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assess the role of serum bile acids in the neurological complications after acute liver failure. (57Bl/6 or
cytochrome p450 7A1 knockout (Cyp7A1’/’) mice were fed a control, cholestyramine-containing, or
bile acid—containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice
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acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR
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function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of
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Hepatic encephalopathy (HE) is a serious neuropsychiatric
complication of both acute liver failure and chronic liver
diseases, with the potential to affect health-related quality of
life, clinical management strategies, priority for liver trans-
plantation, and patient survival." HE resulting from acute
liver failure causes altered mental states and cognitive dis-
ruptions that can progress to coma in hours or days.”
Associated with the neuropsychiatric decline observed in
HE are cerebral edema, neuroinflammation, increased
intracranial pressure, and brain herniation. Therapies
designed to detoxify the blood are often successful in alle-
viating the symptoms of mild or minimal HE.” However, the
treatment options for patients with more severe HE are
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limited, with liver transplantation being one of the only
options that significantly enhances the chances of survival
for these patients.”

Bile acids are synthesized in the liver from cholesterol
primarily via a mechanism involving the enzyme cyto-
chrome p450 7A1 (Cyp7Al) and can be conjugated, mainly
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Bile Acids in HE

to glycine or taurine, before being released into the bile to
aid in digestion. Conjugated bile acids, which carry a
negative charge at physiological pH, require carrier-
mediated transport to cross membranes.” The uptake of
bile acids can occur via one of several transporters,
including the apical sodium-dependent bile acid transporter
(ASBT).® Once bile acids gain entry into the cell, they can
exert their effects through several nuclear receptors,
including farnesoid X receptor (FXR).” Activation of FXR
results in the up-regulation of the cofactor small heterodimer
partner (SHP), which works in concert with FXR to affect
change in target gene expression.”

Under normal physiological conditions, 95% of the bile
acid pool is reabsorbed from the intestine and transported to
the liver, which constitutes an inhibitory feedback control
on bile acid synthesis. During liver damage, there is
increased accumulation of bile acids in the liver and a
spillover of bile acids into the systemic circulation. These
elevated serum bile acid levels have been associated with
hepatotoxicity,”'" hepatic fibrosis,'' pruritus,'? cardiomy-
opathy,13 and vasodilation.'* However, the role of bile acids
in HE because of acute liver failure is unclear. Therefore,
the aims of this study were to assess the effects of increased
serum bile acid levels on the neurological decline associated
with acute liver failure and to assess the possible mechanism
by which this may occur.

Materials and Methods

Reagents

All chemicals were purchased from Sigma-Aldrich (St.
Louis, MO) unless otherwise noted, and were of the
highest grade available. Cholyl-lysyl fluorescein (CLF; a
fluorescent bile acid derivative) was purchased from BD
Biosciences (San Jose, CA). The FXR-specific antibody
was purchased from Abcam (Cambridge, MA), and SHP-
specific antibody was purchased from Santa Cruz
Biotechnology (Dallas, TX). The antibody against ASBT
was a kind gift from Dr. Paul Dawson (Wake Forest
University Health Sciences, Winston Salem, NC).15 The
primers for FXR (catalog number PPM24915A), ASBT
(catalog number PPM24983A), Shp (catalog number
PPM41772A), and glyceraldehyde-3-phosphate dehydroge-
nase (catalog number PPMO02946E) were purchased from
Qiagen, SABiosciences (Frederick, MD). Vivo-morpholino
sequences were purchased from Gene Tools (Philomath,
OR). Custom-made rodent diets were purchased from Dyets
Inc. (Bethlehem, PA) and were made on the base diet
formulation AIN-93G. Breeding pairs of Cyp7Al heterozy-
gous knockout mice were a kind gift from Dr. Sandra Erickson
(University of California, San Francisco, CA).'® Cyp7Al
heterozygous knockout mice were bred on a C57BI/6 back-
ground to establish a breeding colony. Homozygous Cyp7A1
knockout mice (Cyp7A1 /7y and wild-type (WT) littermates
were used in all experiments.
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In Vivo Model of Acute Liver Failure

Mouse in vivo experiments were performed using male
C57Bl/6 mice (25 to 30 g; Charles River Laboratories,
Wilmington, MA) or in male Cyp7Al "~ or WT littermate
controls with approval from Baylor Scott & White Health
(Temple, TX) and Texas A&M Health Science Center
(Temple, TX) Institutional Animal Care and Use Commit-
tees. Mice received a single i.p. injection of 100 pg/g of
azoxymethane (AOM) to induce acute liver failure and HE.
After injection, mice were placed on heating pads set to 37°C
to ensure they remained normothermic. Hydrogel and rodent
chow were placed on cage floors to ensure easy access to
food and hydration. After 12 hours and every 4 hours
thereafter, mice were injected s.c. with 5% dextrose in
250 pL saline to ensure euglycemia and hydration. After
injection, mice were monitored at least every 2 hours (starting
at 8 hours after AOM injection) for body temperature, weight,
and neurological decline.'”'” Once neurological decline
developed, mice were continuously monitored, with formal
assessments of temperature, body weight, and neurological
decline performed each hour. Neurological decline was
assessed by measuring the pinna reflex, corneal reflex, tail
flexion, escape response, righting reflex, and ataxia, as
described previously'”'” by an investigator blinded to the
treatments (M.M. or S.G.). The summation of these six re-
flexes gives a neurological score between 0 and 12.

Tissue was collected before neurological symptoms
(preneurological), when minor ataxia and weakened reflexes
were present (minor neurological), when major ataxia and
deficits in reflexes were evident (major neurological), or at
coma, where there was loss of righting and corneal reflexes,
as described previously.'”'® Cerebral edema was assessed in
all mice using the wet/dry weight method described by
Baskaya et al.”’ Water content was expressed as a percentage
of brain weight, calculated as follows: ([wet weight — dry
weight]/wet weight) x 100%. Increased brain water content
of 1% to 2% in mice is indicative of cerebral edema and is
characterized by increased intracranial pressure.” >

Pharmacological Manipulations in AOM Mice

In a subset of experiments, mice were fed a diet containing
cholestyramine (2%), cholic acid (0.3%), deoxycholic acid
(DCA; 0.3%), and ursodeoxycholic acid (UDCA; 3%) or the
control diet AIN-93G for 3 days before the injection of
AOM. The concentrations of bile acids in these diets have
been previously shown to have no significant hepatotoxic
effects.”” Specific inhibition of FXR expression in the
frontal cortex was achieved by directly infusing an FXR-
specific  Vivo-morpholino sequence (5'-CTGAAACTG-
CATCACCATCCTTAGC-3’) or a mismatched control (5’'-
CTCAAAGTGGATCACCATCGTTACC-3') using brain
infusion kits coupled to s.c. implanted minipumps (Alzet,
Cupertino, CA) at 1 mg/kg per day for 3 days before AOM
injection at coordinates AP 2.0, ML —2.0, and DV —2.5.
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Assessment of Bile Acid Content in the Brain

At the time when minor neurological symptoms were pre-
sent, the mice were anesthetized and transcardially perfused
with ice-cold saline to remove the blood from the brain.
Cortex homogenates were prepared by calculating the wet
weight of brain tissue with subsequent homogenization in
100 mg/mL in ultrapure water using a Miltenyi Biotec
gentleMACS Dissociator (San Diego, CA). Homogenates
were spun down for 5 minutes at 16,100 x g, and super-
natants were collected. Total bile acid content was assessed
in homogenates of the frontal cortex following the manu-
facturer’s instructions (Diazyme Laboratories, Poway, CA).
To assess the performance of this kit, brain homogenates
were supplemented with DCA to a final concentration of
10 pmol/L after homogenization in ultrapure water, as
outlined above. This concentration was chosen as approxi-
mately equivalent to the total bile acid concentration
reached in the serum. The original lysate and the DCA-
supplemented lysate were subsequently used for the total
bile acid assay, and the percentage of bile acid recovery was
assessed by the following formula: ([DCA-supplemented
lysate bile acid concentration — control lysate bile acid
concentration]/10 pmol/L) x 100%.

In parallel, mice were given a single tail vein injection of
the fluorescent bile acid derivative CLF (BD Biosciences) 1
hour before the injection of AOM. CLF exhibits aspects of
transporter-mediated transport like endogenous bile acids
and shows similar brain penetrance to tritiated taurocholate
in models of chronic liver damage in our hands (data not
shown).”**> Once again, at the time when minor neuro-
logical symptoms were evident, mice were anesthetized and
transcardially perfused with ice-cold saline to remove the
blood from the brain and the amount of fluorescence in
homogenates of the frontal cortex was assessed as previ-
ously described.®

Liver Biochemistry

Plasma alanine aminotransferase (ALT) was assessed using
commercially available kits. ALT measurement was per-
formed using a fluorimetric activity assay (Sigma-Aldrich),
according to manufacturer’s instructions.

Molecular Analysis

Expression and subcellular localization of the described
target genes were assessed by real-time PCR,”’ immuno-
blotting,28 immunohistochemistry,zo or immunofluores-
cence,”® as previously described.

Real-Time PCR

RNA was extracted from tissues or cells, and real-time PCR
was performed, as previously described,”” using commer-
cially available primers designed against mouse ASBT,
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FXR, SHP, and glyceraldehyde-3-phosphate dehydroge-
nase (SABiosciences). A AACT analysis was performed
using vehicle-treated tissue or untreated primary neurons
as controls for subsequent experiments.”'”> Data for all
experiments were expressed as mean relative mRNA
levels &= SEM.

Immunoblotting

SDS-PAGE gels (10% v/v) were loaded with 10 to 20 pg of
protein diluted in Laemmli buffer per tissue sample. Specific
antibodies against ASBT, FXR, SHP, and f-actin were
used. All imaging was performed on an Odyssey 9120
Infrared Imaging System (LI-COR, Lincoln, NE). Data are
expressed as fold change in fluorescent band intensity of
target antibody divided by p-actin, which is used as a
loading control. The values of vehicle or control groups
were used as a baseline and set to a relative protein
expression value of 1. All treatment groups were expressed
as changes of fluorescent band intensity of target antibody to
B-actin relative to vehicle or control groups. Band intensity
quantifications were performed using ImageJ software
version 10.2 (NIH, Bethesda, MD; htp://imagej.nih.gov/ij).
Data for all experiments were expressed as mean relative
protein += SEM.

Histology, Immunohistochemistry, and
Immunofluorescence

Paraffin-embedded livers were cut into sections (3 pm thick)
and mounted onto glass slides where they were used for
hematoxylin and eosin staining.”’ For brain immunohisto-
chemistry and immunofluorescence, free-floating sections
(30 pum thick) were selected and immunoreactivity was
assessed using specific antibodies for ASBT, FXR, and the
neuronal marker NeuN. The sections were viewed using an
Olympus BX40 microscope with an Olympus DP25 imag-
ing system (Olympus, Center Valley, PA) or a Leica TCS
SP5-X inverted confocal microscope (Leica Microsystems,
Buffalo Grove, IL).

In Vitro Studies

Primary cortical neurons were isolated as previously
described,'” allowed to differentiate, and treated with 10
pmol/L DCA in the presence or absence of 10 pmol/L FXR
antagonist guggulsterone for 24 hours. FXR nuclear trans-
location was assessed by immunofluorescence microscopy,
as described previously,”” and neurons were counterstained
with the nuclear stain DAPI In parallel, SHP expression
was assessed by real-time PCR, as described previously.”’

Statistical Analysis

All statistical analyses were performed using GraphPad
Prism software version 5.04 (GraphPad Software, La Jolla,
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Figure 1  Bile acids are elevated in the brain after liver failure. A: Total
bile acid quantification in the frontal cortex of mice treated with vehicle or
azoxymethane (AOM). B: Relative fluorescence in the cortex of vehicle or
AOM-treated mice injected with cholyl-lysyl-fluorescein (CLF). Data are
expressed as means = SEM (A and B). n = 4 (A and B). *P < 0.05 versus
vehicle-injected mice. RFU, relative fluorescence units.

CA). For data that passed normality tests, significance was
established using the #-test when differences between two
groups were analyzed, and analysis of variance when dif-
ferences between three or more groups were compared,
followed by the appropriate post hoc test. If tests for
normality failed, two groups were compared with a U test or
a Kruskal-Wallis ranked analysis when more than two
groups were analyzed. Results were expressed as
means = SEM. Differences were considered significant
when P < 0.05.

Results

Total Bile Acid Concentrations Are Elevated in the
Brain Following Acute Liver Failure

To determine whether the increased serum bile acids re-
ported after liver failure result in increased bile acid content
in the brain, total bile acid assays were performed on
cortical tissue from vehicle and AOM-treated mice. Because
this assay had been validated in liver tissue, but not brain
tissue, a spiked brain homogenate assay was performed.
DCA supplement (10 pmol/L) to brain homogenates was
recovered at 105.81% =+ 19.93%, indicating that the assay
could be used reliably for brain tissue at the concentrations
measured. Using this assay, there was a significant increase
in the amount of total bile acids in the cortex after AOM
treatment compared with control (Figure 1A). Furthermore,
tail vein injection of a fluorescent bile acid derivative CLF,
before the injection of AOM, resulted in an increased
amount of fluorescence detected in cortical tissue after
AOM injection (Figure 1B). Taken together, these data
suggest that the increased total bile acid content in the brain
during acute liver failure could be derived from the
circulation.

Reducing Circulating Bile Acids Confers Protection
against Acute Liver Failure—Induced Neurological
Impairment

To assess the effects of modulating the bile acid pool, mice
were fed a diet enriched with the bile acid sequestrant
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cholestyramine for 3 days, a modality that significantly
reduced the total bile acid content in the serum (Figure 2A).
Mice that were fed a cholestyramine-supplemented diet before
treatment with AOM displayed delayed neurological decline
(Figure 2B) and increased time taken to reach coma
(Figure 2C) compared with control diet—fed mice. The per-
centage of brain water, a measure of cerebral edema, at
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Figure 2  Reduction of circulating bile acids is protective against acute
liver failure—induced neurological impairment. A: Serum bile acid con-
centrations in mice that ingest a control or cholestyramine-supplemented
diet. B: Neurological score of azoxymethane (AOM)—treated mice that
consume control (black) or cholestyramine-supplemented (gray) diet.
C: Time to coma in hours for AOM-treated mice that were fed either control
or cholestyramine diets. D: Hematoxylin and eosin staining of AOM-treated
mice fed with control or cholestyramine diets. *P < 0.05 versus control diet
mice. n = 5 (A—C).
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Table 1 Serum Liver Enzymes for Treated Mice

Variable ALT (U/L), means & SEM
Vehicle 18.09 + 3.82
AOM 188.62 + 20.51*
Cholestyramine 22.68 + 0.98
Cholestyramine + AOM 287.34 + 20.54*
Cyp7A1~/~ + vehicle 16.74 + 1.95
Cyp7A1~7~ + AOM 497.05 =+ 23.34*
Control diet 28.45 + 9.21
Control diet + AOM 104.67 + 0.77*
Cholic acid diet 31.91 £ 15.61
Cholic acid diet + AOM 149.95 + 4.63*
DCA diet 80.41 £+ 6.84
DCA diet + AOM 176.52 4+ 15.50*
UDCA diet 27.17 + 0.58
UDCA diet + AOM 99.04 + 4.76*
FXR mismatch VM 17.03 £ 0.48

FXR mismatch VM + AOM 167.51 &+ 33.64*
FXR VM 4.03 + 3.81
FXR VM + AOM 183.88 + 11.45*

The normal range for ALT is from 17 to 77 U/L.

*P < 0.05 versus vehicle.

ALT, alanine aminotransferase; AOM, azoxymethane; Cyp7A1, cytochrome
p450 7A1; DCA, deoxycholic acid; FXR, farnesoid X receptor; UDCA, urso-
deoxycholic acid; VM, Vivo-morpholino.

coma in control-fed AOM-treated mice was significantly
reduced in cholestyramine-fed mice treated with AOM
(82.52% =+ 0.59% and 80.53% + 0.19%, respectively;
P = 0.0315). Cholestyramine treatment did not have a sig-
nificant effect on the liver damage, as shown by hematoxylin
and eosin staining (Figure 2D) or serum chemistry (Table 1),
suggesting that reducing bile acid concentrations is neuro-
protective, rather than hepatoprotective.

In parallel, Cyp7A1 "~ mice were used to further assess
the effects of an altered bile acid content on the neurological
decline associated with acute liver failure. Cyp7Al '~ mice
have previously been shown to have reduced fecal bile acid
content and total bile acid pool, as well as reduced con-
centrations of DCA, lithocholic acid, and B-muricholic
acid.'® Reduced circulating bile acid content was confirmed
in Cyp7A1~"~ compared with WT controls (Figure 3A).
Treatment of Cyp7Al '~ mice with AOM demonstrated
significantly delayed neurological decline (Figure 3B) and
increased time to coma (Figure 3C) compared with WT
mice. Once again, AOM injection caused similar levels of
liver damage in Cyp7A1~'~ and WT mice, as demonstrated
by hematoxylin and eosin staining (Figure 3D) and serum
ALT levels (Table 1), again confirming that modulating the
bile acid content in this manner was predominantly neuro-
protective, rather than hepatoprotective.

Bile Acid Pool Enrichment Differentially Affects
Neurological Decline Due to Acute Liver Failure

To further assess the involvement of various bile acids in the
neurological decline associated with acute liver failure, mice
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were fed a diet enriched with DCA, its corresponding pri-
mary bile acid, cholic acid, or the protective bile acid
UDCA for 3 days before the injection of AOM. Feeding
with either DCA or cholic acid worsened the neurological
decline (Figure 4A) and significantly decreased the time
taken to reach coma (Figure 4B), with DCA having the
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Figure 3  Knockout of cytochrome p450 7A1 (Cyp7al) reduces circu-
lating bile acids and neurological decline associated with acute liver fail-
ure. A: Wild-type (WT) and Cyp7al™/~ mice serum bile acid levels.
B: Neurological decline of azoxymethane (AOM)—treated WT (black) and
Cyp7a1~’/~ (gray) mice. C: Time to coma in hours for AOM-treated WT and
Cyp7a1~/~ mice. D: Representative hematoxylin and eosin staining in WT
and Cyp7a1~/~ mice treated with AOM. *P < 0.05 versus WT mice. n = 5
(A—C).
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greatest effect. Mice fed CA or DCA diets and administered
AOM had a significant elevation of brain water compared
with control diet mice treated with vehicle (CA:
81.72% £ 0.28%, P = 0.0012; DCA: 80.78% =+ 0.30%,
P = 0.0328; control: 79.65% =+ 0.32%). UDCA-fed mice
administered AOM had levels of cerebral edema compara-
ble to control diet—fed mice administered vehicle (UDCA:
80.39% =+ 0.44%, P = 0.2109; control: 79.65% =+ 0.32%).
Interestingly, although there was no observable evidence of
liver damage in any of the bile acid—treated mice before the
injection of AOM (Figure 4C), there was a significant in-
crease in ALT in the serum of DCA-fed mice, suggesting
that the dramatic increase in the onset of neurological
impairment in these mice may have been, in part, because of
the presence of liver damage before the injection of AOM.
However, the liver damage after AOM injection was com-
parable between treatment groups (Figure 4C and Table 1).
UDCA feeding had no effect on the associated liver damage
or neurological decline (Figure 4, A—C, and Table 1).

FXR Signaling in the Brain is Up-Regulated Following
Acute Liver Failure

To dissect a possible mechanism by which bile acids may be
exerting their effects, we assessed the expression of key
components of the bile acid signaling pathway in the brain
at stages of HE corresponding to the following: i) before the
onset of neurological symptoms, ii) when minor neurolog-
ical symptoms are present, iii) when major neurological
impairment is observed, and iv) at the time of coma. These
stages have been previously described in detail.'” Expres-
sion of the bile acid transporter ASBT, the bile acid nuclear
receptor FXR, and its cofactor SHP was significantly
increased after AOM injection in the frontal cortex before
the onset of neurological symptoms compared with control

The American Journal of Pathology m ajp.amjpathol.org

Control  Cholic Acid DCA Diet UDCA Diet

Figure 4  Enrichment of bile acid pools differ-
entially affects the neurological decline associated
with acute liver failure. A: Neurological decline in
azoxymethane (AOM)—treated mice that were fed
diets supplemented with cholic acid, deoxycholic
acid (DCA), ursodeoxycholic acid (UDCA), or a
control diet. B: Time to coma in hours for hepatic
UDCA encephalopathy mice that consumed diets sup-

plemented with cholic acid, DCA, UDCA, or a con-
trol diet. C: Hematoxylin and eosin histochemistry
in control or AOM-treated mice that ingested diets
supplemented with cholic acid, DCA, UDCA, or a
control diet. *P < 0.05 versus control diet—fed

mice. n = 5 (A and B).

tissue (Figure SA and Supplemental Figure S1A), an effect
that was observed through to major neurological decline.
Interestingly, the expression of these key bile acid signaling
components was dramatically decreased at the time of coma
(Figure 5A and Supplemental Figure S1A). Expression of
other bile acid transporters, such as hepatic sodium bile acid
cotransporting polypeptide or organic anion transporting
polypeptide, was either not detected or not changed (data
not shown). By immunofluorescence, ASBT and FXR
immunoreactivity was found to predominantly colocalize
with the neuronal marker NeuN in a subset of neurons in the
frontal cortex after AOM injection (Figure 5B). Interest-
ingly, the AOM-induced increase in ASBT, FXR, and SHP
expression was not observed in Cyp7A1 ~/~ mice (Figure 5C
and Supplemental Figure S1B). To demonstrate that this bile
acid signaling pathway was functional in these neurons,
primary cortical neurons were treated with DCA in the
presence or absence of the FXR antagonist, guggulsterone,
and functional markers of FXR activity were assessed.
Specifically, under basal conditions, FXR immunoreactivity
was found to be predominantly cytoplasmic, whereas after
DCA treatment, FXR was found predominantly in the nu-
cleus, an effect that could be blocked by pretreatment with
the FXR antagonist guggulsterone (Figure 6A). Further-
more, DCA treatment of primary neurons resulted in an
increase in SHP mRNA expression, a downstream target of
FXR activation (Figure 6B), which again could be blocked
by pretreatment with the FXR antagonist guggulsterone.

Neural FXR Signaling Contributes to Neurological
Decline Following Acute Liver Failure

To determine whether FXR-mediated signaling was
involved in the neurological decline associated with acute
liver failure, an FXR-specific or mismatched control
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Vivo-morpholino sequence was infused directly into the
frontal cortex for 3 days before the injection of AOM.
This treatment regimen was used to dissect the specific
effects of reduced FXR expression in the brain and was
found to specifically decrease the expression of FXR in
the frontal cortex adjacent to the injection site (Figure 7,
A and B). No change in FXR expression was detected in
the liver in these mice (data not shown). Pretreatment
with the FXR-specific Vivo-morpholino sequence before
AOM injection significantly delayed the neurological
decline (Figure 7C) and increased the time to coma
(Figure 7D) when compared with the mismatched control
sequences. There was no liver damage because of the
intracortical infusion of either Vivo-morpholino
sequence, as assessed by hematoxylin and eosin stain-
ing (Figure 7E) and serum ALT levels (Table 1).
Furthermore, the AOM injection caused a similar degree
of liver damage after either Vivo-morpholino sequence
(Figure 7E and Table 1), suggesting that down-regulating
FXR expression in the frontal cortex is neuroprotective,
but not hepatoprotective.

Discussion

HE is a serious neurological complication that arises after
liver disease.’” Currently, HE has few effective treatments

A, «

and thus the need to identify targets for potential thera-
peutics is important. Herein, we demonstrate the
following: i) bile acid content in the frontal cortex is
increased during acute liver failure, ii) strategies to
modulate the bile acid content in the brain alter the
neurological decline observed, and iii) FXR-mediated
signaling contributes to the neurological impairment.
Taken together, our data suggest that aberrant bile acid
signaling in the brain may contribute to HE because of
acute liver failure and that strategies to alter the bile acid
content in the brain may alleviate the neurological con-
sequences observed in acute liver failure.

The AOM Model of Acute Liver Failure Is a Valid Model
of HE

The AOM model of acute liver failure exhibits many of the
pathophysiological characteristics of human HE because of
acute liver failure. These features include the following: i) a
clear pattern of neurological behaviors starting with the
prodromal phase because of liver failure, where neurological
symptoms are not yet evident (defined by us as the pre-
neurological phase), followed by several distinct phases of
neurological decline that rapidly progress to stupor or coma;
i) the presence of cerebral edema; and iii) high levels of
ammonia in the blood and brain. In a comparative study,’”

Figure 5 Farnesoid X receptor (FXR) signaling
is elevated in brain during acute Lliver failure.
A: Apical sodium-dependent bile acid transporter
(ASBT), FXR, and small heterodimer partner (SHP)
cortical mRNA expression during the time course of
neurological decline after azoxymethane (AOM)
injection. B: Fluorescence immunoreactivity of
ASBT and FXR (red) costained with neuronal
marker NeuN (green) in the cortex. The arrows
indicate colocalization of ASBT and NeuN immu-
noreactivity (top panel) and FXR and NeuN
immunoreactivity (bottom panel). C: Immuno-
blots for ASBT, FXR, and SHP in wild-type (WT) and
Cyp7a1™’~ mice treated with control or AOM.
B-Actin is used as a loading control. *P < 0.05
versus vehicle-treated mice. n = 6 (A). Scale
bar = 25 um (B).
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Figure 6 Primary neurons transduce farnesoid X receptor (FXR)
signaling in response to deoxycholic acid (DCA). A: Immunocytochemistry
for FXR (red) of primary neurons treated with 10 pmol/L DCA, 10 pmol/L
guggulsterone, or both. DAPI (blue) is used as a nuclear marker. B: Relative
small heterodimer partner (SHP) mRNA expression in primary neurons
treated with 10 pmol/L DCA, 10 umol/L guggulsterone, or both. *P < 0.05
versus basal primary neurons. n = 4 (B). Scale bar = 25 um (A).

unlike other mouse models, the AOM model of HE was
found to be the most reproducible, was reversible to a
certain degree, and had a reasonable therapeutic window,
with the neurological decline ultimately resulting in liver-
related death (similar to that observed in humans), as long
as the body temperature and other physiological parameters
are tightly controlled. Recently, it has been suggested that
AOM is a flawed model of HE because AOM may be
directly toxic on brain endothelial cells, thereby opening the
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blood-brain barrier (BBB).3 ® However, this study was
purely an in vitro study using a coculture of brain endo-
thelial cells and astrocytes in which the hepatotoxins were
applied to the astrocyte layer rather than to the endothelial
cells directly, as would be the case in an in vivo setting.
Indeed, we have recently demonstrated that direct treatment
of endothelial cells with AOM does not lead to increased
monolayer permeability.”’ Nguyen et al’® and our group
have demonstrated that the BBB has increased permeability
after AOM in vivo, but only at the later stages of encepha-
lopathy, well beyond the onset of neurological symptoms.®’
Conversely, others have shown that mice injected with
AOM alone do not have increased BBB breakdown alone,
but require a priming dose of lipopolysaccharide for the
BBB permeability to be evident.”” Together, these in vivo
reports do not support the idea that AOM is directly causing
leakiness of the BBB; rather, it is a consequence of liver
failure and the resulting complications that arise.

Bile Acids Contribute to the Pathogenesis of HE

Our current understanding of HE relies heavily on the idea
that the buildup of ammonia in the bloodstream and brain is
driving the neurological decline observed after acute and
chronic liver failure. However, recent studies suggest that
ammonia toxicity is not the only driving force in this con-
dition. Indeed, current data suggest that there may be a
synergism between ammonia and neuroinflammation, lead-
ing to the development of HE."" Increased expression of the
inflammatory chemokine ligand 2 has been attributed to
AOM-induced HE progression and knockout of the IL-1
receptor, or the tumor necrosis factor receptor confers
neuroprotection after AOM-induced HE.'®*' Data from the
AOM model of acute liver failure indicate that ammonia
concentrations are elevated only in the later stages of HE,
well beyond the onset of overt neurological impairment,*”
indicating that other factors must be playing a role in the
early stages of encephalopathy onset. The data presented
herein suggest that serum bile acids may also be playing a
role in the pathogenesis of HE.

It has long been acknowledged that serum bile acid levels
increase as a result of liver damage because of the impaired
reuptake mechanism in the liver, and increased bile acids in
the circulation likely contribute to the peripheral adverse
effects of liver damage, such as pruritus,'” cardiomyopa-
thy,"? and vasodilation.'* Interestingly, the serum bile acid
profile is altered in patients with cirrhosis, in whom there is
a higher amount of primary bile acids, indicating a
decreased bioconversion of primary to secondary bile acids,
which may be attributable to alterations in the gut micro-
flora.®? Herein, we provide evidence that serum bile acids
contribute to the neurological consequences of acute liver
failure as well. Our data indicate that there is an increase in
total bile acid content in the frontal cortex of AOM-treated
mice and that this increase is predominantly from the cir-
culation. In support of our data, Bron et al** demonstrated
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that patients who died from fulminant hepatic failure had
small, but significant, amounts of bile acids in the cere-
brospinal fluid that were absent from patients dying without
evidence of liver disease. Furthermore, in bile duct—ligated
rats, the bile acid profile in the brain was found to have a
more toxic composition than that of controls.” Specifically,
87.4% of the total bile acids detected were found to be in
the form of lithocholic acid, a toxic hydrophobic bile
acid, which was absent in control animals.”” This study
primarily focused on bile acid levels and associated mo-
lecular changes in the frontal cortex because this region is
significantly affected during HE,"* ** although other areas
of the brain are also affected; therefore, investigation into
regional changes of bile acid concentrations during HE is
warranted.

Strategies to Deplete or Alter the Composition of the
Bile Acid Pool Can Alter the Pathogenesis of HE

Strategies used to deplete the circulating bile acid levels,
such as the use of the bile acid sequestrant cholestyramine,
have previously been effective in the treatment of some of
the peripheral adverse effects of cholestatic liver damage,
such as pruritus.49‘50 In contrast to this beneficial effect,
cholestyramine feeding in acetaminophen-treated mice
actually leads to worse liver damage and increased necro-
sis.’! However, to date, no information exists regarding the
beneficial effects of cholestyramine treatment in the neuro-
logical consequences of liver damage. The data presented
herein suggest that reduction of serum and brain bile acids
by short-term cholestyramine feeding conferred no reduc-
tion in AOMe-induced liver damage, but significantly
delayed the resulting neurological decline. These findings
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Figure 7  Neurological decline during acute
liver failure is exacerbated via farnesoid X receptor
(FXR) signaling. A: FXR immunhohistochemisty
in the cortex of mice after intracortical infusion
with FXR-mismatched morpholino or FXR Vivo-
morpholino. B: Immunoblot against FXR
with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) used as a loading control in FXR-
mismatched morpholino or FXR Vivo-morpholino
mice. C: Neurological decline in azoxymethane
(AOM) mice infused with FXR-mismatched morpho-
AOM lino or FXR Vivo-morpholino. D: Time to coma in
hours of AOM mice infused with FXR-mismatched
morpholino or FXR Vivo-morpholino. E: Hematoxy-
lin and eosin histochemistry in vehicle and AOM
mice treated with FXR-mismatched morpholino or
FXR Vivo-morpholino. *P < 0.05 versus FXR-
mismatched morpholino mice. n = 5 (C and D).

indicate a novel role for bile acids in the pathophysiological
processes associated with the development of HE.

In addition to modulating the total levels of bile acids in
the serum, the data presented herein indicate that the
composition of the bile acid pool may also be important in
determining the susceptibility of mice to the neurological
complications of acute liver failure. For example, mice
lacking the expression of Cyp7Al, a bile acid synthesis
enzyme found predominantly in the liver, but not the brain, of
mice, were relatively protected from developing the HE after
AOM injection. As mentioned above, these mice had a
reduced total bile acid pool and fecal bile acid content, but a
significant reduction in certain bile acids, such as DCA,
lithocholic acid, and B-muricholic acid.'® Furthermore, our
data suggest that feeding mice with diets enriched with either
cholic acid or DCA increased the susceptibility of these mice
to the development of HE. DCA-fed mice that were admin-
istered AOM had worse neurological decline but exhibited
less cerebral edema compared with mice administered AOM
and were fed a control diet. Therefore, DCA treatment may
be generating an unknown metabolic or cell-signaling
consequence that was not identified in these studies and is
the subject of further studies in our laboratory. Previous
studies using similar concentrations of bile acid—enriched
diets suggest that the bioconversion of the enriched bile acid
after ingestion may play a large role in the phenomena
observed herein.”” For example, feeding mice a diet enriched
with 1% cholic acid significantly increased the concentration
of DCA, taurocholic acid, and taurodeoxycholic acid.”?
Similarly, a diet enriched with 0.3% DCA predominantly
increased cholic acid and the taurine conjugates of both
species.52 Therefore, it is reasonable to assume that the effects
of cholic acid or DCA feeding on the neurological decline
because of acute liver failure may not solely be because of the
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individual enriched bile acid, but may be because of a
metabolite or conjugated version of the bile acid.

The Mechanism of Action of Bile Acids in the Brain
Involves ASBT-Dependent Uptake and Activation of
FXR

Circulating bile acids can gain access to the brain via two
known mechanisms. First, bile acids can be transported
across the BBB through the bile acid transporters found in
the choroid plexus.’” Second, another route of entry is via
the diffusion of bile acids through an increasingly perme-
able BBB. We, and others, have demonstrated that the BBB
is impaired in models of acute and chronic liver dam-
age.”*?7937°¢ Furthermore, we have recently demonstrated
that the circulating bile acids themselves can induce
permeability in the BBB via a mechanism involving the
Racl-dependent phosphorylation of the tight junc-
tion—associated protein Occludinl.”® The exact mecha-
nisms that lead to bile acid entry into the brain during HE,
whether through alterations in bile acid transporters in the
choroid plexus or increased passive diffusion through a
leaky BBB, are unclear and are areas of ongoing research in
our laboratory.

Bile acids are absorbed into the cell via either passive
diffusion or active transport through transporters such as
ASBT, depending on the polarity of the individual bile
acids. Once inside the cell, bile acids can bind to and acti-
vate the nuclear receptor FXR. To our knowledge, the
current study is the first study to identify the expression of
ASBT and FXR in the brain, specifically the frontal cortex.
Both ASBT and FXR immunoreactivity was found to
colocalize with neuronal markers, suggesting that bile acid
signaling may be prevalent in neurons of the frontal cortex.
In addition, our data demonstrate an induction in ASBT,
FXR, and SHP expression at early stages of neurological
decline after AOM injection, followed by a rapid decline
once the mice reached hepatic coma, and that blocking FXR
translation using Vivo-morpholino technology delays
neurological decline. Although FXR signaling has not pre-
viously been demonstrated in neurons, the expression of the
cell surface bile acid receptor TGRS has been demonstrated
in neurons and astrocytes,”’ suggesting that machinery for
transducing bile acid signaling is present in the brain.
Furthermore, the expression of TGRS has been shown to be
down-regulated in a model of ammonia intoxication.”’
Therefore, it is conceivable that FXR and ASBT may also
be present in the brain because our data suggest that the
down-regulation of FXR and ASBT expression at the time
of hepatic coma may be as a result of a buildup in ammonia
in the brain, reported to occur only at late stages of neuro-
logical decline after AOM injection.*””® The mechanism by
which ASBT/FXR expression is up-regulated at early stages
of HE is unknown, and the downstream consequences of
FXR signaling that leads to neurological impairment during
acute liver failure warrant further investigation.
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Conclusions

The data presented herein suggest that after liver failure, bile
acids in the serum are gaining access to the brain and
contributing to the neurological decline associated with HE
via a mechanism involving FXR activation. Our results
suggest that strategies to decrease serum bile acids or to
modulate the bile acid components of the bile acid pool may
be a potential therapeutic option, or a supplemental therapy
to existing treatments, for the management of HE because of
acute liver failure. Furthermore, modulating FXR signaling
in the brain may also be a viable target for the development
of treatment paradigms for patients with HE.
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