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An open question in the history of human migration is the identity of the earliest Eurasian populations that have left con-

temporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between

125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the

Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypoth-

esis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of

indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these

genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the

indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans

and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-

of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When

compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal

of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when consid-

ering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all

other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations estab-

lished by the out-of-Africa migrations.

[Supplemental material is available for this article.]

All humans can trace their ancestry back to Africa (Cann et al.
1987), where the ancestors of anatomically modern humans first
diverged from primates (Patterson et al. 2006), and then from ar-
chaic humans (Prüfer et al. 2014). Humans began leaving Africa
through a number of coastal routes, where estimates suggest these
“out-of-Africa” migrations reached the Arabian Peninsula as early
as 125,000 yr ago (Armitage et al. 2011) and as late as 60,000 yr
ago (Henn et al. 2012). After entering the Arabian Peninsula,
human ancestors entered South Asia and spread to Australia
(Rasmussen et al. 2011), Europe, and eventually, the Americas.
The individuals in these migrations were the most direct ancestors
of ancient non-African peoples, and they established the contem-
porary non-African populations recognized today (Cavalli-Sforza
and Feldman 2003).

The relationship between contemporary Arab populations
and these ancient human migrations is an open question
(Lazaridis et al. 2014; Shriner et al. 2014). Given that the Arabian
Peninsula was an initial site of egress from Africa, one hypothesis
is that the original out-of-Africa migrations established ancient
populations on the peninsula that were direct ancestors of con-
temporary Arab populations (Lazaridis et al. 2014). These people
would therefore be direct descendants of the earliest split in the
lineages that established Eurasian and other contemporary non-
African populations (Armitage et al. 2011; Rasmussen et al. 2011;
Henn et al. 2012; Lazaridis et al. 2014; Shriner et al. 2014). If this
hypothesis is correct, we would expect that there are contempo-
rary, indigenous Arabs who are the most distant relatives of other
Eurasians. To assess this hypothesis, we carried out deep-coverage
genome sequencing of 104 unrelated natives of the Arabian
Peninsula who are citizens of the nation of Qatar (Supplemental
Fig. 1), including 56 of indigenous Bedouin ancestry who are the
best representatives of autochthonous Arabs, and compared these
genomes to contemporary genomes of Africa, Asia, Europe, and
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the Americas (The 1000 Genomes Project Consortium 2012;
Lazaridis et al. 2014).

Results

Population structure of the Arabian Peninsula

Previous analyses of the populations of the Arabian Peninsula
(Hunter-Zinck et al. 2010; Alsmadi et al. 2013) have found three
distinct clusters that reflect primary ancestry: Q1 (Bedouin); Q2
(Persian-South Asian); and Q3 (African) (Omberg et al. 2012). By
assessment of medical records and ancestry-informative SNP gen-
otyping (Supplemental Fig. 2), a sample of 108 purportedly unre-
lated individuals was selected for sequencing, including 60 Q1
(Bedouin), 20 Q2 (Persian-South Asian), and 20 Q3 (African), as
well as 8 Q0 (Subpopulation Unassigned) that could not be cleanly
placed in one of these three groups (Supplemental Table I). Each
of these genomes was sequenced to a median depth of 37× (mini-
mum 30×) by Illumina technology, identifying a total of
23,784,210 SNPs (see Methods, Supplemental Table II).

To confirm that none of the 108 individuals were closely re-
lated, we used KING-robust (Manichaikul et al. 2010) and PREST-
plus (McPeek and Sun 2000) to estimate family relationships based
on a set of 1,407,483 SNPs after pruning of the full set of
22,958,844 autosomal SNPs in Qatar (see Methods). Both analyses
identified five pairs of related individuals greater than third-degree
that were subsequently confirmed by investigative reassessment of
medical records (Supplemental Table III; Supplemental Fig. 3).
Three of the pairs form a trio; hence, two individuals from the
trio were removed, and one individual from each of the two re-
maining pairs was removed, such that the remaining 104 individ-
uals analyzed further included 8 Q0 (Subpopulation Unassigned)
and 96 Q1, Q2, or Q3 Qatari: 56 Q1 (Bedouin), 20 Q2 (Persian-
South Asian), and 20 Q3 (African).

An analysis of inbreeding for these remaining individuals
showed the Q1 (Bedouin) to have a more positive inbreeding coef-
ficient than most of the non-admixed 1000 Genomes (The 1000
Genomes Project Consortium 2012) populations (Supplemental
Table IV; Supplemental Fig. 4), consistentwith the known inbreed-
ing of this group (Hunter-Zinck et al. 2010; Omberg et al. 2012); al-
thoughwealso found theQ1 (Bedouin) tobe less inbred thanmany
small and/or isolated populations worldwide represented in the
Human Origins samples (Lazaridis et al. 2014) (Supplemental
Table V; Supplemental Table VI; Supplemental Fig. 4). The Q2
(Persian-South Asian) had a positive, but slightly lower, inbreeding
coefficient than theQ1 (Bedouin). In contrast, theQ3 (African)had
a non-negative coefficient that reflects known admixture with
Africanpopulations (Hunter-Zinck et al. 2010;Omberg et al. 2012).

We confirmed the primary ancestry classifications of the
104 Qataris by principal component analysis (Price et al. 2006).
We combined the 104 Qataris, the Human Origins populations
(Lazaridis et al. 2014), and 1000 Genomes populations (The
1000 Genomes Project Consortium 2012) (excluding individuals
already in Human Origins), and performed principal component
analysis on a set of 197,714 linkage disequilibrium pruned auto-
some SNPs (Fig. 1A; Supplemental Fig. 5A). We also confirmed
these clusterings just with the 104Qataris and 1000Genomes sam-
ples based on the same set of autosomal SNPs (Supplemental Fig.
5B). These analyses reproduced the population clustering observed
previously (Hunter-Zinck et al. 2010; Omberg et al. 2012), with the
Q1 (Bedouin) closest to Europeans, the Q2 (Persian-South Asian)
between Q1 (Bedouin) and Asians, and the Q3 (African) closest

to African populations. A plot of just the Middle Eastern popula-
tions on the principal components also showed clustering as
expected, with the Q1 (Bedouin) clustering with previously sam-
pled Bedouins and Arabs, Q2 (Persian-South Asians) with Iranians,
and Q3 (African) outside of the Middle Eastern cluster (data not
shown) (Fig. 1B).

Y Chromosome and mitochondrial DNA haplogroups

We next analyzed the Y Chromosome (Chr Y) and mitochondrial
DNA (mtDNA) to assess the degree to which the Q1 (Bedouin), Q2
(Persian-South Asian), or Q3 (African) Qatari ancestry groups rep-
resent distinct subpopulations (Fig. 2). The Chr Y haplogroups
showed almost no overlap between the Q1 (Bedouin) Qataris
and Q2 (Persian-South Asian) Qataris, in which an Analysis of
Molecular Variance (AMOVA) was highly significant (P < 0.018)
(Supplemental Table VII). The Arab haplogroup J1 was the domi-
nant haplogroup in the Q1 (Bedouin) Qataris, but this haplogroup
was not represented at all among the Q2 (Persian-South Asian)
Qataris (Fig. 2A). This confirmed that these are genetically well-
defined subpopulations that are relatively isolated from one an-
other (Omberg et al. 2012). There was also a strong partitioning
of the Chr Y haplogroups when considering the Q3 (African)
Qataris, both when considering Q1 (Bedouin) versus Q3
(African) (AMOVA P < 1 × 10−5) and Q2 (Persian-South Asian) ver-
sus Q3 (African) (AMOVA P < 0.028). The Q3 (African) had largely
African haplogroups, a result consistent with the known recent
African admixture of this subpopulation (Omberg et al. 2012).

The mtDNA haplogroups were less partitioned among the
Qataris, although they still showed significant partitioning be-
tween each pair of subpopulations (AMOVA Q1 versus Q2 P <
0.035, Q1 versus Q3 P < 1 × 10−5, Q2 versus Q3 P < 0.017) and
among all three considered simultaneously (AMOVA P < 1 × 10−5)
(Supplemental Table VII). The mtDNA haplogroups also included
moreworldwide geographic diversity overall, indicating a different
male versus female pattern of intermarriage among these subpop-
ulations (Sandridge et al. 2010). Together the Chr Y and mtDNA
haplogroups indicate that the Q1 (Bedouin), Q2 (Persian-South
Asian), andQ3 (African) ancestry groups represent genetic subpop-
ulations that not only reflect known migration history (Hunter-
Zinck et al. 2010; Omberg et al. 2012) but that also represent units
defined by a patrilocal society with strong historical barriers to in-
termarriage (Esposito 2001; Cavalli-Sforza and Feldman 2003), in
which gene flow has been dominated by female movement (i.e.,
admixture occurring through females marrying into the relatively
isolated subpopulations), aswell as female influxes fromother geo-
graphic areas.

X-linked and autosomal diversity

To further analyze the relative male and female contributions to
the genetics of the Qatari Q1 (Bedouin), Q2 (Persian-South
Asian), and Q3 (African) subpopulations, we analyzed genome-
wide ratios of X-linked and autosomal (X/A) diversity and X/A
diversity ratios for genome intervals >0.18 cM from genes
(Supplemental Table VIII; Supplemental Fig. 6). For both of these
ratios, the Q1 (Bedouin) and Q2 (Persian-South Asian) were lower
than for African populations but were higher than for Europeans
and Asians. This points to a higher effective population size of fe-
males in the Q1 (Bedouin) and Q2 (Persian-South Asian), possibly
a consequence of the out-of-Africa migrations, which were be-
lieved to be biased toward migration of males over females
(Gottipati et al. 2011; Arbiza et al. 2014). The Q3 (African)
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Qataris had X/A diversity ratios that were higher, even when com-
pared to African populations. Thismay be driven by a smallermale
effective population size; a possible consequence of a polygamous
culture and the ancestry of the Q3 (African) subpopulation that
was a result of the historical slave trade into the region from
Africa (Omberg et al. 2012).

We also analyzed the relative ratios ofX-linked and autosomal
(X/A) diversity in nongenic regions of the female Q1 (Bedouin),
Q2 (Persian-South Asian), and Q3 (African) genomes compared
to females in African populations of the 1000 Genomes Project
(Supplemental Table IX). The relative X/A ratios of both the Q1
(Bedouin) and Q2 (Persian-South Asian) to African populations

were slightly higher than when compar-
ing European to African populations
(Gottipati et al. 2011; Arbiza et al. 2014).
This could indicate a slightly less extreme
set of bottleneck events encountered
since the out-of-Africa migrations by the
direct ancestors of the Q1 (Bedouin) and
Q2 (Persian-South Asian) compared to
thebottlenecks encounteredby thedirect
ancestors of Europeans. The relative X/A
diversity ratios of Q3 (African) to African
populations were closer to one, consis-
tent with the known African admixture
of this subpopulation (Omberg et al.
2012).

Pairwise sequential Markov coalescent

analysis

We next analyzed the full complement
of autosomal polymorphisms for signals
of ancient bottlenecks by applying the
pairwise sequential Markov coalescent
(PSMC) (Fig. 3; Li and Durbin 2011).
This analysis showed that the Q1
(Bedouin) and Q2 (Persian-South Asian)
had clear hallmarks of a bottleneck
event, with effective population size hit-
ting a trough in the range of 100,000
to 30,000 yr ago with a minimum at
∼60,000 yr ago. This same pattern is ob-
served for a European individual from
the 1000 Genomes Project and is consis-
tent with what has been observed in oth-
er non-African human genomes using
the pairwise sequential Markov coales-
cent, as well as related methods (Gronau
et al. 2011; Fu et al. 2014; Schiffels and
Durbin 2014). These data, therefore,
point to the ancestors of Q1 (Bedouin)
and Q2 (Persian-South Asian) as having
migrated out of Africa at the same time
as the ancestors of other non-African
populations (Henn et al. 2012). Al-
though PSMC estimates in the more re-
cent past tend to have larger confidence
intervals (Li and Durbin 2011), the Q1
(Bedouin) do appear to have a lower pop-
ulation size than the Q2 (Persian-South
Asian) in the region <30,000 yr ago, con-

sistent with high levels of inbreeding in theQ1 (Bedouin) (Hunter-
Zinck et al. 2010; Sandridge et al. 2010; Mezzavilla et al. 2015). For
the Q3 (African), the median effective population size was more
similar to an African individual from the 1000 Genomes Project
in the range 100,000 to 30,000 yr ago, consistent with Sub-
Saharan African ancestry that is relatively recent (Omberg et al.
2012).

Admixture analysis

The signal of an ancient bottleneck in the Q1 (Bedouin) is not un-
expected given previous analyses of genomic admixture that
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found <1% African ancestry in this subpopulation (Omberg et al.
2012) and studies of worldwide population structure, which
have inferred that the Q1 (Bedouin) genomes have the greatest
proportion of Arab genetic ancestry, even when compared to
Bedouins from outside Qatar and to Arabs in surrounding coun-
tries, including Yemen and Saudi Arabia (Hodgson et al. 2014;
Shriner et al. 2014). To confirm a similarly minute amount of
African admixture for the Q1 (Bedouin) in our sample, we applied
three methodologies: (1) an ADMIXTURE (Alexander et al. 2009)
analysis of the genome-wide ancestry proportions in the 104
Qataris, the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2012), and Human Origins samples (Lazaridis et al.
2014); (2) an ALDER (Loh et al. 2013) analysis of the proportion
and timing of African ancestry in these same populations; and
(3) a SupportMix (Omberg et al. 2012) analysis of the population
assignments of local genomic segments of the 96 Q1 (Bedouin),
Q2 (Persian-South Asian), or Q3 (African) Qatari genomes.

The ADMIXTURE analysis identified K = 12 ancestral popula-
tions as having the lowest cross-validation error (Supplemental
Fig. 7A). At this level of resolution, theQ1 (Bedouin) had a high av-
erage (84%) proportion of ancestry that was also present in the
Human Origins Bedouin B population at a high average propor-
tion (93%) (Supplemental Fig. 7B,C), in which this same ancestry
was also shared with Saudis, and at lower levels among other
Middle Eastern populations. This ancestry therefore appears to
be the signal of an indigenous Arab ancestral population. The
Bedouin A population also shared this ancestry but at a lower aver-

age proportion (45%) and appeared to be
more admixed overall. The Q2 (Persian-
South Asian) shared a large proportion
(45% on average) of ancestry that domi-
nates in Iranians (46% on average),
consistent with a Persian ancestral popu-
lation (Omberg et al. 2012). The Q3
(African) shared the majority of ancestry
with African populations as expected
and were considerably admixed overall,
again consistent with the known history
of this subpopulation (Supplemental
Fig. 7A; Omberg et al. 2012).

The ALDER analysis determined the
relative percentage of African (Yoruba)
ancestry in the Q1 (Bedouin) (2.6%±
1.37) and Q2 (Persian-South Asian)
(5.0% ± 1.41) at levels on par with esti-
mates for other populations sampled in
the region (Supplemental Fig. 8; Supple-
mental Table X), including Human
Origins Bedouin and Saudi. This con-
firmed that recent African admixture is
limited to the Q3 (African) subpopula-
tion (37.6% ± 0.9), inwhich this estimate
is on par with African American popula-
tions. An estimate of the timing of
African admixture placed the number of
generations for Q1 (Bedouin) (15.2) and
Q2 (Persian-South Asian) (14.0) slightly
higher thanQ3 (African) (9.3), consistent
with the Q1 (Bedouin) and Q2 (Persian-
South Asian) reflecting more distant
African admixture events and with the
Q3 (African) reflecting the historical tim-

ing of the African slave trade in the region (Omberg et al. 2012).
The SupportMix analysis used six of the 1000 Genomes pop-

ulations (two European, two Asian, and two African) (see
Supplemental Methods for details) as ancestral proxy reference
panels and produced a set of “best guess” admixture assignments
based on highest similarity to these genomes. Although these
1000 Genomes populations do not include appropriate local pop-
ulations most closely related to the Qataris needed for assessment
of the true admixture composition of the genomes, the ancestry
track length distribution of haplotypes assigned to African popula-
tions (Yoruba or Luhuya) provides a qualitative indicator ofwheth-
er the subpopulations experienced recent admixture with African
populations. As expected, the track lengths of the Q1 (Bedouin)
and Q2 (Persian-South Asian) assigned to African 1000 Genomes
populations were far shorter than those for Q3 (African)
(Supplemental Fig. 9), again confirming that recent African admix-
ture is limited to the Q3 (African) subpopulation.

Neanderthal ancestry

Wenext analyzedNeanderthal admixture contributions to the an-
cestry of Q1 (Bedouin) compared to the Q2 (Persian-South Asian)
and Q3 (African) Qataris, the 1000 Genomes populations, and
the populations of the Human Origins samples using the F4 ratio
and Patterson’s D-statistic (Fig. 4; Supplemental Fig. 10, Supple-
mental Table XI; Patterson et al. 2012). The results for both meth-
ods were highly correlated (Supplemental Fig. 10A). The Q1
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(Bedouin; F4 ratio = 0.026, D-statistic = 0.000) had more Neander-
thal admixture than all African populations, including Q3
(African; F4 ratio range =−0.017 to 0.024, D-statistic range =
−0.031 to−0.003). TheQ1 (Bedouin) also hadNeanderthal admix-
ture at levels comparable to Q2 (Persian-South Asian; F4 ratio =
0.024, D-statistic =−0.003) and to other Middle Eastern popula-
tions, including other Bedouin populations (Human Origins
Bedouin A F4 ratio = 0.022, D-statistic =−0.003 and Bedouin B F4
ratio = 0.024, D-statistic =−0.003) and Saudi (F4 ratio = 0.026, D-
statistic =−0.001). Interestingly, the Q1 (Bedouin) did not tend
to have higher Neanderthal admixture levels when considering
populations outside of the Middle East, where the bulk of
European populations had higher Neanderthal admixture (F4 ratio
range = 0.018 to 0.041, D-statistic range = 0.003 to 0.010). Yet, the
percentage of Neandethal admixture with the Q1 (Bedouin) was
higher than expected if it could be entirely explained by later ad-
mixture events between the Q1 (Bedouin) and Europeans (ob-
served F4 ratio = 0.026 versus expected F4 ratio = 0.00247).

The higher Neanderthal ancestry in the Q1 (Bedouin) Qatari
compared to African populations places the divergence of an-
cestral Arabs after the out-of-Africa bottleneck. Given the
current evidence of the geographic range of Neanderthal popula-
tions stretching from Europe and the Mediterranean through
Northern and Central Asia (Fu et al. 2014; Hershkovitz et al.
2015), the lower Neanderthal Ancestry in the Q1 (Bedouin)
Qatari compared to populations within the ancestral Neanderthal
range is also consistent with an early divergence of the ancestors
of indigenous Arabs from other lineages that populated Asia
and Europe. Yet, since the Neanderthal admixture in the Q1
(Bedouin) cannot be entirely explained by admixture with
Europeans, this indicates there was some admixture between
Neanderthals and ancestors of the Q1 (Bedouin) in the region of
the Arabian Peninsula.

TreeMix analysis

We also analyzed the autosomes of the combined 96 Q1
(Bedouin), Q2 (Perisan-South Asian) or Q3 (African) Qataris, and
non-admixed populations of the 1000 Genomes Project using
the population split and mixture inference method TreeMix
(Pickrell and Pritchard 2012) to assess the relative genetic similar-
ity of populations based on high-density, genome-wide allele
frequencies. The analysis returned an overall tree for the 1000
Genomes populations that mirrored those found previously
(Shriner et al. 2014) with the addition of the Q1 (Bedouin) and
Q2 (Persian-South Asian) clustering on the branch that includes
Europeans (Pérez-Miranda et al. 2006) and the Q3 (African) clus-
tering with African populations (Fig. 5). Whenmigrations were al-
lowed in the analysis, no migration events were observed between
the Q1 (Bedouin) and African populations, even when allowing as
many as five migration events (Supplemental Fig. 11). These re-
sults are also consistent with what is known of the migration his-
tory of the Arabian Peninsula, including migration both to and
from Europe during ancient and more recent eras of civilization,
where this resulted in detectable admixture from European popu-
lations in both the Q1 (Bedouin) and Q2 (Persian-South Asian)
(Omberg et al. 2012).

Proportion of shared alleles neighbor-joining analysis

As the principal component analysis and the TreeMix population-
level clusterings depend on allele frequencies, the clustering of the
Q1 (Bedouin) on a common branch with European populations
could be driven by the haplotypes introduced by migrants, which
would be expected to shift the allele frequencies of these popula-
tions toward each other. As such, these clusterings based on allele
frequencies do not necessarily argue against significant and
deep ancestry of the Q1 (Bedouin) on the Arabian Peninsula,

Figure 3. Ancient bottlenecks in the 96 Q1 (Bedouin), Q2 (Persian-South Asian), or Q3 (African) Qatari genomes (56 Q1, 20 Q2, 20 Q3) determined by
pairwise sequentialMarkov coalescent analysis (Li andDurbin 2011). Shown is the plot of themedian effective population size (y-axis) across individuals in a
subpopulation versus years in the past (log scale x-axis) for the samples in the three major Qatari subpopulations: Q1 (Bedouin) in red, Q2 (Persian-South
Asian) in azure, Q3 (African) in black. A single individual of European ancestry (NA12879, violet) and a single individual of African ancestry (NA19239,
orange) from the 1000 Genomes Project deep-coverage pilot (The 1000 Genomes Project Consortium 2010) are shown for comparison.
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as indicated by the levels of Neanderthal admixture in this subpo-
pulation. Additionally, these population-level clusterings are dis-
proportionately influenced by common segregating alleles
(Pickrell and Pritchard 2012), while rare alleles can be more infor-
mative about deeper shared ancestry (Mathieson and McVean
2014) as the identity by state of a rare variant can more accurately
reflect identity by descent (Hochreiter 2013).

In contrast to population-level clus-
tering, a pairwise clustering of individual
genomes based on shared variants pro-
vides a relative measure for comparing
total shared ancestry between individu-
als. Also, when applied to a common
set of genome-wide, high-density mark-
ers that include the low-minor allele fre-
quency alleles of the 1000 Genomes
Project, such pairwise clustering also pro-
vides an appropriate weight to rare
alleles. We therefore performed a propor-
tion of shared alleles (Mountain and
Cavalli-Sforza 1997) analysis on the com-
bined samples in the 104 Qatari and the
1000 Genomes samples, in which pair-
wise proportion of shared alleles was cal-
culated for the 11,711,386 autosomal,
biallelic SNPs segregating in both the
104 Qatari and the 1000 Genomes sam-
ples. A robust version of the neighbor-
joining algorithm was used to perform a
pairwise clustering of the samples (Fig.
6A–F; Criscuolo and Gascuel 2008), in
which bootstrap support values were cal-
culated for the observed trees using 100
random samplings of the SNPs.

The neighbor-joining analysis re-
vealed that 50 of the 56 Q1 (Bedouin),
along with three Q2 (Persian-South
Asian), one Q3 (African), and two Q0
(Subpopulation Unassigned) Qataris,
clustered outside African lineages and
were also the most extreme outgroup
that are basal to all non-African popula-
tions lacking recent African admixture
(Fig. 6D). Strong bootstrap support was
observed for this cluster (70 of 100 itera-
tions), and for its presence as anoutgroup
to the Eurasian cluster (68 of 100 itera-
tions), comparable to the support for the
Japanese cluster (60 of 100 iterations)
and for the East Asians as an outgroup to
Europeans and Americans (81 of 100 iter-
ations).TheQ1(Bedouin) thereforefit the
criteria of having ancient migration from
Africa and beingmost distantly related to
all other non-Africans in total ancestry.

A total of 11 Q2 (Persian-South
Asian), three Q1 (Bedouin), one Q3
(African), and one Q0 (Subpopulation
Unassigned) defined an Asian outgroup
more closely related to Asians than the
main Q1 (Bedouin) outgroup (Fig. 6C),
likely driven by the ancestry of the the

Q2 (Persian-South Asian) subpopulation traceable to Persia and
South Asia (Omberg et al. 2012) and indicating these individuals
are most distantly related to other Asians present in this cluster.
A total of 12 Q3 (African), three Q1 (Bedouin), three Q2 (Persian-
South Asian), and four Q0 (Subpopulation Unassigned) cluster as
long individual branches or small clusters between the major Q1
(Bedouin) cluster and the admixed individuals of African ancestry
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Figure 4. Neanderthal ancestry in world populations. F4 ratio estimation as implemented in
ADMIXTOOLS 3.0 (Patterson et al. 2012) was used to calculate the Neanderthal ancestry proportion
for each population in the combined data set of Qatari genomes, the 1000 Genomes Project, and
Human Origins. The F4 ratio estimates α, the proportion of Neanderthal ancestry in a population.
Shown are the results for populations of interest, including highest and lowest scoring populations
from each region (the 1000 Genomes Project, Africa; the 1000 Genomes Project, America; the 1000
Genomes Project, East Asia, the 1000 Genomes Project, Europe, Human Origins, Africa; Human
Origins, America; Human Origins, Central Asia/Siberia; Human Origins, East Asia; Human Origins,
Oceania; Human Origins, South Asia; Human Origins, West Eurasia), Middle Eastern populations
(Human Origins), Q1 (Bedouin), Q2 (Persian-South Asian) and Q3 (African). Populations are color-coded
by region, and a distinct color is used for each Qatari population. A full set of results is presented in
Supplemental Figure 10 and Supplemental Table XI. The population codes are as in the 1000
Genomes Project (The 1000 Genomes Project Consortium 2012).
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from Southwest US (ASW), potentially representing individuals
with a higher proportion of African admixture. As expected from
the analyses of population genetic similarity and prior neighbor-
joining analysis of admixed populations (Kopelman et al. 2013),
the Q3 (African) and African Americans do not form large clusters,
but rather appear as multiple individual branches close to the in-
digenous African populations,most similar to their African admix-
ture source (Fig. 6E,F). A set of three Q2 (Persian-South Asian)
clustered as an outgroup to the Tuscan Southern European (TSI)
branch (Fig. 6B), which is not unexpected given admixture with
European populations (Omberg et al. 2012; Pickrell et al. 2014).

Discussion

The hypothesis that the first Eurasian populations were estab-
lished on the Arabian Peninsula and that contemporary indige-
nous Arabs are direct descendants of this ancient population is
supported by two major conclusions derived from the combined
evidence of this study. First, the analysis results for X/A diversity,
the pairwise sequential Markov coalescent, genome-wide admix-
ture, timing of African admixture, local admixture deconvolution,
Neanderthal admixture, and application of TreeMix, support the
inference that theQ1 (Bedouin) can trace the bulk of their ancestry
back to the out-of-Africa migration events. Second, the com-
bination of lower levels of Neanderthal admixture in the Q1
(Bedouin) than European/Asian populations and the outgroup po-
sition of the Q1 (Bedouin) compared to non-Africans in the
pairwaise similarity clustering of high-density variants measured
genome-wide, place the Q1 (Bedouin) as being the most distant
relatives of other contemporary non-Africans. Given that the Q1
(Bedouin) have the greatest proportion of Arab genetic ancestry
measured in contemporary populations (Hodgson et al. 2014;
Shriner et al. 2014) and are among the best genetic representatives

of the autochthonous population on the Arabian Peninsula, these
two conclusions therefore point to the Bedouins being direct de-
scendants of the earliest split after the out-of-Africa migration
events that established a basal Eurasian population (Lazaridis
et al. 2014). This is also consistent with the majority of Q1
(Bedouin) being able to trace a significant portion of their autoso-
mal ancestry through lineages that never left the peninsula after
the out-of-Africa migration events since such deep ancestry would
not be expected if the entire Arabian Peninsula population had
been reestablished fromAfrica or a non-African population at a lat-
er point.

Given the complex history of migration patterns to and from
European populations, and the complicated patterns of isolation
and intra- and inter-marriage of the indigenous Bedouin popula-
tions (Hunter-Zinck et al. 2010; Sandridge et al. 2010), it is not sur-
prising that among theQ1 (Bedouin) are individuals who retain an
autosomal signal of being the most distant relatives of non-
Africans, while population-level clustering based on migration-
shifted allele frequencies places the Q1 (Bedouin) closer to
Europeans. The basal position of the Q1 (Bedouin) also has inter-
esting implications for theories about the frequency, timing, and
path of major migration waves that established populations in
Asia and Europe (Shi et al. 2008; Lazaridis et al. 2014; Shriner
et al. 2014). A few isolated Asian populations were previously sus-
pected to be descendants of a separate out-of-Africa migration
wave based on Y Chromosome data (Hammer et al. 1998; Shi
et al. 2008). Yet, distinct out-of-Africa migration events or separate
migration waves emanating from the Arabian Peninsula into
Europe and West Asia would be expected to place Bedouins/
Europeans andAsians on separate branches of a pairwise clustering
tree, distinct from our finding that places the Q1 (Bedouin) as di-
rect descendants of the earliest lineage that split from the ancient
non-African population.

A demographic scenario consistent with the evidence pre-
sented here is that the population ancestral to the Q1 (Bedouin)
migrated out of Africa, and a subset of this population remained
in the peninsula until the present day, while a second subset of
this population migrated onward and colonized Eurasia. This mi-
gration scenario implies the signal of the same bottleneck would
be present in all non-African populations, which has been ob-
served thus far in coalescent analysis of contemporary non-
African populations (Gronau et al. 2011; Fu et al. 2014; Schiffels
and Durbin 2014) and for an anatomically modern human who
lived 45,000 yr ago (Fu et al. 2014). This is also consistent with
the recent discovery of another anatomically modern human
who lived 55,000 yr ago just northeast of the Arabian Peninsula
that had morphological features similar to European peoples
(Hershkovitz et al. 2015), where this individual could have been
a descendant of the basal Eurasian population that remained on
the peninsula. Under this migration scenario, although other
waves of migration may have occurred, the descendants of these
alternative waves either left no descendants or were integrated
into the dominant populations.

Beyond the importance for disentangling human migration
history, an early split of Eurasian lineages in the Arabian
Peninsula has implications for the study of disease genetics for in-
digenous people in the region. For example, for a disease such as
type 2 diabetes that has a prevalence of >18% in the Qatari popu-
lation, associated genetic variants would not a priori be expected
to be the same as those discovered in Europeans, when considering
that indigenous Arabs are able to trace a significant portion of their
ancestry back to ancient lineages on the Arabian Peninsula. More
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Han Chinese Beijing (CHB)

Han Chinese South (CHS)
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Figure 5. TreeMix (Pickrell and Pritchard 2012) hierarchical clustering
analysis of the Q1 (Bedouin), Q2 (Persian-South Asian), and Q3 (African)
and the 1000 Genomes Project samples. Shown is a maximum-likelihood
tree of population splits inferred without subsequent migration events, in
which branch lengths estimate divergence between populations
(Europeans in shades of purple: CEU, FIN, GBR, IBS, TSI; East Asians in
shades of brown: CHB, CHS, JPT; Africans in shades of orange: LWK, YRI,
with the Q1 [Bedouin] in red, Q2 [Persian-South Asian] in azure, and Q3
[African] in black). When allowing from one to fivemigration events in sep-
arate TreeMix analyses, none of the admixture loops connected the Q1
(Bedouin) with any African populations (Supplemental Fig. 10), consistent
with the Q1 (Bedouin) having no recent African admixture.
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generally, this suggests that for any genome-wide association
study (GWAS) or rare variant association study (RVAS) of diabetes
or other complex diseases in Qatar, inference of deep ancestry in
the Arabian Peninsula, using rare variation sampled by genome
or exome sequencing, is critical for identifying new disease risk
genes. Given the dearth of next generation sequencing studies
conducted in Middle Eastern and Arab populations, these results
indicate that a considerable number of variants that make impor-

tant contributions to disease risk in these
populations are yet to be discovered.

This study is the first analysis of
Arabian Peninsula migration making
use of deeply sequenced genomes from
a sample of unrelated inhabitants of the
peninsula. Although there have been
many analyses of Chr Y andmtDNA sam-
pled from Arab individuals (Abu-Amero
et al. 2007, 2008, 2009; Rowold et al.
2007), and there have been previous sur-
veys of genetic variation of peoplewithin
the peninsula and immediately sur-
rounding regions conducted with geno-
typing arrays (Behar et al. 2010; Hunter-
Zinck et al. 2010; Alsmadi et al. 2013;
Markus et al. 2014; Shriner et al. 2014)
and deep exome sequencing (Rodri-
guez-Flores et al. 2012, 2014; Alsmadi
et al. 2014), and by individual high-cov-
erage genomes (Alsmadi et al. 2014;
John et al. 2015), the sample of rare and
common genetic variation throughout
the genome in our sample provides a far
more complete picture of how both an-
cient and recent migration events have
contributed to the genetics of the mod-
ern peoples of the Arabian Peninsula.
For understanding how human migra-
tion history has determined the structure
of modern genomes, our identification
of a cluster of Q1 (Bedouin) as the most
distant ancestors of non-Africans is of
considerable interest, particularly given
the suspected route of migration out of
Africa and into the surrounding con-
tinents. The possibility that the Q1
(Bedouin) are descendants of the first
Eurasians provides an additional piece
of the puzzle concerning ancient migra-
tion routes and the establishment of an-
cient non-African populations.

Methods

Ethics statement

Human subjects were recruited, andwrit-
ten informed consent was obtained at
Hamad Medical Corporation (HMC)
and HMC Primary Health Care Centers
Doha, Qatar, under protocols approved
by the Institutional Review Boards of
Hamad Medical Corporation and Weill
Cornell Medical College in Qatar.

Inclusion criteria

Qatar is a peninsula nation on the eastern edge of the Arabian
Peninsula (Supplemental Fig. 1). The population of Qatar includes
more than 2million inhabitants, comprised of∼300,000 nationals
with roots in Qatar predating the discovery of oil and gas
and establishment of an independent nation in 1970 and the
more than 1.7 million immigrants who mostly arrived in the past
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Figure 6. Neighbor-joining tree hierarchical clustering analysis of the combined Qatari genomes and
the 1000 Genomes Project Phase 1 samples based on pairwise proportion of shared alleles calculated
across the entire autosome. (A) The entire neighbor-joining tree with each of the branches leading to in-
dividuals in the 1000 Genomes samples color-coded by continent (Europeans in shades of purple: CEU,
FIN, GBR, IBS, TSI; Asians in shades of brown: CHB, CHS, JPT; Africans in shades of orange: LWK, YRI, ASW;
Americans in shades of green: CLM, MXL, PUR) and with the Q1 (Bedouin) in red, Q2 (Persian-South
Asian) in azure, Q3 (African) in black, and Q0 (Subpopulation Unassigned) in gray. (B) Detail of the three
(15%) Q2 (Persian-South Asian) that cluster with Europeans. (C) Detail of the 11 (55%) Q2 (Persian-
South Asian) individuals, with three (5%) Q1 (Bedouin), one (5%) Q3 (African), and one (13%) Q0
(Subpopulation Unassigned) that cluster as an outgroup to Asians. (D) Detail of the 50 (89%) Q1 indi-
viduals, with three (15%) Q2 (Persian-South Asian), one (5%) Q3 (African), and two (25%) Q0
(Subpopulation Unassigned), that cluster outside the Africans and African Ancestry in Southwest US
and that also cluster as an outgroup to all other non-African populations, indicating that they are the
most distant ancestors of all non-Africans. (E) Detail showing the three (15%) Q1 (Bedouin), three
(15%) Q2 (Persian-South Asian), 12 (60%) Q3 (African), and four (50%) Q0 (Subpopulation
Unassigned) that do not form large clusters but are all located within the admixed cluster. (F ) Detail of
the one (5%) Q3 (African) that clusters between Yoruba (YRI) and Luhya (LWK).

Rodriguez-Flores et al.

158 Genome Research
www.genome.org



decade (Qatar Statistics Authority 2013, http://www.qsa.gov.qa/
QatarCensus/Pdf/Population above 15 by educational attainment,
nationality, age, sex and marital status.pdf). As selection criteria,
we required that subjects be third-generationQataris and all ances-
tors were Qatari citizens born in Qatar, as assessed by question-
naires. Recent immigrants or residents of Qatar who traced their
recent ancestry to other geographic regions were excluded.

Natives of the Arabian Peninsula can be divided into at least
three genetic subpopulations that reflect the historical migration
patterns in the region: Q1 (Bedouin), Q2 (Persian-South Asian),
and Q3 (African) (Hunter-Zinck et al. 2010; Omberg et al. 2012;
Rodriguez-Flores et al. 2012). A panel of 48 SNPs was genotyped
by TaqMan (Life Technologies) sufficient for classification into
one of the three subpopulations based on >70% ancestry in one
cluster in a STRUCTURE analysis with k = 3 used to identify indi-
viduals that could unambiguously be placed in one of these three
groups (Supplemental Fig. 2; Pritchard et al. 2000; Rodriguez-
Flores et al. 2012). Our primary focus was the Q1 (Bedouin) genet-
ic subpopulation because of its deepest ancestry in Arabia
(Ferdinand et al. 1993), so we selected 60 Q1 (Bedouin) individu-
als to include in the sample. We additionally selected 20 Q2
(Persian-South Asian) and 20 Q3 (African) to use as controls in
the analysis, and an additional eight Q0 (Subpopulation Unas-
signed) individuals that could not be confidently placed in one
of these subpopulations, defined as not having >70% ancestry
in any of the three groups as determined by STRUCTURE. The
total sample therefore included 108 individuals with an even dis-
tribution of males and females (see Supplemental Methods;
Supplemental Table I).

Illumina deep sequencing of the genomes

In order to characterize the spectrum of genetic variation, each of
the 108 Qatari genomes were sequenced to a median depth of 37×
(minimum 30×) through the Illumina Genome Network (see
Supplemental Methods for details).

Relatedness among Qataris

Given the high rate of consanguineous marriage previously re-
ported in the Qatari population (Hunter-Zinck et al. 2010; Mezza-
villa et al. 2015), we sought to quantify the relatedness between
individuals in our sample and to exclude closely related individ-
uals that could potentially confound population genetics analysis
methods that assumethe input sample isunrelated. Inorder to con-
duct the relatedness analysis, autosomal SNPs in 108 Qatari ge-
nomes (described above) were filtered using PLINK 1.9 (Chang
et al. 2015), and relatedness between the 108 Qatari genomes was
assessed using kinship coefficients estimated by KING-robust
(Manichaikul et al. 2010) and PREST-plus (McPeek and Sun 2000)
(see Supplemental Methods). Both methods found the same five
first-degree and second-degree relationships, in which these rela-
tionships were then confirmed by investigative reassessment of
medical records. One individual from each of the five pairs of rel-
atives was then excluded from the study. Three of the pairs of rel-
atives formed a trio; hence, two individuals were excluded from
the trio, and one individual was excluded from each of the other
two pairs, resulting in exclusion of four relatives in total.

Integration with the 1000 Genomes Project Phase 1

An integrated SNP call set was produced for ancestry analysis for a
total of 1200 genomes, combining the 108 Qatari genomes with
the 1092 genomes from the 1000 Genomes Project Phase 1
(1000 Genomes) (The 1000 Genomes Project Consortium 2012)
(see Supplemental Methods). The integrated call set included

11,711,411 autosomal biallelic SNPs. The transition:transversion
ratio of this final set was 2.2, close to values previously observed
in the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2012). Based on the concordance and quality mea-
sures, the calls generated from our pipeline were considered to be
high quality, and these were used for all further aspects of this
study. After exclusion of four related Qataris (Supplemental
Table III), the final integrated call set included 11,711,386 autoso-
mal biallelic SNPs in 1196 genomes.

Integration with Human Origins data set

The 1000 Genomes Project Phase 1 is an excellent resource for rare
variant discovery; however, it is limited in terms of the breadth of
global populations sampled. Unfortunately, at the time of writing,
no global resource of sequenced genomes existed; hence, the next
best alternative for comparison of the Qataris to populations
around the world is the “Human Origins Fully Public Dataset” (re-
ferred to here as “HumanOrigins” [HO]), which includes genotype
data for 1917 indivduals from Africa, West Eurasia (including
Middle East), South Asia, East Asia, Central Asia/Siberia, and
America. In particular, the West Eurasian, African, and South
Asian data sets include populations sampled in countries close to
Qatar, where detection of shared ancestry is of interest in this
study. The data set also includes data from archaic genomes,
such as Altai Neanderthal, Denisova, and chimpanzee, which are
of interest in this study for quantification of Neanderthal ancestry.
The Human Origins data set includes a number of samples also
present in the 1000 Genomes Project (Supplemental Table IV),
and for these samples, the Human Origins overlap data is kept.

In order to conduct population genetic analysis on a com-
bined data set of the 104 Qatari genomes (QG, n = 104), the 1000
Genomes Project Phase 1 (1000G-HO, n = 1028 after exclusion
of duplicates), and Human Origins Fully Public Dataset (HO, n =
1862 after exclusion of archaic genomes, ancient genomes,
and other genomes not relevant to this study) (Supplemental
Table V), a set of sites overlapping between the integrated Qatari
genomes plus the 1000 Genomes Project minus Human Origins,
and the Human Origins data set were identified. Of 600,841
SNPs in the Human Origins data set and 11,711,386 SNPs in the
Qatari genomes plus the 1000 Genomes Project data set, 388,805
SNPs overlapped. Further filtering was conducted on the data set,
pruning SNPs based on linkage disequilibrium using PLINK
(Purcell et al. 2007), “–indep-pairwise 200 25 0.4,” matching pa-
rameters used previously (Lazaridis et al. 2014). After linkage dise-
quilibrium-pruning, the final data set for analysis included
197,714 SNPs segregating in the three data sets (QG, 1000G-HO,
and HO).

Inbreeding coefficient

In order to place the high reported consanguinity in Qatar in a
global context, the inbreeding coefficient was calculated using
PLINK 1.9 (Chang et al. 2015) for Q1 (Bedouin), Q2 (Persian-
South Asian), and Q3 (African) Qataris, the 1000 Genomes
Project minus Human Origins overlap, and Human Origins popu-
lations (see Supplemental Methods).

Principal component analysis

APCA(Priceet al. 2006)wascarriedout for thecombined104Qatari
genomes, the 1000 Genomes Project minus Human Origins over-
lap, and Human Origins samples using the 197,714 SNPs in the
integrated data set (filtering criteria described above). Using the
results of this large-scale analysis, visual assessment of clustering
andpopulationoverlapwas used to confirmexpected relationships

Uninterrupted ancestry in Arabia
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between the analyzed populations. Four distinct plots of a single
PCA run were constructed: one comparing the Qatari genomes
to the 1000 Genomes populations (Supplemental Fig. 5A), one
comparing Qataris to the 1000 Genomes and Human Origins
Samples including two visualizations of the full data set (Fig. 1A,
color-coded by regional meta-populations; Supplemental Fig. 5B,
color-coded by detailed population), and one comparing Qataris
to Middle Eastern populations from the Human Origins data
set (Fig. 1B). For the latter, in order to compare Qataris to Middle
Eastern populations with potential for recent shared Bedouin an-
cestry with Qataris sampled by the Human Origins data set, popu-
lations from the Middle East previously labeled in Lazaridis et al.
(2014) as“WestEurasia,”were relabeledas“MiddleEast,” including
BedouinA,BedouinB,Druze, EgyptianComas, EgyptianMetspalu,
Iranian, Jordanian, Lebanese, Palestinian, Saudi, Syrian, Turkish,
Turkish Adana, Turkish Aydin, Turkish Balikesir, Turkish Istanbul,
Turkish Kayseri, Turkish Trabzon, and Yemen.

Y and mitochondria haplogroup assignment

In order to determine the prevalence of known Chr Y and mtDNA
haplogroups inQatar, SNPgenotypesweregenerated simultaneously
for the 108 Qatari genomes using an updated version of GATK
(v3.1.1) (DePristo et al. 2011) that supports haploid chromosome
calling (n = 53 Chr Y, n = 108 mtDNA). For one of the genomes, the
sample was originally thought to be male but is most likely female
due to low call rates on Chr Y. This sample was excluded from
ChrYanalysis andX/Adiversityanalysis, butwas included inautoso-
mal andmtDNAanalysis.Meancoverageofmapped readswas11× in
Chr Y and 3892× inmtDNA. After exclusion of related and Q0 (Sub-
population Unassigned) (admixed) Qataris, the remaining samples
included 47 Chr Y and 96mtDNA.

Haplogroup assignments for the Chr Y and mtDNA were
made using previously characterized variants. For Chr Y, these as-
signments were made using YFitter (Jostins et al. 2014) by using
variants limited to known SNPs cataloged by the International
Society ofGeneticGenealogy (Jobling andTyler-Smith 2003)with-
in a 10-Mb interval of the YChromosome that is known to be ame-
nable to analysis based on short read sequencing (Skaletsky et al.
2003; Poznik et al. 2013). For mtDNA, these assignments were
made using HaploGrep (Kloss-Brandstätter et al. 2011) by using
the set of known haplogroup-specific variants in the PhyloTree
(van Oven and Kayser 2009) database.

Inorder toquantify the differences betweenmtDNAandChr Y
in terms of diversity of the haplogroups identified, the propor-
tion of variance among and within populations was quantified
for Chr Y and mtDNA using the AMOVA function in Arlequin
(Supplemental Methods; Excoffier et al. 1992; Excoffier and Lischer
2010). The analysis was repeated eight times, including separate
analysis of Chr Y andmtDNA, for three-way comparison of the pop-
ulations, as well as all possible two-way comparisons (Q1/Q2, Q1/
Q3, Q2/Q3). The proportion of variance among andwithin popula-
tionswas tabulated, aswell as the estimated Fst and P-value for both.

Comparison of X Chromosome to autosomal diversity

The ratio of X-linked to autosomal nucleotide diversity (X/A) for
different populations was computed following the approach in
Gottipati et al. (2011) and Arbiza et al. (2014) (Supplemental
Methods).

Coalescent analysis

To infer the extent and timing of bottlenecks, the pairwise sequen-
tialMarkov coalescent (PSMC) (Li andDurbin 2011)was applied to

the 96 Q1 (Bedouin), Q2 (Persian-South Asian), or Q3 (African)
Qatari genomes. A plot of effective population size versus years
in the past was generated for each of the genome using instruc-
tions from the PSMC manual (Li and Durbin 2011; see
SupplementalMethods). For comparison, the same PSMCpipeline
was run onBAM files of Illumina deep sequencing readsmapped to
the GRCh37 human reference genome for an individual of
European ancestry (NA12878, Utah resident with Northern and
Western European ancestry, CEU) and an individual of African an-
cestry (NA19239, Yoruba in Ibadan, Nigeria, YRI) sequenced as
part of the 1000 Genomes Pilot (The 1000 Genomes Project
Consortium2010). The resulting PSMCplots for these two individ-
uals were shifted slightly, such that they align with Qatari PSMC
plots at distant (>200,000 yr ago) timescales (Fu et al. 2014).

Genome-wide admixture analysis

In order to learnmore about the ancestry of the sampled Qataris, a
genome-wide admixture analysis was conducted on the combined
data set of 104 Qatari genomes, the 1000 Genomes Project minus
Human Origins overlap, and Human Origins using ADMIXTURE
(Supplemental Methods; Alexander et al. 2009). The cross-valida-
tion error was calculated for a range of expected number of ances-
tral populations (K), and the K with the lowest cross-validation
error was used to quantify ancestry, in this case K = 12.

African admixture proportion and timing

In order to estimate the proportion and timing of African admix-
ture in Qatari populations, the genomes of Qataris and world pop-
ulations were analyzed using ALDER 1.2 (Supplemental Methods;
Loh et al. 2013).

Local admixture analysis

An admixture deconvolution analysis was performed on the 96Q1
(Bedouin), Q2 (Persian-South Asian), or Q3 (African) Qatari ge-
nomes using the 11,711,386 autosomal SNPs segregating in both
the 1000 Genomes Project and Qatari genomes using SupportMix
(Supplemental Fig. 9; SupplementalMethods;Omberg et al. 2012).

Neanderthal ancestry

In order to compare the proportion of Neanderthal admixture
in Q1 (Bedouin) Qataris with that of other populations in the
1000 Genomes Project (The 1000 Genomes Project Consortium
2012) and Human Origins (Lazaridis et al. 2014), the F4 ratio
(Patterson et al. 2012) and Patterson’s D-statistic (Patterson et al.
2012) were estimated using the qpF4ratio and qpDstat programs,
respectively, from the ADMIXTOOLS 3.0 package (Supplemental
Methods; Patterson et al. 2012).

We additionally considered the expected F4 ratio for the Q1
(Bedouin) under the scenario of no admixture between
Neanderthal and direct ancestors of Q1 (Bedouin), such that ob-
served Neanderthal ancestry in Q1 (Bedouin) would be entirely
due to European admixture. From the estimated components of
the ADMIXTURE analysis with K = 12, the Southern European an-
cestry in the Q1 (Bedouin) is 8.2% on average, and the Northern
European ancestry in Q1 (Bedouin) is 1.3% on average, totaling
9.5% of the genome. If the Q1 (Bedouin) had never mixed with
Neanderthal prior to introduction of European admixture, assum-
ing no selection against introgressed genomic intervals, we would
therefore expect an F4 ratio in Q1 (Bedouin) to be on the order of
1/10 of those observed in European populations.
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TreeMix analysis

We performed a TreeMix analysis (Pickrell and Pritchard 2012) of
the 96 Q1 (Bedouin), Q2 (Persian-South Asian), or Q3 (African)
Qatari genomes and the 1000Genomes Project excluding admixed
populations (Puerto Rican, Mexican, Colombian, and African
Ancestry in Southwest US) (Supplemental Methods).

Neighbor-joining tree clustering

In order to determine if any of the Qatari genomes were the most
distant ancestors of all non-African populations, neighbor-joining
trees were constructed for the 104 Qatari genomes and the 1000
Genomes Project using the 11,711,386 autosomal SNPs segregat-
ing in both data sets. For each pair of genomes, the proportion
of shared alleles (PSA) (Mountain and Cavalli-Sforza 1997), or 1
minus the proportion of the genome identical by state (IBS), was
calculated using the “–distance -square -1-ibs” function in PLINK
1.9 (Purcell et al. 2007; Chang et al. 2015), which outputs a
1196×1196 matrix of distances (1 minus IBS distance or PSA). A
neighbor-joining (NJ) tree was constructed using a recently updat-
ed version of the originalNJ (Saitou andNei 1987) algorithm called
NJS (Criscuolo andGascuel 2008) that is better at handlingmissing
values, as implemented in the APE package in R (Paradis et al.
2004; R Core Team 2014). Overall, this approach is computation-
ally tractable formillions ofmarkers genotyped in thousands of ge-
nomes and produces similar topologies to maximum-likelihood
clustering methods but requires only a fraction of the compute
time, where the trade-off is a sacrifice in the accuracy of branch
lengths (Tateno et al. 1994). The algorithm takes the distance
matrix as input and outputs a tree. In order to confirm the robust-
ness to sample ordering, the order of samples in the matrix was
shuffled and reclustered 100 times, in which all reclusterings re-
covered the same tree. In order to produce bootstrap support val-
ues for the tree, 100 reclusterings of the tree were generated
based on random sampling of SNPs. For each bootstrap iteration,
11,711,386 random (with replacement) SNPs were selected using
a Python script (www.python.org), and then the PSA distance
matrix and NJ tree were recalculated using these SNPs. Bootstrap
support was calculated using the Python package SumTrees
(Sukumaran and Holder 2010).

For visualization, the tree was rooted at the most recent com-
mon ancestor (MRCA) node of the largest cluster of the 1000
Genomes Yoruba (YRI) genomes in the tree. A color version of
the tree was produced using TreeGraph 2 (Stöver and Müller
2010) by manually coloring the branches leading to each node.
A single color is assigned to each population, with populations
from the same continent having similar colors: Europeans in
shades of purple, Asians in shades of brown, Americans in shades
of green, Africans in shades of orange, Q1 (Bedouin) in red, Q2
(Persian-South Asian) in blue, Q3 (Sub-Saharan African) in black,
and Q0 (Subpopulation Unassigned) in gray. When a cluster of
nodes includes different populations, the terminal branches were
given population-specific colors, whereas the shared higher-order
branches for the cluster were given the color of the population in
majority. For example, if 10 Q1 (Bedouin) and 1 Q0 (Subpopula-
tion Unassigned) were in a cluster, the branches above where the
nodes come together were colored red.

Data access

The sequence data generated for this study in BAM format, as well
as SNP genotypes in VCF format, have been submitted to the NCBI
Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra/)
under accession number SRP060765. Allele frequencies for known

and novel genomic SNPs have been submitted to NCBI dbSNP
(http://www.ncbi.nlm.nih.gov/SNP/) under submitter batch ID
QG108_GENOMIC_SNPS_20151008 (http://www.ncbi.nlm.nih.
gov/SNP/snp_viewBatch.cgi?sbid=1062298) and submitter handle
WEILL_CORNELL_DGM. PLINK and VCF files of genotypes for
variants analyzed in this study, both before and after integration
with 1000Genomes andHumanOrigins, are available on ourweb-
site http://geneticmedicine.weill.cornell.edu/genome.html.
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