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Abstract

potential protein motifs that regulate ASIC2a trafficking.

acid signaling.

Background: Acid-sensing ion channels (ASICs) are proton-gated cation channels that mediate acid-induced
responses in neurons. ASICs are important for mechanosensation, learning and memory, fear, pain, and neuronal
injury. ASIC2a is widely expressed in the nervous system and modulates ASIC channel trafficking and activity in
both central and peripheral systems. Here, to better understand mechanisms regulating ASIC2a, we searched for

Results and conclusions: We identified a LLDLL sequence in the C-terminal juxtamembrane region of ASIC2a.
Deleting or mutating the LLDLL sequence increased total expression and surface levels of ASIC2a in CHO cells.
Mutating either of the two LL motifs had a similar effect. We further assessed ASIC2a localization in organotypic
hippocampal slice neurons. The LL motif mutants exhibited increased dendritic trafficking and elevated targeting to
dendritic spines. Consistent with an efficient trafficking, the LL motif mutants increased acid-activated current
density. In addition, mutating the second LL motif increased pH sensitivity of the channel. These data identify the
LL motifs as a negative regulator of ASIC2a trafficking and function, and suggest novel regulatory mechanisms in

Keywords: ASIC, ASIC2a, Di-leucine (LL) motif, Surface expression, Trafficking

Background

Acid-sensing ion channels (ASICs) are the main class of
proton receptors in brain neurons. Previous studies have
shown that ASICs are important for neuron physiology
and synaptic plasticity, and play critical roles in fear- and
anxiety-related behavior in mice [1, 2]. In addition,
ASICs mediated neuronal injury in several common
neurological diseases, including ischemia, multiple scler-
osis, traumatic brain injury, and pain [3-10]. These re-
sults indicate that understanding the biology of ASICs is
important for us to better interpret how ASICs contrib-
ute to brain function and disease.

The major ASIC subunits expressed in the brain are
ASICla, 2a and 2b [11]. ASICla is the key subunit de-
termining acid-activated current in brain neurons. In
contrast, ASIC2a homomeric channels do not start to
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open until ~ pH 5.5. However, ASIC2a plays important
modulatory roles in acid-induced responses. ASICla/2a
heteromers show distinct current properties. Compared
to ASICla homomers, la/2a heteromers have a lower
pHso and faster rate of desensitization [12]. In the brain,
ASIC2a co-immunoprecipitated with ASICla and facili-
tated synaptic targeting of ASICla [13]. Deleting the
ASIC2 gene altered acid-activated current properties in
CNS neurons, and reduced acid-activated calcium rise in
hippocampal slices [12—-15]. Consistent with these re-
sults, ASIC2 null and ASIC1la null mice exhibited similar
changes in fear- and anxiety-related behavior [16]. In
addition, we recently showed that deleting ASIC2 led to
a region-specific protective effect against acidosis- and
ischemia-induced brain injury [10].

The current data showed that ASIC2 is important in
regulating the outcome of acid signaling in the brain.
Moreover, ASIC2a contributed to a large proportion of
functional ASICs (primarily in the form of ASICla/2a
hetermoers) in the brain [17]. These data underline the
importance for studying basic mechanisms regulating
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ASIC2a expression, trafficking and function. For this
reason, we attempted here to identify protein motifs that
regulate the expression and function of ASIC2a.

Results and discussion

To identify potential motifs in ASIC2a, we examined the
intracellular tail of ASIC2a. We noticed the presence of
“462LLDLL” in the C-terminal juxtamembrane region.
Previous studies have shown that the di-leucine (LL)
motif is important for ER retention, intracellular sorting,
and/or surface expression of multiple proteins [18—24].
Therefore, we hypothesized that these five amino acids
are important for posttranslational processing and/or
trafficking of ASIC2a. We first generated two ASIC2a
mutants by deleting the LLDLL sequence (ALL) or mu-
tating it to AADAA (Fig. 1a). We transfected Chinese
hamster ovary (CHO)-K1 cells with WT or mutant
ASIC2a, performed surface biotinylation, and blotted total
proteins and surface fraction with an ASIC2 specific anti-
body. We have previously verified the specificity of this
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antibody using WT and ASIC2-/- brain [17], but pre-
sented here a similar blot for clarity (Fig. 1b). Both the
ALL and AADAA mutant showed increased surface levels
(Fig. 1c, d). This increase in surface level was associated
with a 13-14 % increase in total expression and a 13—
15 % increase in surface:total ratio. Next, we mutated the
two LL motifs separately and generated the AAD and
DAA mutants (see Fig. 1a). Mutating either LL motif in-
creased both the expression and surface levels of ASIC2a
(Fig. 1e). The increase in surface:total ratio of the AAD
mutant is small (7 %) and marginal (p = 0.0504). In con-
trast, the DAA mutant exhibited a bigger effect, and led to
a 27 % increase (p = 0.003) in surface:total ratio of ASIC2a.
These data suggest that the second LL motif is more im-
portant for ASIC2a surface trafficking.

Next, we performed immunofluorescence in trans-
fected CHO cells to visualize the localization of WT and
mutant ASIC2a. Compared to the soluble GFP, WT
ASIC2a showed a membranous localization as expected
(Fig. 2a). AAD and DAA mutants exhibited a similar

-
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Fig. 1 Identification of LL motifs which regulate ASIC2a expression and surface trafficking. a Diagram showing the C-terminus of WT ASIC2a and
the mutants generated. The second transmembrane domain is highlighted by gray shading. b Blots showing the specificity of the ASIC2 antibody.
WT and ASIC2—/— (2KO) brain lysate was blotted with the ASIC2 antibody. Note that the specificity of this antibody has been verified in a recent
study [17] but we presented here a similar blot for the clarity of this study. c-e Representative western blot and quantification showing the effect
of the corresponding mutants on expression and surface trafficking of ASIC2a. CHO cells were transfected with wild-type or mutant ASIC2a as
indicated. Surface proteins were labeled by surface biotinylation and isolated by NeutrAvidin pulldown. Surface and total proteins were analyzed by
Western blot. Numbers on the bars indicate the total number of repeats. p values are from one-tailed t-test
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Fig. 2 The effect of LL mutants on subcellular localization in CHO cells. CHO cells were transfected with HA-ASIC2a WT (a), AAD (b) DAA (c) or
HA-ASIC1a (d) together with eGFP. ASIC localization was revealed by anti-HA immunofluorescence and visualized with confocal microscopy. Note
that compared to ASIC1a (D), ASIC2a shows a more membranous localization
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distribution pattern (Fig. 2b, c), although it is technically
challenging to accurately quantify surface levels with im-
munofluorescence. We also compared the distribution of
ASIC2a with that of ASICla. Mouse ASICla showed a
higher intracellular staining pattern as compared to that
of ASIC2a (Fig. 2d). The localization pattern of ASICla
and ASIC2a is consistent with previous reports [17, 25].
In a previous study, we have shown that ASIC2a ex-
hibited a somatodendritic distribution and was enriched
in dendritic spines [13]. The increase in surface traffick-
ing of the LL motif mutants raised a question of whether
these LL motifs regulate dendritic trafficking of ASIC2a.
To assess dendritic targeting, we used organotypic hip-
pocampal slices. To eliminate the potential interference
from endogenous ASIC2, we cultured hippocampal
slices obtained from the ASIC2-/- mice [26]. We trans-
fected the slices with HA-tagged ASIC2a-WT, —~AAD, or
-DAA together with a membrane-targeted Lck-GEP,
which facilitates the identification of transfected neu-
rons. Similar to our previous findings using WT slices
[13], ASIC2a was detected in soma and dendrites
(Fig. 3a). To determine the relative trafficking into dend-
rities, we quantified the ratio of ASIC2a at mid-apical
dendrite to that at the cell body (to control for changes
in expression from neuron to neuron), and then normal-
ized the dendrite:cell body ratio of ASIC2a to that of
Lck-GFP (to control for changes in diameter or volume
of the dendritic branch and/or cell body). The results
showed that the DAA mutant had a significant increase
in dendrite:cell body ratio as compared to WT-ASIC2a
(Fig. 3a). The AAD mutant had a similar trend of in-
crease. Next, we quantified the relative enrichment of
ASIC2a in dendritic spines (Fig. 3b). The spine:shaft ra-
tio of WT-ASIC2a, after normalizing to that of Lck-GFP,

was 1.14. The normalized spine:shaft ratio for the AAD
and DAA mutants were increased to 1.32 and 1.41, re-
spectively. Both were significantly higher than that of
WT (p<0.01, ANOVA followed by Turkeys HSD test).
These results indicate that mutating the LL motifs led to
increased dendritic trafficking and spine targeting of
ASIC2a.

In our previous studies, we found that the N-glycosyla-
tion of ASICla and ASIC2a was important for their traf-
ficking [10, 27]. We speculated that the effect of the LL
motifs in ASIC2a may be due to its effect on N-glycosyl-
ation. To test this hypothesis, we treated CHO cell ly-
sates with two endoglycosidases: Endo H and PNGase F.
PNGase F removes all N-linked glycans. In contrast,
Endo H only removes the core-glycans added in endo-
plasmic reticulum (ER) but cannot cleave more complex
(“mature”) glycans that have been modified in mid- to
late-Golgi. The removal of N-linked glycans resulted in a
faster migrating population on the gel (Fig. 4). A higher
proportion of Endo-H resistant fraction indicates a more
efficient processing of N-linked glycans on the protein.
As shown in Fig. 4, the ratio of Endo H resistant: sensi-
tive population was about 2.7:1 for wild-type ASIC2a.
AAD had no significant effect while both AADAA and
DAA increased the proportion of Endo H-resistant
ASIC2a. These results suggest that a more efficient N-
glycosylation process may in part contribute to the in-
creased surface expression of the AADAA and DAA
mutants.

The increase in surface ASIC2a level suggests an in-
crease in acid-activated current. In addition, besides
regulating channel biogenesis and trafficking, protein
motifs may also alter channel function. To address these
issues, we studied acid-activated current of CHO cells
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Fig. 3 AAD and DAA mutants exhibit increased dendritic trafficking. Organotypic ASIC2—/— hippocampal slices were transfected with HA-tagged
ASIC2a WT, AAD, or DAA mutant together with a membrane-targeted Lck-GFP. Localization of ASIC2a was detected using an anti-HA antibody.

a Top: Representative images showing the overall distribution of ASIC2a in hippocampal pyrmaidal neurons. Bottom: Quantification of ASIC2a
dendrite:cell body ratio. Two lines illustrate the position used for quantification: at mid-apical dendrite and cell body. The ratio is calculated as:
(dendritic ASIC2a/cell body ASIC2a)/(dendritic GFP/cell body GFP). The cell body level calibrates for changes in expression while the ratio of GFP
calibrates for changes in volume. p values were from one way ANOVA. b. Top: High magnification images showing ASIC2a localization in segments of
mid-apical dendrites. Bottom: Quantification of ASIC2a spine:shaft ratio. To calibrate for changes in expression and volume, for a given spine, the ratio
is calculated as: (spine head ASIC2a/shaft ASIC2a)/(spine head GFP/shaft GFP). p values were from ANOVA followed by Turkey's HSD test. N on the bars
represent total number of neurons (@) or spines (b) quantified

transfected with WT or mutant ASIC2a. Cells expressing  for ASIC2a channel to function. However, all three mu-
either WT or mutant ASIC2a exhibited typical ASIC- tants, AADAA, AAD and DAA, exhibited significantly
type current in response to pH 4.5 stimulation (Fig. 5). increased acid-activated current. This result was consist-
This result indicates that the LL motifs are not required  ent with the biochemical data showing an increased
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Fig. 4 The effect of LL mutants on N-glycosylation of ASIC2a. Representative Western blots showing the effect of AADAA (a), AAD and DAA (b) on N-
glycosylation status of ASIC2a. CHO cells were transfected with wild-type or mutant ASIC2a as indicated. Total cell lysates were untreated (U), treated
with PNGase F (P), or treated with Endo H (E), and analyzed by Western blot. Numbers on the bar indicate total number of repeats. The p value was from
paired t-test in (a) and Anova followed by Turkey's HSD test in (b)

surface levels of the mutants. Next, we asked whether
channel properties are altered in the AAD and DAA
mutant. The rates of activation and desensitization were
not different between WT, AAD and DAA (Fig. 5¢, d).
Further, we studied pH sensitivity of WT, AAD and
DAA mutants (Fig. 6). The AAD mutant showed similar
pHso as compared to the WT. In contrast, pHso of the
DAA mutant was increased significantly (4.99 +0.07 in
DAA vs 4.53 £0.07 in WT, p<0.05). One general tech-
nical consideration for most patch clamp studies is that
it is harder to obtain good space clamp with large cur-
rents (e.g., in nA range). Although this may affect the
exact values of current amplitude and pHs, it does not
alter our main conclusion that the mutants had

increased acid-activated current and the DAA mutant
showed an increased pH sensitivity.

Previous studies have identified a number of mutants
and/or motifs that affect ASIC channel trafficking and/
or function [28-34]. Most of these studies focused on
ASICla. Our results demonstrated that the LL motifs in
ASIC2a are important for its trafficking and function.
All the mutants that we studied here had increased sur-
face level (Fig. 1). However, only the DAA mutant exhib-
ited a significant increase in surface:total ratio while the
AADAA mutant had a marginal effect (p = 0.049). These
data, together with our current recordings, indicate that
most of the effect on ASIC2a surface trafficking and
channel function was mainly mediated by the second LL

C Rate of activation

Way Analysis of Variance on Ranks followed by Dunnett’s test)

A B Current density
WT AADAA AAD DAA WT AADAA AAD DAA
pH 4.5 . 0 v v v \
\TWfTF z o114 [1e| |14] |15
/ 7 _ l—x—l
, 8% -0
1"AI_ { / ‘%ﬁ -150
V £
3 -200 &
* *

D Rate of desensitization

200

c

_§ 150 -%

:Zf g 100 % §

BE ge

I 50 3

= 14 14 15 © 15

o4 v . .
WT AAD DAA WT AAD

Fig. 5 Mutating the LL motifs increases acid-activated currents. CHO cells were transfected with vvlld—type (WT) and mutant ASIC2a as indicated.
a-c Representative traces (a) and quantification of pH 4.5-actived current density (b), rate of activation (d), and rate of desensitization (d) for ASIC2a
WT and mutants. N on the bars indicate total number of cells quantified. Astrerisks indicate significant differences from WT (p < 0.05, Kruskal-Wallis One
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motif. We speculate that the exact location of the LL
motif may contribute to the differences observed be-
tween mutating the two LL motifs. It remains unclear as
to the exact mechanism of how the LL motifs regulate
ASIC2a. Our data here showed that the AADAA and
DAA mutants increased the maturation of N-linked gly-
cans. N-glycosylation is an important process in protein
sorting and trafficking [35]. We and others have shown
previously that the maturation of N-linked glycans regu-
lated ASICla trafficking [27, 36]. These data suggest that
mutating the second LL motif facilitates posttransla-
tional processing/sorting of ASIC2a. This speculation is
consistent with previous studies showing that the LL
motifs contribute to ER retention and/or sorting through
trans-Golgi network [37-39]. Besides intracellular sort-
ing, LL motifs were involved in endocytosis of several re-
ceptors, including p and & opoid receptors and the
glucose transporter GLUT-8 [24, 40]. It is possible that
some of these additional mechanisms also contribute to
the regulation of ASIC2a by the LL motifs.

Do LL motifs affect the response of ASIC2a to various
pharmacological inhibitors or modulators of ASICs? The
LLDLL sequence locates inside the cell, right after the
second transmembrane domain of ASIC2a. Therefore,
mutating the LL motifs is unlikely to have a direct effect
on most pharmacological reagents that bind to the
extracellular side of ASICs, e.g., amiloride, diminzenes,
or mitTx [41-43]. Interestingly, at the similar juxtamem-
brane region of ASICla, we and others have found two
K/R rich motifs, RRGK and KEAKR [33, 34]. Mutating
these K/R motifs reduced ASICla trafficking and acid-
activated current. These data suggest that the juxtamem-
brane region is one important regulatory site for ASIC

channels. Indeed, for multiple ion channels and recep-
tors, the juxtamembrane region is a key region mediat-
ing protein-protein interaction and modulating
trafficking and/or function [44—47]. In ASICla, the AP-
2 complex interacted with ASICla through the RRGK
motif and led to clathrin-mediated internalization [33].
In the future, it will be interesting to identify proteins
that associate and/or interact with the LL motifs in
ASIC2a. These lines of information may lead to novel
approaches to manipulate acid signaling in physiology
and disease.

Conclusions

In summary, we identified a LLDLL sequence, which
contains two LL motifs, in the C-terminus of mouse
ASIC2a. Both LL motifs were involved in ASIC2a ex-
pression and trafficking. Mutating either one resulted in
increased ASIC2a surface trafficking and dendritic tar-
geting, and elevated acid-activated current. Mutating the
second LL motif also increased pH sensitivity of the
channel. These data indicate that the LL motifs play a crit-
ical role in modulating ASICla/2a heteromer trafficking
and function. These data suggest potential novel mecha-
nisms on the regulation of acid-activated responses through
regulating the LL motifs in ASIC2a.

Methods

Mice

ASIC2-/- mice on a congenic C57 background was
kindly provided by Dr. Michael Welsh. Wild-type (WT)
and knockout mice were maintained as described earlier
[13]. Postnatal day 5-7 (P5-7) pups (either sex) were
used. Animal care met National Institutes of Health
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standards and all procedures were approved by the
Animal Care and Use Committee at University of South
Alabama.

Constructs and reagents

Wild-type mouse ASIC2a constructs (untagged and
N-terminal HA-tagged) have been described previ-
ously [13, 48]. Truncations and point mutations in
ASIC2a were generated with a Quickchange mutagen-
esis kit (Agilent Technologies). All constructs were
verified by sequencing. The ASIC2 antibody was gen-
erated by immunizing rabbit with a C-terminal pep-
tide corresponding to the last 20 amino acid of
ASIC2a [17]. Other antibodies used were: mouse anti-
tubulin (University of Iowa Developmental Hybridoma
Bank), rat monoclonal anti-HA (Roche, Switzerland),
mouse monoclonal anti-HA (Santa Cruz Biotech.,
Santa Cruz, CA and Syd Labs, Malden, MA), Dylight
680-, Dylight 800-, Alexa 680- and 800-conjugated
secondary antibodies (Pierce, Rockford, IL; Invitrogen,
CA; Li-cor, Lincoln, NE). Other reagents used: Endo
H and PNGase F (New England Biolabs, Ipswich,
MA); NHS-sulfo-LC-biotin and NeutrAvidin Beads
(Pierce); culture media and serum (HyClone or Invi-
trogen); lipofectamine 2000 (Invitrogen).

CHO cell culture, transfection and immunofluorescence
CHO-K1 cells were purchase from ATCC. CHO cell cul-
ture and lipofectamine 2000 mediated transfection were
performed as described earlier [27]. For immunofluores-
cence, CHO cells were initially transfected with HA-
tagged ASICs together with eGFP in 35 mm dishes and
re-plated into 4 well chamber glass slides one day after
transfection. ASIC localization in CHO cells was detected
with a rat anti-HA antibody (Roche), similar to what has
been described earlier [49].

Surface biotinylation, NeutrAvidin pull-down, de-glycosylation
and western blot

Surface biotinylation, NeutrAvidin pulldown, and de-
glycosylation were performed similar to what was de-
scribed earlier [27]. The samples were separated by 8 %
or 10 % SDS-PAGE and transferred to nitrocellulose
membranes. Blots were probed with various antibodies,
similar to what was described previously [27]. Antibody
dilutions were: rabbit anti-ASIC2 1:500—1000; monoclo-
nal anti-HA 1:1 K-2 K; monoclonal anti-tubulin 1:30 K;
donkey or goat anti-rabbit Alexa 680 1:10,000-16,000,
and donkey or goat anti-mouse Dylight 800 1:10,000-
16,000. For fluorescence detection, blots were scanned
with an Odyssey Infrared Imaging System. Densitometry
of imaged bands was performed as described earlier [27].
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Organotypic hippocampal slice culture, transfection and
immunofluorescence

Organotypic hippocampal slice was isolated from postna-
tal day 6-7 ASIC2a-/- mice and cultured as described
earlier [13, 27]. Medium was changed every 2-3 days.
Transfection was performed using a Helios-gene gun.
Slices were fixed 2 days after transfection. Detailed proce-
dures for transfection, fixation and subsequent immuno-
fluorescence have been described in detail earlier [27].

Confocal microscopy

Confocal images were captured using a Nikon Al laser
scanning microscope. Illumination was provided by an
argon (Ar, 458, 488, 514 nm lines) and a 561 diode laser.
Green and red channels were imaged sequentially, using
488 nm excitation and a 525/50 emission filter and
561 nm excitation and a 595/50 emission filter, respect-
ively. Images were captured with a 20x or a 63x PL APO
water lens. Dendritic and spine images were exported and
analyzed with NIH Image] as described previously [27].

Electrophysiology

Whole-cell patch-clamp recordings were performed
similar to what was described previously [50]. CHO cells
were transfected with WT or mutant ASIC2a together
with GFP, which facilitated the identification of trans-
fected cells. A multibarrel perfusion system (SF-77B,
Warner Instruments, Hamden, CT) was used for fast
perfusion. Patch pipettes have the resistance of 2—4 MQ
when filled with the intracellular solution (mM): 140
CsF, 1 CaCl,, 10 HEPES, 11 EGTA, 2 TEA, 4 MgCl,,
pH 7.3, adjusted with CsOH, 290-300 mOsm. Extracel-
lular solution contained: 140 NaCl, 5.4 KCl, 20 HEPES,
10 Glucose, 2 CaCl,, 1 MgCl,, pH 7.4 or 4.5, adjusted
with NaOH and HCI, 320-330 mOsm. Whole-cell cur-
rents were recorded using Axopatch 200B amplifier
(Axon Instruments, Foster City, CA) and pCLAMP soft-
ware. Signals were filtered at 2 kHz, and digitized at
5 Hz using Digidata 1322A (Axon Instruments). The re-
cordings with an access resistance of less than 10 MQ
and a leak current less than 100 pA at —-60 mV were in-
cluded for data analysis. Extracellular acidic solution was
applied for 4 s with an interval of 1 min.

Statistical analysis

For comparing two groups, we used paired t-test. For
multiple comparisons, we used one way ANOVA
followed by Turkey’s HSD test. For electrophysiological
data, we used Kruskal-Wallis One Way Analysis of Vari-
ance on Ranks followed by Dunnett’s test. Data were re-
ported as mean*s.em. for the number of samples
indicated. Differences were considered significant if
p <0.05.
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