns of failure in PK model
applications.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

The application of pharmacokinetic (PK) modelling techniques to
the analysis of dynamic contrast-enhanced (DCE-) MRI data is
becoming widespread and can provide quantitative measurements
of tumour perfusion and capillary wall permeability [1,2]. It is
however becoming increasingly apparent that none of the most
commonly used models fit to DCE-MRI data adequately in all organ
and tumour types [3–6]. Optimal analysis may therefore require
testing multiple models in order to decide which gives the best fit to
the data. This can be done on a voxel-wise basis to fit appropriate
models to differing anatomical sites within the same imaged region.

PK model results are usually presented as pixel-wise parameter
maps. Statistical methods such as histogram analysis are commonly
used to extract tumour-wide results. Clearly it is essential to
differentiate between pixels where the PK model converges
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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satisfactorily from those where convergence errors occur, for the
purposes of histogram formation.

Other researchers have approached this problem by constructing
maps of goodness-of-fit, expressed as χ2, and this is certainly a useful
technique [7]. In an extension, Banerji et al. [3] apply the idea of
mapping theAkaike information criterion (AIC) score to determine the
better of two model-fits across the diseased liver. The current study
broadens this concept and introduces a more comprehensive form of
error category mapping. It will be shown that this can highlight
important additional information in an easily examined pictorial form.
2. Methods

2.1. Data acquisition

This data analysis formed part of a larger multi-parametric
oncology study for which ethical approval from the local research
ethics committee had been received. Eleven patients with histologi-
cally provenmetastatic renal cell carcinomawith clear cell component
(mRCC) were recruited, each giving informed written consent. The
patients underwent 4 identicalMRI examinations on a GE 1.5 T system
(Signa HDx, GEHC, Waukesha, WI). Two base-line examinations were
performed prior to bevacizumab treatment (visits ‘b1’ & ‘b2’)
separated by a time interval of at least 24 hours. (Two further
examinations were performed after treatment though these data
were not utilised in the analysis reported here.) At each MRI
examination, 0.1 mmol/kg of Gd-DOTA (Dotarem, Guerbet, Paris,
France) was administered by power injector at a rate of 3 ml/s.

Before the contrast agent injection, T1 mapping data were
collected with a series of single measurements from a 3D fast
spoiled gradient echo sequence.
Fig. 1. Sample images showing the site of metastatic
The dynamic series was obtained using a 3D fast spoiled gradient
echo sequence with the following parameters: TR 4.0 ms; TE 1.7 ms;
flip angle =18°; 0.7 NEX; field of view 35–40 cm; acquisition matrix
160 × 160 × 10-14; slice thickness 5 mm; parallel imaging (ASSET)
acceleration factor 2; pixel bandwidth=326 Hz. The sequence had a
temporal resolution of approximately 3 seconds and a total
acquisition time of 10 minutes (181 images). A double oblique
orientation was chosen to include the descending aorta in the
volume as well as the tumour of interest.

The T1 mapping data were acquired using a protocol with
identical parameters to the dynamic series acquisition but without
parallel imaging, repeated across multiple flip angles (MFA) [1°, 3°,
5°, 10°, 15° & 20°].

2.2. Image analysis

All image analysis was carried out using custom software written
in MATLAB (Mathworks, Natick, MA) and C++.

To compensate for the effects of respiratory motion, the dynamic
images were aligned using a non-linear registration algorithm using
normalised Matte’s mutual information [8,9]. The MFA images were
also registered to the aligned dynamic series. Tumour outlines (see
Fig. 1 for examples) were drawn on each slice.

T1 maps were calculated from the MFA data by non-linear curve-
fitting to the spoiled gradient echo equation [10].

The signal data were extracted on a pixel-by-pixel basis within the
ROIs delineating the tumour. This process was repeated across all
the image slices containing sections of the tumour. Signal-to-Gd-
concentration ([Gd]) conversion was achieved as described in reference
[11] using the standard spoiled gradient echo equation [10] and the fact
that [Gd] has a linear relationshipwith the tissue relaxation rate. A value
of 3.6 l mmol−1 s−1 was used for the relaxivity of Gd-DOTA [12].
disease studied for each of the n =11 patients.
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2.3. Pharmacokinetic modelling

Using AIFs extracted or derived as detailed below, the ‘extended
Tofts model’ (eTM) [13] was fitted to the [Gd] uptake curves to yield
parameter maps within the tumour ROIs for Ktrans, ve and vp.

The eTM is described by the following equation:

Ct tð Þ ¼ vp:Cp tð Þ þ Ktrans
:

Z t

0
Cp t0

� �
:e− Ktrans

=veð Þ t−t0ð Þdt0 ð1Þ

As described in detail in reference [13], Ktrans is the transfer
constant (and relates to the perfusion of blood to the tumour and/or
its capillary wall permeability), ve is the fractional extravascular
extracellular volume and vp is the fractional plasma volume. Ct(t) is
the tissue Gd uptake curve and Cp(t) the AIF.

Model-fitting employed a trust-region reflective non-linear least
squares algorithm [14] implemented by a built-in function in the
MATLAB Optimisation Toolbox and was repeated three times, each
repetition employing a different AIF form:-

1) a model AIF constructed from blood-sampled data from Fritz-
Hansenet al. [15] concatenatedwithdata fromWeinmannet al. [16]

2) the AIF measured individually from the dynamic series collected
at each patient visit

3) a sample-average AIF constructed from the individual AIFs
measured over all 22 relevant patient visits

2.4. Error-category maps for pictorial error analysis

In fitting the PK model to each voxel’s data, the following tests
were performed to check the reliability of the process. These
included, in the following order:-

• A check that the standard deviation of the [Gd] levels in the
voxel uptake curvewas less than a set limit (in practice this was
set at 5 mM). This excluded very noisy data from the fitting
process.

• A check that the calculated [Gd] values were real
• A check that the mean [Gd] was greater than a threshold value
(in practice the threshold was set to 0.01 mM)

• A check that the non-linear curve fitting process converged
satisfactorily

• A check that ve ≤1
• A check that vp ≤1
• A check that the parameter values returned were not
unreasonably large (in practice a threshold of 10 min−1 was
applied to Ktrans and 15 min−1 to kep = Ktrans/ve)

Model convergence was defined in this case as formal conver-
gence of the fitting function or, failing that, the relative step-size or
relative change in residuals being less than 10−6. The number of
iterations was limited to 100.

A pixel-wise map was constructed showing various conditions of
‘errors in signal-to-[Gd] conversion’ and ‘lack of fit of the model’ in
colour codes. These maps are termed ‘error-category maps’.

3. Results

The anatomical sites of the metastatic tumour regions are
illustrated for all 11 patients in Fig. 1. Most lesions were subject to
substantial motion with respiration.

Sample Ktrans maps for both pre-treatment scans are shown in
Fig. 2, using the sample-average AIF and showing a central slice in
each. The maps are broadly similar in pixel-value and heterogeneity
between examinations though patients ‘P2’, ‘P9’ and ‘P10’ might be
considered exceptions to the rule.
Fig. 3 shows a heterogeneous error-category map (taken from a
slice through a tumour in patient ‘P4’) togetherwith a fully enhanced
image from the dynamic series on which it was based. This tumour
image section shows evidence of ‘good’ pixels (black) together with
pixels demonstrating non-convergence of the model (magenta), no
uptake of [Gd] (red), unreasonably variable [Gd] (cyan) and ‘ve≥1 or
vp ≥1’ (green).

Sample error-category maps for both pre-treatment scans for all
patients are shown in Fig. 4; the maps are taken from an
approximately central slice through the tumour in each case and
were generated using the sample-average AIF. It can be seen that
signals from the majority of pixels gave rise to model convergence
(black areas in the maps). There are some regions with no
discernible enhancement (red), especially in patients ‘P3’, ‘P4’, ‘P5’
and ‘P8’. The condition ‘ve ≥1 or vp ≥1’ (green), is also apparent in
many of the tumours.

The error-category maps for patient ‘P9’ particularly show
evidence of the condition ‘ve ≥1 or vp ≥1’ (green areas). Further
break-down of error categories revealed that it was the ve ≥1 error
condition which was present (rather than vp ≥1). Fig. 5 shows the
corresponding maps for this patient when analysed using all three
types of AIF (model, individual and sample-average). It can be seen
that the error condition ve ≥1.0 is very sensitive to the form of the
AIF used.

4. Discussion

A method has been described for producing error-category maps
in the course of PK analysis of DCE-MRI data. Descriptive examples of
the utility of such maps have been given relating to a repeatability
study in PK mapping of mRCC tumours.

The error-category maps serve two purposes: firstly, the success
of the model in fitting the data can be assessed immediately and
secondly, the map can be used as a mask in data extraction from the
PK model parameter maps. For example, referring to Fig. 3, the black
and red areas refer to ‘convergence of the model’ and ‘no discernible
uptake of Gd’ respectively. Forming a mask from these areas
combined would allow histogram assessment of ‘valid tumour
voxels’ in the PK parameter maps, where no uptake of Gd is regarded
as a valid perfusion outcome (i.e. Ktrans =0).

The error-category maps shown in Fig. 4 are those obtained using
the sample-average AIF. This AIF was selected for these illustrations
because it gave rise to fewer ‘bad pixels’ (i.e. those coloured other
than black on the maps) than either the model AIF or individually
measured AIFs. This in itself is a useful result since it indicates in a
very direct way that the sample-average AIF is themost reliable form
to use in this context.

Subjective examination of Fig. 4 shows that the heterogeneity of
the error-category maps is reasonably repeatable between patient
visits, though patient ‘P9’ shows the greatest variability. This general
trend is interesting since it indicates that more systematic sources of
error rather than random measurement errors are dominant in the
image analysis process.

It can also be observed from Fig. 4 that the signal-to-[Gd]
conversion process and/or the PK model-fitting process failed to
execute successfully in some tumour voxels in most patients. The
reasons for this, where they can be determined, are varied. They
include the presence of genuinely differing physiological states, the
influence of the AIF used and acquisition factors such as SNR and
tumour motion. It should however be noted that the data from the
majority of voxels in each tumour were adequately fitted by the eTM
(though the tumour in patient ‘P4’ is a possible exception).

Of the voxels which did not allow good PK model-fitting, those
labelled with the condition ‘[Gd] too small’ (red areas on Fig. 4) are
straightforward to explain. These regions had low average [Gd]



Fig. 2. Ktrans maps shown by patient tumour (central slices). Two imageswithmatched locations are shown for each tumour from base-line (pre-treatment) scans ‘b1’ and ‘b2’. White
voxels within the peripheral outline correspond to an error-condition in data-analysis (see Fig. 4 for details). (A sample-average AIF was used in the construction of these maps).
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levels resulting from no significant uptake of contrast agent. This was
probably due to necrosis in the centre of the tumours concerned.
Whilst this hypothesis cannot be proven with this data, it is
supported by the fact that the red regions lie at the centre of the
tumour ROIs affected.

Patient ‘P4’ provided very noisy data, this probably being due to
the combined effects of image registration inaccuracies and a non-
uniform tumour. Noisy curves would naturally trigger the ‘[Gd] s.d.
too big’ error (cyan areas in the error-category maps) or, failing that,
would be expected to cause non-convergence of the model-fitting
process (magenta). Note that the ‘[Gd] s.d. too big’ (N5 mM)
condition would not exclude valid curve-fits in these patients since
they all had a maximum tumour uptake of b1 mM of Gd. (A more
sophisticated measure could be adopted which compares the
variance of the uptake curve after contrast agent administration
with the variance before. This relies on a good automated process for
determining the bolus arrival time which is not easily determined,
especially in noisy data.)
Fig. 3. (Left) dynamic series image of a tumour (patient ‘P4’) at full tissue enhancement (ROI outline is shown in yellow); (right) the associated error-category map indicating
convergence categories of signal-to-[Gd] conversion and subsequent curve-fitting to the PK model.
The green areas in the error-categorymapswere found on further
investigation to correspond to the non-physical condition ve ≥1
(rather than the equally non-physical vp ≥1). Referring to the eTM
equation [13] [see Eq. (1)], if it is assumed that an uptake curve Ct(t)
fits the model well with a defined AIF, Cp(t), we can consider how
this data might be fitted using a proportionately smaller AIF. It seems
reasonable to assume that, if Cp(t) is decreased universally by
dividing by a factor β N1 then the model would be fitted best with
new parameter values vp(new) = β.vp(old) and Ktrans(new) =β.
Ktrans(old). To keep the exponent constant would imply a corre-
sponding increase in ve. Therefore, it seems possible that a high value
of ve (in places perhaps meeting or exceeding the physically
meaningful limit of 1.0) could be a consequence of assuming an
artificially small AIF.

This view is well supported by a comparison of the corresponding
error-category map for patient ‘P9’, examination ‘b1’, using the three
types of AIF: the model-AIF (‘small peak’), the sample-average
(‘medium peak’) and the individually measured (‘large peak’). The

image of Fig.�2
image of Fig.�3


Fig. 4. Error category maps for central slice through all 11 patient tumours: pre-treatment scan results compared side by side (b1:b2) for each patient. (A sample-average AIF was
used in the construction of these maps).
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results are shown in Fig. 5 and display an increasing number of ‘good’
pixels with increasing AIF peak magnitude.

The choice of error categories and their exact definition need not
be fixed to those suggested above and could be tailored to the needs
of any particular study. However, the categories chosen here show
the utility of this technique in selecting the AIF to use in fitting the
data and the spatial extent and heterogeneity of errors typical in
DCE-MRI analyses.
Fig. 5. Error-category maps for a central slice through a tumour in patient ‘P9’, examination ‘b1’ (first pre-treatment scan). These are shown for model (Mod), sample-average
(SAv) and individually-measured (Ind) AIFs. Green (lighter grey) areas indicate where the model fit gives the un-physical result ve ≥ 1. This error condition decreases in
frequency with the relative magnitude of the AIF.
5. Conclusions

Whilst other researchers [7] have pointed out the utility of
mapping ‘goodness of fit’measures (e.g. χ2) in PK modelling of DCE-
MRI data, we believe a pictorial representation of the range of errors
encountered in signal-to-[Gd] conversion and PK model application
yields additional useful information which can easily be overlooked
by an entirely numerical approach.

image of Fig.�4
image of Fig.�5
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