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In complex environments, many potential cues can guide a decision or be assigned responsibility for the outcome of the decision. We
know little, however, about how humans and animals select relevant information sources that should guide behavior. We show that
subjects solve this relevance selection and credit assignment problem by selecting one cue and its association with a particular outcome
as the main focus of a hypothesis. To do this, we examined learning while using a task design that allowed us to estimate the focus of each
subject’s hypotheses on a trial-by-trial basis. When a prediction is confirmed by the outcome, then credit for the outcome is assigned to
that cue rather than an alternative. Activity in medial frontal cortex is associated with the assignment of credit to the cue that is the main
focus of the hypothesis. However, when the outcome disconfirms a prediction, the focus shifts between cues, and the credit for the
outcome is assigned to an alternative cue. This process of reselection for credit assignment to an alternative cue is associated with lateral
orbitofrontal cortex.
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Introduction
In a natural environment, an animal faces numerous objects,
which have associations with actions and their outcomes (Gib-
son, 1979; Cisek and Kalaska, 2010; Hikosaka et al., 2014). To act
adaptively, it is important to have accurate predictions of the

consequences of choices. However, which prediction an animal
makes depends on which object with specific association to an
outcome has been used to make the prediction. Unfortunately,
single objects in complex environments do not all concur as pre-
dictors of future events. In many situations, the animal infers
which object is a better predictor of subsequent events. Such
inferences about which stimuli in the environment are important
might be described as the internal focus of the animal. Thus, once
the decision is made, it is according to this hypothesized rela-
tionship involving a specific preceding event that responsibil-
ity, or credit, for the outcome of the decision is likely to be
assigned (Sutherland and Mackintosh, 1971; Mackintosh,
1975). In other words, once the outcome of the decision is
apparent, the outcome will be associated with the object that
has been focused on.

Orbitofrontal cortex (OFC) and medial frontal cortex (MFC)
encode specific sensory events and their relationships with signif-
icant events, such as rewards (McDannald et al., 2011, 2014;
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Significance Statement

Learners should infer which features of environments are predictive of significant events, such as rewards. This “credit assign-
ment” problem is particularly challenging when any of several cues might be predictive. We show that human subjects solve the
credit assignment problem by implicitly “hypothesizing” which cue is relevant for predicting subsequent outcomes, and then
credit is assigned according to this hypothesis. This process is associated with a distinctive pattern of activity in a part of medial
frontal cortex. By contrast, when unexpected outcomes occur, hypotheses are redirected toward alternative cues, and this process
is associated with activity in lateral orbitofrontal cortex.
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Noonan et al., 2011; Monosov and Hikosaka, 2012; Klein-Flügge
et al., 2013; Howard et al., 2015). However, it has been unclear
how representations of specific sensory events in these brain areas
and mechanisms of credit assignment are related. We propose
that MFC and OFC representations encode focused and alternative
associations between sensory events and outcomes, and competi-
tively guide credit assignment by confirming or disconfirming
the initial predictions. The problem of assigning credit for cur-
rent outcomes to earlier choices has been examined in monkeys
with lesions and fMRI (Noonan et al., 2010, 2012; Walton et al.,
2010; Chau et al., 2015). However, while these previous experi-
ments focused on a particular credit assignment problem involv-
ing temporally distributed events, here we consider the more
general case where multiple simultaneous cues/objects are pres-
ent before action and outcome delivery. Furthermore, to rigor-
ously examine the credit assignment problem, it is better that the
candidate predictive sensory events are not the choice object
themselves as in the previous studies (Noonan et al., 2010; Wal-
ton et al., 2010; Chau et al., 2015). Otherwise, the participant’s
action may suffice to disambiguate the relevant sensory events
from irrelevant ones.

To examine the credit assignment
problem in the context of multiple cues,
we designed a variant of the well known
weather prediction task (Knowlton et al.,
1996). On each trial, subjects could select
one of two cues to guide their decision.
Crucially, the choice options were presented
separately from the cues to mimic the natu-
ral environment with multiple cues (Fig.
1A), and the subjects chose one of them to
express their prediction about the weather
outcome. It therefore became possible, un-
like in previous experiments where only
choice stimuli were presented and no sepa-
rate cue is involved (Boorman et al., 2009;
Abe and Lee, 2011; Rushworth et al., 2011;
Lee et al., 2012; Donoso et al., 2014; Hunt et
al., 2014), to examine how outcome credit is
assigned to a preceding cue among multiple
simultaneous cues independent of the
choice process itself. Furthermore, in this
task design, the attended associational
knowledge predicting the outcome events
can be estimated on a trial-by-trial basis. In
the final stage of the trial, subjects saw the
actual weather outcome. At this point, sub-
jects could re-evaluate not just the choice
they had selected but also their initial inter-
nal focus on the association between a spe-
cific cue and the outcome.

We show that subjects focus more on
one cue than another for guiding their deci-
sions and credit assignment is made accord-
ing to this internal focus. We found that
neural mechanisms in MFC and OFC were
associated with credit assignment based on
the initial focus and on an alternative focus
of cue outcome association, respectively.

Materials and Methods
Subjects. Twenty-six healthy volunteers partic-
ipated in the functional magnetic resonance
imaging (fMRI) experiment. The data of two

volunteers were removed because they could not complete the scanning
session due to a technical problem. The remaining 24 subjects (17 wom-
en; mean age, 23.7 years; SD, 2.8 years) were included in all further
analyses. All participants gave informed consent in accordance with the
National Health Service Oxfordshire Central Office for Research Ethics
Committees (07/Q1603/11) and Medical Sciences Interdivisional Re-
search Ethics Committee (MSD-IDREC-C1-2013-066). Subjects were
paid £25 for their participation in the experiment.

Task design. To mimic the situation where multiple simultaneous an-
tecedent events can cause a subsequent outcome event, we designed a
task in which subjects were shown two geometrical cues at the center of a
screen and a single weather outcome followed them. This is in contrast to
previous experiments where only choice stimuli were presented and no
separate cue is involved (Boorman et al., 2009; Abe and Lee, 2011; Rush-
worth et al., 2011; Lee et al., 2012; Donoso et al., 2014; Hunt et al., 2014).
The task is designed to examine how outcome credit is assigned to one
preceding cue among many that are simultaneously presented indepen-
dent of the choice process itself. There were a total of four possible
geometrical shapes, each of which was uniquely associated with the out-
come. For example, a triangle cue might be more likely to be followed by
a sun outcome compared with a rain outcome in one phase of the task.
The weather prediction options were displayed on the left and right of the
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Figure 1. Experimental task design and behavioral results. A, Experimental task. Subjects were presented with two geometrical
shapes (from a set of four) in the screen center and, separately, two possible weather prediction options at the left and right of the
screen. The two cues predict different outcomes as being more likely (percentages indicated above the cues). B, After the presen-
tation of the information cues and the choice options (Cue & Option Display), they chose one weather prediction by pressing a
button (Response & Chosen Option Display), and received feedback about the actual weather outcome (Outcome). C, At each phase
of the task schedule, two of four cues were predictive of a weather outcome (relevant cues), while the other two cues were not
(irrelevant cues). Two types of changes in association between cues and weather outcomes occurred during the task. During
reversal switches, the association of the cue with a specific weather outcome was reversed. During Relevance Switches, the
predictive cues became nonpredictive and nonpredictive cues became predictive.
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geometrical cues, and their positions were randomized from trial to trial
so that the button press used to indicate a given prediction varied from
trial to trial. Subjects responded within 4 s (Fig. 1B). Once the response
was made, the option chosen was marked by the presentation of a white
frame. After the response, there was an interval of 3 s and jitter (drawn
from a Poisson distribution). The outcome was then displayed just below
the two geometrical shapes to make the association between the cues and
the outcomes easier. An intertrial interval of 3 s and jitter (drawn from a
Poisson distribution) then followed.

Two geometrical shapes were randomly chosen from the set of four
cues (using random values generated by MATLAB). Then, left or right
cue positions were randomly assigned to the two cues (again using ran-
dom values generated in MATLAB). Crucially, the selection of the two
cues and the assignment of the cue positions were based on separate sets
of random values so that there were no correlations between the two
processes (subjects could not predict the identities of the cues from their
positions).

The cues had unique predetermined strengths of association to out-
comes at each phase of the task, and these were used to calculate the log
likelihood ratio of the occurrence of the outcomes given the pair of cues
that were presented on each trial. The log likelihood ratios were then
transformed to probabilities, which were in turn used to generate the
specific outcome at each trial.

Task schedule. To highlight a particular aspect of the learning process,
which assigns credit, or pays more attention, to specific cues than other
cues, we designed two types of change in the associative relationship
between the geometrical shapes and the weather outcomes. One type of
the change in association was reversal of the association value (Value
Switch; Fig. 1C). For example, during a reversal switch, the cue that
previously predicted the sun became the cue that predicted the rain and
vice versa. In this type of switch, the relevance of the cues did not change
(relevant cues remained relevant, and irrelevant cues remained irrele-
vant), but their associative relationship with each specific outcome was
reversed. In another type of change, the relevance of the cues changed
(Relevance Switch), as follows: the cues that had been strongly predictive
of one outcome or the other became predictive of neither outcome (e.g.,
the strength of association between a cue and an outcome might change
from 80% to 50%) and vice versa (e.g., the strength of association be-
tween a cue and an outcome might change from 50% to 80%). This novel
type of switch in task design was introduced to demonstrate that the
learning of cue– outcome association involves not only an isolated cue–
outcome association process independent of other cues but also depends
on determining the relative importance of cues or, in other words, deter-
mining how credit is assigned to specific cues in predicting outcomes. We
expected differential credit assignment to the cues to modulate the effi-
ciency of the learning process associating the cues to outcomes. Each of
the switch types occurred once in the task, and the order of the switch
types was counterbalanced across subjects. The subjects were simply in-
structed to learn the meaning of each cue and were told that some cues
were informative while others were not. The changes in the associations
of cues with outcomes were not explicitly instructed before the scanning
session.

Model descriptions. We propose that credit assignment in a multicue
environment depends on which cue subjects attend to or select when

generating the initial prediction that guides decision making. At the time
of outcome, this distinction between cues also modulates the credit as-
signment process. Therefore, in the formulation of the models, whether
and how the cues are distinguished is of great importance. Model 1 does
not distinguish the cues. Models 2– 4 distinguish cues on the basis of a
subjective selection process (or internal hypothesis), which is estimated
from the congruency between the choice and the association of the cue to
outcomes. Models 5–9 distinguish between cues on the basis of aspects of
their objective association with particular outcomes without positing any
subjective internal selection process. Models 5 and 6 focus on the prede-
termined objective strength of association between cues and outcomes,
and Models 7–9 focus on the reliability of the objective history of associ-
ations. For details of the models, see the descriptions below.

The first model, the Rescorla-Wagner Model (Model 1: Basic RL (re-
inforcement learning) Model), was the most basic association learning
model examined, as follows:

PVn � 0.5 � Vc1,n � 0.5 � Vc2,n (1)

Vc1,n�1 � Vc1,n � � � �O � PVn� (2)

Vc2,n�1 � Vc2,n � � � �O � PVn� (3)

where PV is the prediction variable, which is the sum of the equally
weighted cue– outcome association strengths of individual cues (Vc1 and
Vc2). PV is transformed to the estimated choice probability with the
function p � 1/(1 � e (� � (PV � 0.5) � � � Cn�1 )), where � is the inverse
temperature and � is the factor of choice correlation across trials, also
known as “choice stickiness” (Cn�1 is the choice in the previous trial,
with sun choice coded as �1 and rain choice coded as �1). V is the
cue– outcome association strength of each cue, O is the outcome in the
current trial (sun outcome coded as �1 and rain outcome coded as 0),
and � is the learning rate shared by both cues. The subscript n corre-
sponds to the current value, and the subscript n � 1 corresponds to the
updated value. Note that this model assigned equal weight to each cue in
generating the prediction of the outcome in the decision phase and in
assigning the credit for the outcome in the outcome phase. The model is
based on the empirical finding that the prediction used in the decision
appears in the calculation of the prediction error in the outcome phase
(Takahashi et al., 2011). The free parameters in this basic association
model are inverse temperature (�), choice correlation factor (�), and
learning rate (�; Table 1).

The second model (Model 2) incorporates differential weighting of
cues in the prediction generation process at the time of decision making
as an additional free parameter [prediction weight ( pw)]. At this point,
the weight assigned to each cue is either the weight for the cue subjectively
selected as the relevant cue (SRC; pwselected) or the weight for the non-
SRC (1 � pwselected). It is important to realize that we can infer which cue
is the SRC, the focus of the subject’s hypothesis, and which cue is the
non-SRC, on the basis of the history of association between the cues that
were presented and the choices that subjects made (the cue– choice con-
gruency; Fig. 2 A, B), which reflects how readily the cue and associated
outcome come to mind and influence the decision process. The SRC can
thus be thought of as the cue that most easily and readily come to mind

Table 1. Model comparison of subjectively relevant cue models

Model type � � � pw lw lw_cor lw_inc -LL BIC

Basic RL (Model 1) 3.45 (1.35, 3.91) �0.04 (�0.16, 0.07) 0.31 (0.23, 0.36) 2984 3177
Prediction weight (Model 2) 4.29 (1.63, 5.51) �0.04 (�0.12, 0.13) 0.17 (0.12, 0.25) 0.82 (0.78, 0.93) 2614 2872
Learning weight (Model 3) 4.26 (1.60, 6.02) �0.04 (�0.10, 0.12) 0.33 (0.26, 0.44) 0.88 (0.76, 0.95) 0.53 (0.38, 0.62) 2541 2863
Learning weight and feedback

(Model 4)
4.32 (2.60, 5.27) �0.03 (�0.10, 0.15) 0.41 (0.26, 0.50) 0.93 (0.82, 1.00) 0.95 (0.62, 1.00) 0.41 (0.26, 0.49) 2364 2751

Prediction weight (cue distinction) 4.31 (1.90, 5.32) �0.02 (�0.11, 0.14) 0.18 (0.14, 0.24) 0.99 (0.91, 1.00) 2626 2884
Learning weight (cue distinction) 4.42 (2.53, 5.54) 0.00 (�0.10, 0.16) 0.39 (0.32, 0.54) 1.00 (0.94, 1.00) 0.45 (0.28, 0.63) 2552 2875
Learning weight and feedback

(cue distinction)
4.21 (1.92, 5.30) 0.01 (�0.09, 0.14) 0.42 (0.31, 0.53) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.31 (0.10, 0.43) 2457 2844

Estimated values of free parameters are represented as median (25th, 75th percentiles) in each entry. pw, prediction weight; lw, learning weight; lw_corr, learning weight in correct trial; lw_inc, learning weight in incorrect trial; -LL, negative
log likelihood; BIC, Bayesian information criterion.
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when two cues are presented together on a
given trial. We refer to this model as the Pre-
diction Weight Model (Model 2), as follows:

PVn � pwselected � Vselected,n � �1 � pwselected�

� Vnon-selected,n (4)

Vselected,n�1 � Vselected,n � � � �O � PVn�

(5)

Vnonselected,n�1 � Vnonselected,n � �

� �O � PVn� (6)

In this case, PV is the prediction variable calcu-
lated from the sum of the unequally weighted
cue– outcome association strengths of individ-
ual cues.

The third model (Model 3) is constructed by
further addition of a mechanism of differential
credit assignment to each cue (SRC vs non-
SRC). This is achieved by the inclusion of an
additional free parameter specifying a differen-
tial learning weight (lw) for the cues. This
means that, at the end of each trial when
cue– outcome association strengths of the cues
(Vselected and Vnonselected) are adjusted on the
basis of the outcome that has just been wit-
nessed, the adjustment is greater (learning is
faster) for the cue with the higher learning
weight. The learning weight assigned to the
SRC in this model (Model 3: Learning Weight
Model) was lwselected, and the learning weight
assigned to the non-SRC was (1 � lwselected), as
follows:

PVn � pwselected � Vselected,n � �1 � pwselected�

� Vnon-selected,n (7)

Vselected,n�1 � Vselected,n � lwselected � �

� �O � PVn� (8)

Vnonselected,n�1 � Vnonselected,n � �1 � lwselected�

� � � �O � PVn� (9)

The determination of the SRC and non-SRC in
the second and the third model (Models 2 and
3) and the next model (Model 4) was, in each
case, based on an identical analysis of choice
patterns in past trials (Fig. 2A, Table 1). In any
such analysis, it is necessary to choose the num-
ber of previous trials that will be considered
when the choice pattern is investigated to de-
termine the SRC and non-SRC of the current
trial. The recency-weighted factor was fixed to
a half-life of six trials for all the results pre-
sented here; however, the results were consis-
tent across different lengths of half-life. For
both pw and lw, the differential weighting fac-
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4

choice in the current trial (Trial N). The SRC (shown in red), as
opposed to the non-SRC (shown in green), can then be inferred
as the cue that was more likely to have guided the participant’s
choice on the current trial. B, In summary, on each trial, we
were able to define the cue that better predicted the subject’s
current choice as the SRC and the other cue as the non-SRC.
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tor for the SRC was defined as a free parameter
ranging from 0 to 1 [SRC weight � a, non-SRC
weight � (1 � a)]. At the time of the decision
and prediction generation, the weights simply
multiplied the association strength of each cue.
At the time of the outcome and credit assign-
ment, the weights multiplied the basic learning
rate, which was shared by both cues.

The final model (Model 4: Learning Weight
and Feedback Model; Table 1) was similar to
the previous models, but, in addition, it distin-
guished cases of correct and incorrect feed-
back. Because of this distinction between
confirmation and disconfirmation of the ini-
tial prediction, there were also two free pa-
rameters for learning weights: lwselected, correct

and lwselected, incorrect in correct trials (confir-
mation case), as follows:

Vselected,n�1 � Vselected,n � lwselected, correct � �

� �O � PVn� (10)

Vnonselected,n�1 � Vnonselected,n

� �1 � lwselected, correct� � � � �O � PVn�

(11)

and in incorrect trials (disconfirmation case),
as follows:

Vselected,n�1 � Vselected,n � lwselected, incorrect � �

� �O � PVn� (12)

Vnonselected,n�1 � Vnonselected,n

� �1 � lwselected, incorrect� � � � �O � PVn�

(13)

Prediction variables were calculated as in pre-
vious models as follows:

PVn � pwselected � Vselected,n � �1 � pwselected�

� Vnon-selected,n (14)

We also conducted additional control analyses
using models that were fundamentally differ-
ent in spirit because they used different ways of
distinguishing between cues. Instead of infer-
ring individual participants’ subjective distinc-
tions between SRCs and non-SRCs, these
alternative models adopted optimal strategies
of using information by distinguishing be-
tween the two cues presented on any trial sim-
ply in terms of the objective cue– outcome
association in a given task phase (predeter-
mined cue relevance models, Models 5 and 6;
Fig. 3A, Table 2) or in terms of the recency-
weighted cue– outcome association history
(cue– outcome reliability models, Models 7–9;
Fig. 3B, Table 2). Thus, while all these models,
Models 5–9, were fundamentally different
from Models 2– 4 (that assumed participants
had subjective hypotheses about cue– outcome
associations), Models 5–9 shared similarities
with one another because they all attempted to determine an “objectively
relevant cue” versus an “objectively irrelevant cue” (as opposed to the SRC
and non-SRC). They all assumed that cue determination simply reflected the
objective history of cue–outcome association in the absence of any subjec-

tive hypothesis construction. Although these strategies are more rational
ways of performing the current task, actual data in the Results section show
that the behavior of human subjects deviated from these rational strategies.

The prediction and learning weights of relevant cues in the predeter-
mined relevance models (predetermined cue relevance-based prediction
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weight model, Model 5; and predetermined cue relevance-based learning
weight model, Model 6; Table 2) were estimated as free parameters, while
those of irrelevant cues were set to 1. Thus, the values of the free param-
eters for the relevant cues were estimated in reference to the irrelevant
cues. Because of this approach, it was not necessary to limit the values of
the free parameters for the relevant cues to the range between 0 and 1.
Note that, unlike the other models, the relevant versus irrelevant cue
designation in this model was not determined at a single-trial level but at
each task phase. In these models (Models 5 and 6), the following different
combinations of cue types might occur: relevant–relevant pair, irrelevant–
irrelevant pair, and relevant–irrelevant pair.

Thus, in summary, a model can be devised that was based only on the
objective, predetermined cue relevance, without any reference to any
subjective hypothesis process, but which was analogous in other respects
to the models using a subjective hypothesis process (Model 2– 4). Al-
though cue distinction was based on objective predetermined cue rele-
vance in Models 5 and 6, the manner of assigning the prediction weights
and learning weights was similar to the models involving subjective cue
selection (Model 2– 4; Eqs. 4 –14). Designations of “selected cue” and
“nonselected cue” were replaced by “relevant cue” and “nonrelevant
cue,” respectively.

As already mentioned, other variants of objective (optimal) models can be
devised in which the cues were again distinguished on the basis of the objec-
tive cue–outcome history, but the cue–outcome history that was considered
was recency weighted and the cue determinations were made on a single-trial
level (Fig. 3B; cue–outcome reliability models: cue–outcome reliability-
based prediction weight model, Model 7; cue–outcome reliability-based
learning weight model, Model 8; and cue–outcome reliability-based learn-
ing weight and feedback model, Model 9; Table 2). Although cue distinction
was based on objective cue–outcome reliability in Models 7–9, again the
manner of assigning the prediction weights and learning weights was exactly
the same as in the three models involving subjective cue selection (Model
2–4; Eqs. 4–14). Designations of selected cue and nonselected cue were
replaced by “reliable cue” and “unreliable cue,” respectively.

Model comparisons. We formally compared the models by examining
how well they fit the behavioral data obtained from human subjects. The
values of free parameters were fitted for the behavioral data of individual
subjects by minimizing the negative log likelihood for individual sub-
jects’ data using the fminsearch function of MATLAB. Note that there
was no constraint on the fitted parameters from the other subjects or the
group of other subjects so that the fitting procedures for each individual
subject’s data were independent of each other. The median (and 25th,
75th percentiles) values of the fitted parameters were documented in
Tables 1 and 2. Note that the estimated values of fitted parameters and
negative log likelihoods were stable across the fitting processes with dif-
ferent initial values of the parameters. The negative log likelihoods esti-
mated for individual subjects were transformed to calculate values of the
Bayesian Information Criterion (BIC) by considering the number of free
parameters. The subsequent comparisons were based on the sum of these
individually estimated BIC measures, which penalize the inclusion of
additional free parameters severely. Furthermore, we noted that the cue-
weighting parameters that had been fitted mostly favored the SRC, dur-

ing both prediction generation and credit assignment (Table 1). All
results of the model fitting are documented in Tables 1 and 2.

fMRI data acquisition. fMRI data and high-resolution structural MRI
data were acquired with a 3 T scanner (Magnetom, Siemens). fMRI data
were acquired on a 64 � 64 � 41 grid, with a voxel resolution of 3 mm
isotropic, an echo time (TE) of 30 ms, and a flip angle of 90°. We used a
Deichmann sequence (Deichmann et al., 2003), in which the slice angle
was set to 25° with local z-shimming. This sequence reduces distortions
in the orbitofrontal cortex. T1-weighted structural images were acquired
for subject alignment using an MPRAGE sequence with the following
parameters: voxel resolution, 1 � 1 � 1 mm 3 on a 176 � 192 � 192 grid;
TE � 4.53 ms; inversion time, 900 ms; and repetition time, 2200 ms. The
functional scans were acquired in a single continuous session (run) of
�50 min (230 trials).

Preprocessing. fMRI analysis was conducted using the Centre for
Functional Magnetic Resonance Imaging of the Brain (FMRIB) Soft-
ware Library (FSL; Smith et al., 2004). Independent component anal-
yses of the fMRI data were performed using MELODIC to identify and
remove obvious motion artifacts and scanner noise (Damoiseaux et
al., 2006). Data were then processed using the following default op-
tions in FSL: motion correction was applied using rigid-body regis-
tration to the central volume (Jenkinson et al., 2002); Gaussian spatial
smoothing was applied with a full-width half-maximum of 7 mm;
brain matter was segmented from non-brain matter using a mesh
deformation approach (Smith, 2002); and high-pass temporal filter-
ing was applied with a Gaussian-weighted running lines filter, with a
3 dB cutoff of 100 s.

GLM analysis. The analysis of the fMRI data focused on two key aspects
of the task. First, for the analysis of decision-related activity, we focused
on the time in each trial when decisions were made and used regressors
derived from the absolute values of the cue– choice association strengths
of the cues. Note that these association strengths correspond to the esti-
mates of the strengths of cue– outcome associations in the models that
included a subjective cue selection process (Models 2– 4); in the Results
section, we explain that models that included a subjective cue selection
process provided much better accounts of behavior than the alternative
objective models, and so the fMRI analysis was linked to these behavioral
models (Models 2– 4). In these best-fitting models, the crucial aspect was
the distinction between the SRC and non-SRC, which can be conceived
as attended or unattended cues. The credits at the time of the outcome
were assigned based on this designation of the cues (see the Results sec-
tion). For this reason, we included separate regressors for the SRC and
non-SRC. The absolute values of cue– outcome association for each type
of the cues reflect how consistently the cue has been associated with a
choice of weather prediction (Fig. 2A) and, therefore, how readily the cue
and associated outcome come to mind and influence the decision
process.

It may be worth noting that this formulation of the regressors might
also be akin to those that might be appropriate for identifying recently
proposed “confidence” signals (Lebreton et al., 2015) with high magni-

Table 2. Model comparison of predetermined cue relevance and cue– outcome reliability models

Model type � � � pw lw lw_reli_cor lw_reli_inc -LL BIC

Predetermined cue relevance
models

Prediction weight (Model 5) 3.47 (1.34, 3.96) �0.05 (�0.16, 0.06) 0.16 (0.11, 0.21) 0.81 (0.62, 1.29)* 3004.96 3263.20
Learning weight (Model 6) 3.45 (1.85, 3.94) �0.06 (�0.18, 0.08) 0.13 (0.09, 0.20) 0.83 (0.42, 1.12)* 1.35 (0.53, 3.95)* 2914.53 3237.32

Cue– outcome reliability
models

Prediction weight (Model 7) 3.42 (1.38, 3.90) �0.05 (�0.15, 0.08) 0.32 (0.23, 0.41) 0.48 (0.44, 0.53) 2975.94 3234.17
Learning weight (Model 8) 3.20 (1.55, 3.94) �0.06 (�0.12, 0.08) 0.59 (0.43, 0.72) 0.50 (0.46, 0.53) 0.52 (0.20, 0.64) 2951.20 3274.00
Learning weight and feedback

(Model 9)
2.88 (1.04, 3.67) �0.06 (�0.12, 0.07) 0.55 (0.48, 0.83) 0.51 (0.45, 0.53) 0.56 (0.07, 0.81) 0.42 (0.12, 0.69) 2921.86 3309.21

Estimated values of free parameters are represented as the median (25th, 75th percentiles) in each entry. pw, prediction weight; lw, learning weight; lw_reli_cor, learning weight of reliable cues in correct trials; lw_reli_inc, learning weight
of reliable cues in incorrect trials; -LL, negative log likelihood; BIC, Bayesian information criterion.

*Note that prediction and learning weights of irrelevant cues were set to 1, and the weights of relevant cues are estimated in reference to the unit weight values of irrelevant cues in predetermined relevance models.
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tude at the two extremes of sun/rain prediction and lower magnitude at
the intermediate range between the extremes.

In the whole-brain analysis, the parametric regressors of these values
of absolute association strengths, which had onset times aligned to cue
and option display, were prepared for the SRC and non-SRC. For the
regressors of no interest, we included the contrast (categorical) regressors
of correct and error feedbacks with onsets aligned to outcome display,
which were coded as 1 and �1, respectively, and the parametric regres-
sors of the reaction time (RT) with onsets aligned to cue and option
display (Fig. 4).

The second fMRI analysis focused on neural activity that was related to
learning. More specifically, it focused on the outcome stage of each trial and
on activity related to how the encoding of outcome on each trial was related
to the choices that subjects made on the next trial on which one of the same
stimuli in the current trial was presented (possibly several actual trials in the
future because only two of the four possible cues were presented on each
trial). Analysis was based on individual cues so that the presence of the same
whole pair of the stimuli in the current trial was not necessary and the pres-
ence of just one cue in the next trial was sufficient. Therefore, we looked at
learning in terms of the effect of the encoding of the outcome delivered in the
current trial (T1) on the choice taken in the next trial (T2) when the same cue
was presented (Fig. 5A). If the choice in the next trial was the same as the
outcome in the current trial (e.g., sun outcome at T1–sun choice at T2), then
a more effective learning process had occurred compared with when choice
in the next trial was not the same as the outcome in the current trial (e.g., sun
outcome at T1–rain choice at T2). Presentations of any one cue were unre-
lated to presentations of others, so the learning of individual cues can be
dissociated and the regressors coding the learning efficiencies for each cue
were orthogonal (Fig. 5B).

For control analyses, to establish the causal direction of any learning
effect, we compared the outcome in T1 with choice in the previous trial
(T0) when the same cue had previously appeared. While T1 outcome–T2
choice matches could reflect outcome credit assignment, T1 out-
come–T0 choice matches could not; they must reflect the baseline cue–
outcome association strength before the learning took place in the
current trial. By comparing T1 outcome–T2 choice matches and T1 out-
come–T0 choice matches, we could ask how much the subject’s cue–
outcome association strength in relation to each cue had changed as a
consequence of experiencing the outcome.

To perform the analysis of learning-related neural activity, we created
categorical regressors in a general linear model (GLM) that distinguished the
T1 outcome–T2 choice matches (regressor value � 1) from situations in
which choices in the next trial did not follow the outcome in the current trial
(regressor value � �1). Thus, in summary, the analysis captured the differ-
ence between the brain activity associated with outcome processing that led
to an identical choice being made again (e.g., a sun choice after a sun out-
come) on a subsequent trial when the same cue was presented and the brain
activity associated with outcome processing that did not lead to choice rep-
etition when the same cue appeared. The GLM also included regressors of T1
outcome–T0 choice matches to control for effects of baseline cue–outcome

association strength on the neural activity before the credit assignment effect
on the current trial. Note, as already mentioned, that the appearance of one
cue was not correlated with the appearance of other cues in a given trial so
that the regressors of individual cues were not correlated with each other
(Fig. 5B). The analysis was focused on neural activity at the time of the
outcome onset in each trial.

It is important to note that the GLM included separate regressors for
the SRC for T1 outcome–T2 choice matches and for the non-SRC for T1
outcome–T2 choice matches. Moreover, for each of the two regressors
above, we included a control regressor (regressor of no interest) that
denoted the corresponding T1 outcome–T0 choice match situations: a
regressor for the SRC for T1 outcome–T0 choice matches, a regressor for
the non-SRC for T1 outcome–T0 choice matches. All the onsets of the
regressors were time locked to the onsets of outcome presentation on the
T1 trial.

For both the decision-aligned analysis and the outcome-aligned
analysis, all regressors were convolved with the FSL default hemody-
namic response function (gamma function; mean delay � 6 s, SD �
3 s), and filtered by the same high-pass filter as the data. For group
analyses, fMRI data were first registered to the high-resolution struc-
tural image using 7 df and then to the standard [Montreal Neurolog-
ical Institute (MNI)] space MNI152 template using affine registration
with 12 df (Jenkinson and Smith, 2001). We then fit a GLM to esti-
mate the group mean effects for the regressors described above. The
FMRIB Local Analysis of Mixed Effects (FLAME) was used to perform
a mixed-effects group analysis that modeled both “fixed-effects” vari-
ance and “random-effects” variance to properly adjust the weight
assigned to individual subject’s contrast of parameter estimates
(COPE) values based on the reliability of the mean values (Beckmann
et al., 2003; Woolrich et al., 2004). All reported fMRI z-statistics and
p values were from these mixed-effects analyses on 24 subjects. Infer-
ence was made with Gaussian random-field theory and cluster-based
thresholding, with a cluster-based threshold of z 	 2.3 and a whole-
brain corrected cluster significance threshold of p 
 0.05 (Worsley et
al., 1992; Smith et al., 2004). For the analysis of the negative effects of
the cue– outcome association strength of the SRC on BOLD activity at
the time of decision (this part of the analysis is summarized in Fig. 4),
we used a regional mask that restricted the analysis to the entire OFC
and MFC, which was based on our a priori hypothesis that the sup-
pression of irrelevant representations occurs in the orbitofrontal cor-
tex (Clarke et al., 2007; Chau et al., 2014). The same large mask was
used in our previous analysis of OFC and MFC connectivity (Neubert
et al., 2015).

Analysis of region of interest time series. To examine the learning-
related neural activity in the areas highlighted by the whole-brain
analyses at the decision time, we conducted additional analyses with
separate regressors corresponding to the attended cues (SRC) and
unattended cues (non-SRC) at the decision time. The set of regressors
used for analysis of decision-related activity was described in the GLM
analysis section and is depicted in a correlation matrix in Figure 4. A
second part of the analysis focused on the outcome phase of each trial,
and, again, it used separate regressors corresponding to the SRC and
non-SRC. The rationale for using separate regressors for the analysis
of neural activity at both the time of decision making and the time of
outcome delivery is that the behavioral analysis showed that not only
was decision making particularly influenced by one cue, the SRC, rather than
another, but also that the outcome credit assignment process was modulated
by the initial internal focus on SRC and its associated outcome (see the
Results section). The regressors used at the time of outcome included SRC
regressor (T1 outcome–T2 choice match vs nonmatch), non-SRC regressor
(T1 outcome-T2 choice match vs nonmatch), SRC regressor (T1
outcome-T0 choice match vs nonmatch), and non-SRC regressor (T1
outcome-T0 choice match vs nonmatch; Fig. 5B). We calculated group
means and SEs of effect sizes at each time point for each regressor in the
GLM. GLMs were fit across trials at every time point separately for each
subject. Effect sizes of the parameter estimates of the regressors were ob-
tained for every time point and for each subject.

With this GLM, we analyzed activity in the posterior MFC (pMFC;
area 25) and lateral OFC (lOFC) regions of interest (ROIs). The ROIs

SRC 
(Parametric)

Non-SRC
(Parametric)

Correct/Error
(Contrast)

RT 
(Parametric)

-1

0

1

Decision

Decision

Outcome

Figure 4. GLM for decision phase analysis. Correlation matrix of regressors in the first fMRI
GLM that focused on decision making. The regressors include subjective association strength of
the SRC (parametric regressor aligned to decision), the subjective association strength of the
non-SRC (parametric regressor aligned to decision), correct/incorrect feedback (1 and �1;
contrast regressor aligned to outcome), and RTs (parametric regressor aligned to decision).
Magnitudes of correlations are indicated in colors as shown in the color bar (right).
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were 3-mm-radius spheres centered on acti-
vation peaks identified in the first stages of
analysis results (described further in the Re-
sults section). We avoided “double dipping”
by using ROIs identified by decision-related
activity (described above as the first stage of
the fMRI analysis) for the analysis of
learning-related activity (described above as
the second stage of fMRI analysis). The ex-
tracted BOLD time series from each ROI was
then divided into trials with a duration set to
the 10 s average duration starting at the de-
livery of the outcome feedback, and resa-
mpled at a 250 ms resolution.

Results
Task and basic behavior
Subjects performed a version of the well
known weather prediction task (Knowl-
ton et al., 1996); on each trial, they were
shown two geometrical cues, which were
drawn from a set of four possible shapes,
and asked to predict which single weather
outcome was most likely to follow (Fig.
1A,B). Subjects made choices by pressing
corresponding left or right buttons to in-
dicate their prediction of sun or rain. The
actual outcome, sun or rain, was then dis-
played below the two shapes.

The task comprised several phases,
each consisting of a number of trials (Fig.
1C). Each shape was associated with the
outcomes in a different way in the differ-
ent phases. For example, in one task phase
a triangle was more likely to be followed
by a sun outcome rather than a rain out-
come. At each task phase, two cues were
associated with a specific outcome, one
with sun and one with rain outcomes. We
refer to these as the objectively relevant
cues. At the same time, the two other cues
did not predict either outcome above
chance, and so we refer to these cues as the
objectively irrelevant cues. The identities
of the cues that were relevant and irrele-
vant and the links between cues and out-
comes were changed during various task
phases (Fig. 1C).

Two types of changes occurred. In one
type (Value Switch), the objective relevance
of the cues remained constant, but the out-
comes they predicted were switched. For ex-
ample, a cue that had predicted a sun
outcome now predicted a rain outcome. Ir-
relevant cues, which were not predictive of
either outcome, remained irrelevant cues.
In the other type of switch (Relevance
Switch), objectively relevant cues, regardless
of whether they were relevant for sun or
rain predictions, were now irrelevant,
and one of the previously objectively ir-
relevant cues now became relevant to
rain predictions while the other became
relevant to sun predictions.
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Figure 5. Procedure of fMRI analysis at outcome. A, For the fMRI analysis, we are interested in the contrast of the brain states
that reflect effective encoding of the current outcome and the brain states that do not reflect effective encoding. We assumed that
effective encoding of outcome on a given trial T1 (T1 Outcome) in relation to a specific cue led to the subsequent choice of weather
predictions (T2 Choice), which was consistent with the previously experienced outcome (left case, effective encoding at T1). The T2
trials were defined as the subsequent trials when the same cue appeared again. If the encoding of the outcome was not effective
at T1, the T1 outcome and T2 choice were less likely to be the same (right, not effective encoding at T1). T1 outcome and T2 choice
could be either sun or rain. If they were the same (sun–sun or rain–rain), they were treated as match cases. Otherwise, they were
treated as nonmatch cases. The contrasts of the two cases were used for the construction of regressors in the fMRI analyses (inset
at top right) for each cue. B, T1 outcome and T0 choice regressors were used as control regressors to account for the part of variance
that corresponded to the perseverative tendency of choice in response to a specific cue. Here, T0 means a last trial when the same
cue appeared. C, Correlation matrix of regressors in the first GLM. The regressors aligned to outcome included the T1–T2 match/
nonmatch contrast of the SRC, the T1–T2 match/nonmatch contrast of the non-SRC, the T1–T0 match/nonmatch contrast of the
SRC, and the T1–T0 match/nonmatch contrast of the non-SRC. Magnitudes of correlations are indicated in colors as shown in the
color bar (right).
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An initial analysis confirmed that
identifying which cues were relevant for
behavior was an important challenge for
the participants in the experiment. This
was suggested by the observation that
adapting to the changes after a Relevance
Switch was more difficult than after a
Value Switch (Fig. 6). Both types of
switches required subjects to change the
way in which they assigned credit for out-
comes to cues, but it was only in Relevance
Switches that subjects had to move their
credit assignment focus away from some
cues (the previously relevant cues) and al-
locate it to other cues (the newly relevant
cues). The learning speed for the relevant
cue pair after a Relevance Switch was
slower, especially in the first 20 trials, than
after a Value Switch (Interaction of Switch
Type and Time Bin: F(3.41,78.36) � 2.98,
p � 0.031). There were significant perfor-
mance differences after the two types of
switches (paired t test, Trials1–20: t(23) � 3.36, p � 0.0027; Tri-
als21– 40: t(23) � 1.31, p � 0.20; Trials41– 60: t(23) � 0.66, p � 0.51;
Trials61– 80: t(23) � �0.60, p � 0.55; Fig. 1D). The difference in
learning efficiency between the two types of switches is due to the
difficulty of learning about specific cues when the importance of
the cues changes across the Relevance Switch. We therefore focus
the subsequent analysis on the learning process in the Relevance
Switch.

Subjective selection of the relevant cue to guide behavior
If subjects try to determine cue relevance, then the subjects
should be attempting to treat different cues as relevant at differ-
ent points in the task, possibly at each trial. Ideally, the cue sub-
jects selected as relevant (the SRC) would be an objectively
relevant cue, but subjects need to experience cue– outcome con-
tingencies over a number of trials to infer which cues are relevant,
and this might contribute to the slower adaptation after Rele-
vance Switches (Fig. 6). There are also likely to be trials in which
neither cue is an objectively relevant one, or both cues are objec-
tively relevant but subjects still need to select an SRC to guide the
decision. We should, therefore, expect that the SRC on each trial
would not necessarily be a cue that was objectively predetermined
to be a relevant cue by the program running the task. We tested
this idea through formal model comparison contrasting models
that differentiated cues as a function of whether or not they were
objectively relevant for behavior as determined by the program
running the task [Fig. 3A; these models are described as control
models in the Materials and Methods section (Predetermined
Relevance Models, Model 5 and 6); Table 2] against the basic
model that attempted to explain behavior as a result of subjects
assigning equal weights to both cues [this model is described as
Model 1 in the Materials and Methods section (Basic RL Model)].
However, the former models did not perform better than the
latter basic model in explaining the choice patterns of the subjects
(Fig. 7, Table 2). We also tried a model in which cue selection was
based on the objective reliability of the cue– outcome association
actually experienced in the past few trials [Fig. 3B; these models
are described as further control models in the Materials and
Methods section (Cue– outcome Reliability Models, Model 7–9);
Table 2]; we designated the more reliable cue as the one used to

guide decisions. Again, these models did not perform better than
the basic Model 1 (Fig. 7, Table 2).

Because objective (optimal) models (Models 5–9) failed in
their attempts to explain subjects’ behavior as a result of assigning
greater weight to one cue rather than the other as a function of
various metrics of their objective relevance for guiding decisions,
we next investigated the possibility that subjects attempted
to identify relevant cues in subjective and possibly explorative
ways (Fig. 2A,B; these models correspond to Models 2, 3, and 4,
which are described in the Materials and Methods section). We
reasoned that choices made on each trial might reflect each par-
ticipant’s commitment to specific hypotheses about which cue is
the SRC and a good predictor of outcome. If in each trial, a
participant’s choice is guided by an SRC, then we, as experiment-
ers, should be able to tell which cue was the SRC and the focus of
the subject’s hypothesis on a given trial by looking at the congru-
ency between the choices made on the current trial and the esti-
mates of the associations of cues with outcomes, which were
inferred from cue– choice patterns in past trials (Fig. 2).

To do this, first, we estimated subjective associations between
cues and outcomes from the proportion of sun/rain choices in
past trials in the presence of each cue (Fig. 2A). This measure
reflected how readily the cue and associated outcome come to
mind and influence the decision process. We could then infer the
SRC as the cue most likely to have been the subject’s focus in
generating the choice made on a given trial; the SRC on a given
trial was the cue that predicted the subject’s choice on that trial
with higher probability through its subjective association with
outcomes that had been established by examining behavior on
past trials. In other words, the SRC is the cue that most easily and
saliently comes to mind when two cues are presented together on
a given trial. Such cue– choice congruency (Fig. 2A,B) provides a
window revealing the subject’s hypothesis—their subjective se-
lection of a relevant cue for predicting outcome. As explained in
the Materials and Methods section, we refer to the cue that was
congruent with the choice on a given trial as the SRC, and we refer
to the other cue as the non-SRC.

Crucially, the SRC was not always the objectively relevant cue
(Fig. 8A). For example, the fraction of objectively relevant cues
that were also SRCs was �0.4 after a switch, and it rose to �0.7 at
a maximum later in the task phase. Furthermore, after Relevance
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Figure 8. Subjective cue selection and learning after switch. A, In the period between 1 and 20 trials immediately after Relevance Switch, the probability of cue selection was higher
for the cue that had previously been relevant but was currently irrelevant compared with the cue that was previously irrelevant but became relevant after the Relevance Switch. Data are
presented as mean � SE across 24 subjects. B, The values of the estimated parameters in Model 2 (Table 1) showed that the weight of the SRC was higher (0.82) than that of the non-SRC
(0.18). However, if we apply the free parameter only to unambiguous cases when the difference of the association strengths was 	0.3 (the dots outside shaded area in C), the weights
were 0.99 for SRC and 0.01 for non-SRC. C, Trials were distinguished according to the difference of the association strengths of cues to outcomes. The ambiguous trials were in the shaded
area (
0.3), and unambiguous trials were outside the shaded area (	0.3). Axes correspond to association strengths of two cues present in a given trial. D, The probability of selecting
the newly relevant (previously irrelevant) cue as SRC was correlated with the probability of optimal choice in the first 1–20 trials after Relevance Switch (r � 0.63, p � 0.0010). E,
Probability of selecting the previously relevant (currently irrelevant) cue as SRC was negatively correlated with probability of optimal choice in the first 1–20 trials after Relevance Switch
(r � �0.52, p � 0.0087). Each point represents a value from a single subject.
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Switches, subjects initially continued to rely on the cue that had
been relevant in the previous phase (Fig. 8A). In the first 20 trials
after a Relevance Switch, the probability of selecting the previ-
ously objectively relevant cue as SRC was higher than the proba-
bility of selecting the previously objectively irrelevant cue even
though this was now the objectively relevant cue (Fig. 8A; un-
paired t test, t(46) � 2.77, p � 0.0082). Such analyses provide
preliminary evidence that the cue selection process was indeed
subjective and did not follow predetermined relevance at a single-
trial level of analysis.

Furthermore, a formal model comparison shows that the
model of subjectively relevant cue selection (Model 2: Subjective
Cue Selection-Based Prediction Weight Model) outperformed
the objectively relevant cue selection models (Models 5–9) and
simpler models lacking any differentiation between cues (Model
1) described above (Fig. 7).

We found that the weight that subjects assigned to the SRC
(0.82) was higher than the weight assigned to the non-SRC (0.18;
Fig. 8B). It might be argued that if the weights are not 1 for SRC
and 0 for non-SRC, then the distinction between the SRC and
non-SRC is not completely categorical. One can also argue that
the differences in the association strengths of the cues are not
large enough to be distinguishable for subjects, especially when
the cue– outcome contingencies are changing. To address these
issues, we tested additional models in which the weights of the
cues were set as equal (0.5) if the difference in the association
strengths of cues was small (
0.3; 0.3 is approximately the me-
dian difference of association strengths of two cues; Fig. 8C, dots
in the gray area). The weights assigned to the cues in trials with
larger differences in association strengths could then be esti-
mated as a free parameter. The fitting performance of these mod-
els were comparable to the original models of subjective cue
selection and still outperformed simpler models (Model 1) lack-
ing any differentiation between cues (Fig. 7, Table 1). Crucially,
the weights now assigned to the cues suggested almost perfect
differentiation of the cues, as follows: 0.99 for SRC and 0.01 for
non-SRC (models noted with “cue distinction” in Table 1 and
values in parentheses in Fig. 8B).

We can better understand the link between the new approach
we advocate here and a more traditional analysis if we consider
the relationship between the probability of selecting objectively
relevant cues as the SRC and the learning speeds that participants
exhibited after switches. The probability of selecting the objec-
tively relevant cue as the SRC was correlated with performance
after Relevance Switches. Participants who were quicker to shift
their subjective focus to newly objectively relevant cues adapted
faster to the new contingency and vice versa (correlation between
probability of selecting the newly relevant cue and probability of
optimal choice: r � 0.63, p � 0.0010; Fig. 8D). On the other hand,
subjects who continued to rely more on the previously relevant
cue performed worse in this transition period (correlation be-
tween probability of selecting the previously relevant cue and
probability of optimal choice: r � �0.52, p � 0.0087; Fig. 8E).
The most plausible interpretation of these relationships is that the
cue selection process modulates the learning process, and the
subsequent section tests more directly whether the direction
of influence (from cue selection to learning) is indeed in this
direction.

Mechanisms of confirmation and switch of relevant cues
The subject’s internally generated hypothesis about which cue is a
relevant predictor of outcome may be used at the time of out-
come processing. To examine this possibility, a new model of

subject behavior was constructed by including a mechanism for
differential credit assignment to each cue. We refer to this model
as Model 3 to distinguish it from the basic Rescorla-Wagner
model (Model 1) and the Prediction Weight Model (Model 2),
which we have already discussed. It included an additional free
parameter for differential weights when assigning credit to each
of the two cues during learning (lw). The process was not modu-
lated by whether or not feedback was correct or incorrect (Model
3). With this model, more credit for an outcome might be as-
signed to the SRC than the non-SRC. The weight assigned to each
cue was based on whether the cue was the SRC or the non-SRC
and was either lwselected for the SRC or (1 � lwselected) for the
non-SRC (Eqs. 7–9 in Materials and Methods).

The final model (Model 4) was similar to Model 3, but now we
also reasoned that when the outcome confirms the initial predic-
tion (correct feedback), the credit for the outcome is assigned to
the cue used to generate the initial prediction—the SRC. In con-
trast, we hypothesized that when the outcome disconfirms the
initial prediction (incorrect feedback), the cue not used in the
generation of the initial prediction gets more credit for the out-
come—the non-SRC. Thus, while model 3 distinguished only the
SRC and the non-SRC regardless of the feedback types, Model 4
additionally distinguished cases of correct and incorrect feedback
and assigned credit for correct and incorrect feedback preferen-
tially to the SRC and non-SRC, respectively. Because of this dis-
tinction between confirmation and disconfirmation of the initial
prediction, there were also two free parameters for learning
weights, lwselected, correct and lwselected, incorrect (Eqs. 10 –13 in Ma-
terials and Methods).

To specifically examine these questions, we compared the per-
formances of the models in explaining the subjects’ behavior. In
addition, we also examined the parameter estimates of the learn-
ing weight for each cue (Model 3), and these weights separately
for instances of correct and incorrect feedback (Model 4). In
summary, these models test not just whether the cues are
weighted differently at the time of learning (Model 3), but also
whether they are weighted differentially at the time of outcome
presentation depending on whether the outcome confirms the
subjects’ internal beliefs (Model 4).

First, we compared Model 3 with the previous models. The
fitting performance of Model 3 (separate learning weights for
cues without differentiation of correct and incorrect feedback)
was better than the simple association model (Model 1) and com-
parable to the Prediction Weight model (Model 2; Fig. 7; for the
fitting results, see also Table 1). The next model, Model 4, which
further distinguished between correct and incorrect feedback
cases (confirmation/disconfirmation), was better than Model 3
(Fig. 7). In fact, of all the models, Model 4 provided by far the best
account of the data. Crucially, the effects were only found when
cues were separated as a function of whether they were the SRC or
non-SRC. Analogous effects of learning bias were not found
when cues were separated as a function of their objective rele-
vance as predetermined by the task phase (Model 6; Predeter-
mined Cue Relevance-Based Learning Weight Model) or simply
as a function of the objective reliability of the cue– outcome con-
tingency actually experienced in recent trials (Models 8 and 9;
Cue–Outcome Reliability-Based Learning Weight Model and
Learning Weight and Feedback Model; Fig. 7, Table 2). Thus,
understanding how the subjects learned from outcomes requires
knowing the subjective hypotheses they held about which cues
should guide their behavior in each trial.

To further test our hypothesis that outcome feedback inter-
acts with the cue that had been the focus of the subject’s
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hypothesis, we examined the estimates of the free parameters
corresponding to the learning weights in Model 4 (lwselected, correct

and lwselected, incorrect). In the confirmation case, in which the
weather outcome was as predicted, the learning weight suggested
that the outcome was allocated exclusively to the cue used in the
initial generation of the prediction—the SRC [Fig. 9A; in 24 sub-
jects, the values of the median (25th, 75th percentiles) values were
0.95 (0.62, 1.00); Table 1]. Thus, it is as if the subjects were as-
suming that the initial reliance they had placed on one cue when
making their decision had been correct because the outcome con-
formed to their initial prediction. In contrast, when the outcome
disconfirms the initial prediction (disconfirmation case), the
learning weights are allocated more to the cue not used in the
initial generation of the prediction—the non-SRC [Fig. 9B;
the values of the median (and 25th, 75th percentiles) of the SRC
were reduced to 0.41 (0.26, 0.49); Table 1]. The differential pat-
tern of the weights in the two cases also explains why Model 4
outperformed even the most similar alternative model, Model 3,
which assumed the same weights across the feedback cases. There
was still some weight allocated to the SRC even in the disconfir-
mation case.

To briefly summarize, the hallmark of models 2– 4 is the dis-
tinction between the cues as SRC and non-SRC. We have tried to
show that these models are good models by assessing the weights
assigned to the cues at the time of decision (Fig. 8B,C, Table 1)
and at the time of outcome (Fig. 9, Table 1). To validate the
assumptions of these models further, we next show that the prob-
abilities of selecting the cues as SRC after the change of cue rele-
vance were correlated with the learning efficacy after this type of
switch.

Specifically, the overall bias to attribute outcomes to the SRC
might explain the correlation pattern between the learning effi-
ciency after the switches and the probability of selecting objec-
tively relevant cues as SRCs (Fig. 8D,E). This also suggests that it
is important to overcome biases to assign credit for outcomes to
the SRC if a participant is to learn well. The importance of over-
coming the SRC credit assignment bias is especially true when the
cue– outcome contingency changes. In the cases of Relevance
Switches, in which the previously relevant cue changed to an
irrelevant cue and vice versa, it is easier for subjects to learn the
contingency changes if they can attribute the outcome to the

non-SRC. In fact, learning efficiency after Relevance Switches was
correlated with the estimated weights for the non-SRC (from
Model 3, which has overall estimation of the non-SRC weight
regardless of outcome; r � 0.54, p � 0.0059).

Neural activity at the time of decision and outcome
The behavioral analyses suggest a link between the process of
selecting an SRC at the time of decision making and the process of
learning at the time of decision outcome. To make a commitment
to a particular hypothesis (a specific cue outcome expectancy),
the relevant association must be selectively represented (Fig.
10A). To achieve this selective process, the relevant representa-
tion must be relatively enhanced. We already know that there are
multiple possible cue outcome associations represented in the
lOFC (McDannald et al., 2011, 2011; Klein-Flügge et al., 2013;
Howard et al., 2015). However, to commit to a single hypothesis,
the irrelevant representations might need to be relatively less ac-
tive or even suppressed. This is suggested by the parameters of the
decision weights estimated in the models of subjective cue selec-
tion (Fig. 8B, Table 1). Similarly, it has been reported that irrele-
vant representations in lOFC become relatively less active, or
possibly even suppressed, during reversal learning and decision
making with multiple stimulus options (Clarke et al., 2007; Chau
et al., 2014). Here we consider evidence that the learning process
at the time of outcome presentation also takes place in the same
or adjacent brain areas. We show that the process of assigning
credit to the SRC is linked to brain areas in which activity en-
hancements occur at the time of decision making and, in con-
trast, credit assignment to the non-SRC is linked to areas in which
activity is attenuated at the time of decision making (Fig. 10A,
compare right and left sides). In both cases, these brain regions
should be reactivated at the time of outcome and credit assign-
ment to the SRC and the non-SRC, respectively. Although the
exact physiological mechanism underlying such relative attenu-
ation at the time of decision is debatable, our claim here is that
this attenuation at the time of decision is specifically related to the
representation the SRC and is not associated with other regres-
sors set at the time of decision (non-SRC and RT). This is the
brain region where multiple alternative cue– outcome expectan-
cies are held, suggesting that the representations of alternative
cue– outcome associations are reactivated at the time of outcome
when existing hypotheses are disconfirmed and alternative hy-
potheses must be considered.

We found that the neural activity recorded at the time of
decision was correlated positively with the cue– outcome associ-
ation strength of the SRC in MFC (Fig. 10B). In contrast, negative
correlations between neural activity and the association strength
of the SRC were found in lOFC (Fig. 10C), which included more
anterior lOFC (areas 11 and 13) and more posterior lOFC (area
12). These results can be interpreted as suggesting that activity
representing the SRC is augmented in MFC. At the same time, the
irrelevant representation of the non-SRC is attenuated in lOFC as
a function of the association strength of the SRC (in other words,
as a function of the saliency of the SRC). As a result of these
changes in neural activity, the main hypothesis is more exclu-
sively focused on a particular representation, and fewer resources
are allocated to the alternative representations. Alternatively, the
current results could mean a reduction of the inputs correlated
with the absolute association strength of the SRC because the
BOLD signal in general also reflects the input to the lOFC regions.
However, we would like to emphasize that any change of the
signal to the lOFC region would be due to interaction with the
representation of the SRC in MFC. The counterpart of the inter-
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Figure 9. Learning weights after correct and incorrect feedback. A, In the situation when the
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the outcome almost solely to the cue they used to generate the prediction (SRC in the panel).
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in prediction (SRC in the panel). Conventions are the same as in A.
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action is likely to be the representation of
the non-SRC. The results are consistent
with previous evidence that value-
related activity in MFC is affected by the
direction of attention (Lim et al., 2011),
that MFC lesions diminish the normal at-
tentional advantage of reward-associated
stimuli and change information sampling
strategy (Fellows, 2006; Vaidya and Fel-
lows, 2015), and that irrelevant represen-
tations are suppressed in lOFC (Clarke et
al., 2007; Chau et al., 2014).

An influential series of fMRI studies
emphasized medial OFC (mOFC) and ad-
jacent MFC activity in response to re-
wards, and lOFC activity in response to
negative outcomes (O’Doherty et al.,
2001, 2003). But it has been difficult to
identify regional variation in neuronal re-
sponsiveness to rewards and negative out-
comes in macaques (Morrison and
Salzman, 2009; Rich and Wallis, 2014) or
simple failures to respond to positive and
negative outcomes after mOFC versus
lOFC lesions (Noonan et al., 2010). We
tested for regional differences in correct
feedback (positive outcome)-related ac-
tivity and incorrect feedback (negative
outcome)-related activity in the present
dataset by including the categorical re-
gressor of correctly/incorrectly predicted
outcomes in the first GLM (Fig. 4). Using
a conventional cluster-based statistical
threshold (z 	 2.3, p 
 0.01), we could
not find evidence for correct or error-
related activity in either MFC or OFC. We
also tested other regressors (non-SRC and
RT) as well with the same procedure but
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Figure 10. The relationship between decision-related activity and outcome-related activity. A, Neural activity at decision and
outcome. The behavioral evidence summarized in Figure 2, A and B, demonstrate that one of the cues present on each trial is
selected as the SRC. In this selection process, we reasoned, representation of the SRC is enhanced and the representation of the
non-SRC is attenuated. These enhancements and attenuations might take place in different brain regions. In the outcome phase of
the task, the brain region with activity correlated with SRC is involved in credit assignment to the SRC. By contrast, the brain region

4

with activity negatively correlated with SRC at the time of de-
cision making should become active in the outcome phase of
the trial when a prior hypothesis is disconfirmed, and an alter-
native hypothesis is considered and credit is assigned to the
non-SRC. B, C, Positive and negative correlation with associa-
tion strength of SRC. The brain regions that, at the time of
decision making, showed a positive correlation between activ-
ity and the association strength of the SRC were in the MFC. On
the other hand, the brain regions with a negative correlation
between activity and the association strength of the SRC, at
the time of decision making, were in lOFC. This suggests that
the MFC and lOFC correspond to the orange and blue mecha-
nisms highlighted on the left-hand side of A above. D, ROI
analysis was used to examine the neural activity related to
credit assignment to the SRC in MFC. The MFC region that ini-
tially showed activity enhancement for the SRC exhibited
learning related activity (match/nonmatch contrast), specifi-
cally for the SRC (red curve) but not for the non-SRC (green
curve). E, ROI analysis of neural activity related to credit as-
signment to the non-SRC in lOFC. The lOFC area that initially
showed activity negatively correlated with the SRC exhibited
learning related activity (match/nonmatch contrast) specifi-
cally for the non-SRC (green curve) but not for the SRC (red
curve).
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could not find significant activity in MFC or OFC.
Next, we examined how credit for an outcome is assigned

more to one cue than to another. It is this process of differential
credit assignment to one cue rather than another that was incor-
porated into both Model 3 and Model 4 to explain behavior.
However, the neural basis of differential credit assignment to
individual cues is unknown.

To examine neural activity related to the mechanism of learn-
ing, we exploited an approach similar to one often used in mem-
ory research: we looked at neural activity recorded at one point in
time and determined whether it was predictive of behavior at a
second time point (Otten et al., 2001). In our experiment, learn-
ing should occur at the point in each trial when the actual weather
outcome is revealed, and so we focused on activity locked to this
time point. We focused on outcome-related activity on a given
trial (trial T1), as a function of what subjects did on the next trial
(trial T2) when the same cue appeared. We assumed that effective
encoding of a particular outcome on T1, in relation to a specific
cue, should lead subjects to make a consistent outcome predic-
tion when the same cue was presented on the subsequent trial
T2 (Fig. 5A). If the encoding of the outcome is not effective at
T1, the T1 outcome and T2 choice are less likely to be the same.
If they were the same (sun–sun or rain–rain), they were treated
as “match” cases. Otherwise, they were treated as “nonmatch”
cases. In other words, we can tell whether subjects assigned the
credit for an outcome to a particular cue because they will
predict the same outcome on the next trial when the cue is
presented.

Therefore, to identify neural activity related to assigning credit
for an outcome to a cue, we distinguished the two cases (match vs
nonmatch) to construct categorical regressors for the fMRI anal-
yses (Fig. 5A, inset at top right). The categorical regressors were
time locked to outcome presentation so that the analysis identi-
fied learning-related brain activity that led to a match choice
(coded as 1), as opposed to a nonmatch choice (�1), being made
on a subsequent trial when the same cue reappeared (e.g., a sun
choice at T2 after a sun outcome at T1 vs a rain choice at T2 after
a sun outcome at T1). Note that we can use independent regres-
sors for each cue to capture learning-related activity correspond-
ing to the SRC and the non-SRC because the appearance of any
one cue were uncorrelated with the appearance of others. Thus,
we can compare activity in those trials that were followed by a
match versus a nonmatch choice on T2 (Fig. 5A). Thus, our fMRI
analysis, which was conducted with a standard GLM approach,
incorporated the outcome time-locked regressor for the SRC and
non-SRC (Fig. 5B): SRC regressor (T1 outcome–T2 choice match
vs nonmatch); and non-SRC regressor (T1 outcome–T2 choice
match vs nonmatch).

Still, such an approach, in isolation, runs the risk of simply
capturing brain activity related to periods of good task perfor-
mance as opposed to bad task performance. It is, however, pos-
sible to identify activity that has a causal role in driving future
changes in behavior and controlling for difference in baseline task
performance by including additional regressors that code for
matches between T1 outcome and the choice that subjects had
made on the previous trial (T0): SRC regressor (T1 outcome–T0
choice match vs nonmatch); and non-SRC regressor (T1 out-
come–T0 choice match vs nonmatch).

Because the T1 outcome can have no causal consequences for
the choice that preceded it, regressors coding for T1 outcome–T0
choice matches and nonmatches provide a strong control for
baseline cue– outcome association strengths and differences in
performance levels. In summary, the GLM contained four regres-

sors—the two listed above that examined T1 outcome–T2 choice
matches and two control regressors that were identical but that
compared T1 outcome–T0 choice matches versus nonmatches.

We hypothesized that the brain regions showing positive ac-
tivity correlations for the SRC, which might reflect enhancement
of the representation of the main hypothesis, would be involved
in credit assignment to the SRC and that the brain regions show-
ing negative activity correlations with the SRC, which might be
related to the attenuation of the irrelevant representations, would
be involved in credit assignment to the non-SRC (Fig. 10A). We
found a pMFC (x � 6, y � 16, z � �10) region in which match
versus nonmatch effects were selective for the SRC (Fig. 10D, red
line). The pMFC peak was posterior and ventral to the genu of the
corpus callosum in or close to the subgenual cingulate area 25
(Johansen-Berg et al., 2008; Beckmann et al., 2009; Neubert et al.,
2015).

In contrast to the situation in which credit for the outcome is
assigned according to the favored hypothesis, subjects occasion-
ally switch to the alternative hypothesis that the other cue is more
predictive of the outcome when contingencies between cues and
outcomes change. We are especially interested in brain regions
showing a decrement in activity at the time of the decision, which
might be related to the suppression of the irrelevant representa-
tions (Fig. 10C). We examined activity in these regions of lOFC at
the time of the outcome. We found that activity in posterior lOFC
(x � 30, y � 22, z � �12; Fig. 10E) was related to credit assign-
ment to the non-SRC at the time of outcome delivery. The region
approximately corresponds to area 12 and is consistent with the
results of a previous lesion study with monkeys, which suggested
that the more anterior area of lOFC (areas 11 and 13), might not
be critical for stimulus–reward learning (Rudebeck et al., 2013).
Indeed, we did not find any learning-related activity in areas 11
and 13. Analysis of lOFC activity time courses revealed a high
selectivity for the learning effect associated with the non-SRC for
the T1 outcome–T2 choice match versus nonmatch contrast (Fig.
10E, green line).

Discussion
By examining how the credit for an outcome is assigned when
multiple and simultaneous objects may have predicted it, we have
shown that human subjects acted as if they attended more to one
cue when predicting the outcome. Moreover, they were also bi-
ased to assign credit for an outcome to the cue selected as the
relevant predictor of the outcome—the SRC. Importantly, mod-
els that lacked the SRC/non-SRC distinction but relied only on
the objective cue– outcome associations failed to describe behav-
ior well (Models 5–9; Fig. 7). We identified distinct processes, one
related to the confirmation of an initial focus on the SRC, and
another related to switching attention to focus on an alternative
predictor (Fig. 9). Neural mechanisms in MFC and lOFC were
separately mapped to credit assignment processes related to the
SRC and non-SRC, respectively.

This approach might appear to contradict well known claims
that monkeys combine decision-related evidence from multiple
cues (Yang and Shadlen, 2007; Kira et al., 2015). We too have also
reported a similar integration process when a similar task was
performed by humans (Gould et al., 2012). However, it is impor-
tant to realize that in all these previous cases data were obtained
after an extensive learning and training phase with stable associ-
ation patterns. From our own and others’ experience, we know
that subjects cannot integrate all the cue information at the be-
ginning of training and therefore that training started with strong
single cues. Thus, it is plausible that the current data might cor-
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respond to a stage when subjects are learning the predictive sig-
nificance of multiple cues.

Previous studies have considered how learning efficiency is
related to the rate at which subjects’ environments are changing
(Behrens et al., 2007). Abrupt state changes in the environment
are also modeled in a Bayesian change–point detection frame-
work (Nassar et al., 2010; Wilson et al., 2010). Such processes lead
to broad changes in the way in which animals should learn about
all cues in their environments. By contrast, the cue selection pro-
cess in this report enables an animal to learn more about one
specific cue rather than another in a multi-cue environment. The
important difference from the previous frameworks is that the
cue selection process can predict slow learning in cases such as
Relevance Switch as opposed to Value Switch (Fig. 6). We there-
fore have focused our analyses more on the Relevance Switch.
The phenomenon may share features with overshadowing in the
context of classical conditioning (Mackintosh, 1975, 1976).

Selecting one specific cue among alternatives in the present
experiment is not the same as selecting a feature in a dimension
(e.g., the color blue or a square shape) from among multiple
dimensions (e.g., color, shape, and number) in compound stim-
uli in the Wisconsin Card Sorting Test (WCST). Nevertheless, it
was recently reported that WCST also involves an attention-
based action selection and learning process (Wilson and Niv,
2012; Niv et al., 2015). The WCST experiments suggested that
participants learned about features when they were explicitly in-
structed to pay attention to single dimensions, rather than to
particular instances of compound cues. In our study, by contrast,
participants actively learned about a particular cue, the same one
they based their initial hypothesis on, even when they could pay
attention to all the potential cues. Whereas optimal learners
should focus on specific features in a dimension in WCST, in our
test an optimal learner could have learned about both cues regardless
of the hypothesis. Furthermore, while feature/dimension-based se-
lection depends on lateral prefrontal areas in humans and other
primates (Dias et al., 1996, 1997; Konishi et al., 1998; Niv et al.,
2015), the current results and previous reports (Dias et al., 1996,
1997; Noonan et al., 2011) suggest associations between particu-
lar instances of information sources, and their associated out-
comes involve lOFC and ventral MFC.

Although our task design does not involve an explicit reward,
one could still argue for the interpretation of credit assignment
based on reward values: reliability of the cue– outcome associa-
tion might constitute the “value” of the cue in our task because it
leads to correct predictions. However, the cue with the more
reliable association in a pair in a given trial is used for prediction
with only a moderate probability (Fig. 8A). Furthermore, the
models assuming more credit assigned to the more reliable cue
did not perform better than the basic model (Fig. 7, compare
Models 7–9, Model 1).

The mechanism we propose ensures cues already within the
subject’s focus for guiding behavior are the cues more likely to
receive credit for an outcome: 0.95 weight to SRC in the correct
feedback case and 0.41 weight to SRC in the incorrect feedback
case (Fig. 9). This is a deviation from the prediction of a simple
win-stay-lose-shift mechanism, which predicts symmetrical
learning weights: near-unity learning weight to SRC in the correct
feedback case and almost 0 weight to SRC (near unity learning
weight to non-SRC) in the incorrect feedback case. Such a self-
confirming process is consistent with the previously reported
“confirmation bias” (Nickerson, 1998) and with learning biases
seen in animal studies (Mackintosh, 1975, 1976).

While this mechanism might be “circular,” it is important that

our analysis methods are not: the key analyses examined how
neural activity recorded at the time of outcome predicted a
change from the baseline cue– outcome association, which was
inferred by comparing past and future choice patterns. Our neu-
ral analysis, therefore, included T1–T0 match analyses that con-
trolled for baseline cue– outcome association levels (Fig. 5B). In
this way, the SRC-related neural activity of MFC, especially in
area 25, could be shown to reflect an aspect of attention-based
credit assignment to specific individual cues that was causally
important for guiding subsequent decisions. This is consistent
with the known role of the area 25 in attention-related deci-
sion process (Lim et al., 2011). Thus, MFC represents internal
focus, expressed in the choice (Lim et al., 2011; Vaidya and
Fellows, 2015) as to which cue should be assigned credit for an
outcome.

To counteract the bias to assign credit to the SRC, it is impor-
tant to be able to switch internal focus to an alternative cue–
outcome association especially when cue– outcome relationship
changes occur. In such situations, the evidence conveyed by the
non-SRC becomes important and encourages switching to an
alternative cue on a future trial (Fig. 9). Our data suggest that
lOFC, rather than MFC, was important in these situations be-
cause its activity selectively predicted such changes (Fig. 10E).
This is consistent with the importance of lOFC in other stimulus–
reward association learning situations (Kringelbach and Rolls,
2004; Noonan et al., 2010, 2011; Walton et al., 2010), the repre-
sentations of specific cue– outcome associations in the lOFC
(McDannald et al., 2011, 2014; Klein-Flügge et al., 2013), and the
function of lOFC in inhibiting irrelevant representation of these
specific associations (Clarke et al., 2007; Chau et al., 2014).

An influential series of fMRI studies emphasized mOFC
and adjacent MFC activity in response to rewards, and lOFC
activity in response to negative outcomes (O’Doherty et al.,
2001, 2003). Although we could not find such activity with the
correct/incorrect regressor in the whole-brain analysis (Fig. 4)
and could not interpret the results as supporting a simple
value-based account, the present results did suggest a way in
which these potentially disparate results can be reconciled if a
key issue is not just whether a positive or negative outcome
was received but whether the prediction is confirmed (a case in
which we observed MFC activity) or whether the prediction is
disconfirmed (a situation in which we observed lOFC activ-
ity). Maintenance of the internal focus on the current stimulus
and its association with a predicted outcome should tend to
occur after a positive outcome because the positive outcome
confirms the generally positive expectation (Sharot et al.,
2007), and switching of the focus to alternative stimuli and
their association with another outcome after a negative out-
come occurs because it disconfirms it.

This proposal for reconciling the results of previous studies
is also consistent with the finding that mOFC lesions, which
did not include area 25 but their proximity in adjacent ven-
tromedial PFC (vmPFC) structures may have deafferented
area 25, impair the ability of macaques to focus on the best and
second best options, and repeat the best choices in situations
in which control animals appear to develop strong attentional
bias toward the best choice (Noonan et al., 2010, 2012). We
could not find similar learning effects in more anterior vmPFC
areas. This might reflect the heterogeneity of brain areas in
vmPFC (McNamee et al., 2013; Neubert et al., 2015). It might
be the case that selective attentional processes needed for
credit assignment in decision making are associated with area
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25, whereas the actual decision-making process additionally
involves more anterior parts of vmPFC (Monosov and Hiko-
saka, 2012; Strait et al., 2014).

Our data suggest that MFC and lOFC have unique roles
when behavior is guided by a mechanism akin to hypothesis
testing: they competitively select the specific association be-
tween cues and outcomes that is initially focused on or disen-
gage from it and switch to alternative associations to guide
behavior.
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