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Plaque-Associated Local Toxicity Increases over
the Clinical Course of Alzheimer Disease
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Amyloid (senile) plaques, one of the two pathologic hallmarks of Alzheimer disease (AD), are associated with
dystrophic neurites and glial responses, both astrocytic and microglial. Although plaque burden remains
relatively stable through the clinical course of AD, whether these features of local plaque toxicity continue to
worsen over the course of the disease is unclear. We performed an unbiased plaque-centered quantification of
SMI312þ dystrophic neurites, GFAPþ reactive astrocytes, and IBA1þ and CD68þ activated microglia in
randomly selected dense-core (Thioflavin-Sþ) plaques from the temporal neocortex of 40 AD subjects with a
symptom duration ranging from 4 to 20 years, and nine nondemented control subjects with dense-core
plaques. Dystrophic neurites (Kendall t Z 0.34, P Z 0.001), reactive astrocytes (Kendall t Z 0.30,
P Z 0.003), and CD68þ (Kendall t Z 0.48, P < 0.0001), but not IBA1 microglia (Kendall t Z 0.045,
P Z 0.655), exhibited a significant positive correlation with symptom duration. When excluding control
subjects, only the positive association between CD68þ microglia and symptom duration remained significant
(Kendall tZ 0.39, PZ 0.0003). The presence of the APOEε4 allele did not affect these results. We conclude
that plaques exert an increasing toxicity in the surrounding neuropil over the clinical course of AD, thereby
potentially contributing to cognitive decline. (Am J Pathol 2016, 186: 375e384; http://dx.doi.org/10.1016/
j.ajpath.2015.10.010)
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Amyloid plaques and neurofibrillary tangles are the core
features of Alzheimer disease (AD). Among amyloid
plaques, the subset of dense-core plaques defined by posi-
tive staining with dyes selective for b-pleated sheet structure
such as Congo red and Thioflavin-S are considered more
toxic and correlate more specifically with the presence of
dementia. Dense-core plaques have a number of associated
features that include dystrophic neurites, reactive astrocytes,
and activated microglial cells. Dystrophic neurites are
described as spheroids, swellings, and distorted neurites
(dendrites and axons) that are embedded within dense-core
plaques or in their close vicinity and exhibit immunoreac-
tivity for neurofilament proteins and hyperphosphorylated
tau.1 Reactive astrocytes and activated microglial cells also
cluster within and around dense-core plaques. Therefore, the
microenvironment of dense-core neuritic plaques is thought
to recapitulate all of the steps of the amyloid cascade
hypothesis.2,3
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With the use of quantitative postmortem measures, we
previously showed that amyloid both plaque burden and
plaque size remain relatively constant throughout the clinical
course of AD.4e6 Thanks to the body of evidence accumu-
lated with the use of fibrillar amyloid positron emission to-
mography in human subjects, there is now consensus that
amyloid plaque deposition occurs for the most part before
onset of cognitive deficits and plateaus soon after.7e9 How-
ever, whether plaque-associated toxicity, represented by
surrounding dystrophic neurites, reactive astrocytes, and
activated microglial cells, is stable or worsens during disease
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Table 1 Demographic and Clinical Characteristics of the Study Subjects

Characteristic CTRL subjects AD subjects P
AD APOEε4
carriers

AD APOEε4
noncarriers P

Subjects, n 9 40 21 19
Sex, female, n (%) 4 (44.4) 26 (65.0) 0.28 16 (76.2) 10 (52.6) 0.18
Age at death, mean � SD (years) 80.3 � 14.4 77.6 � 8.6 0.12 75.8 � 8.7 79.6 � 8.2 0.16
Age at onset, mean � SD (years) 66.9 � 10.2 64.4 � 10.6 69.6 � 9.3 0.07
Symptom duration, mean � SD (years) 10.7 � 5.0 11.3 � 4.9 10.0 � 5.1 0.39
APOEε4 carriers, n (%) 3 (33.3) 21 (52.5) 0.46
APOEε4 alleles, n (%) 3 (16.7) 25 (31.2) 0.75
Postmortem interval, mean � SD (hours) 17.4 � 11.4 14.1 � 6.2 0.53 14.5 � 5.8 13.7 � 6.7 0.68

Postmortem interval was not available for two CTRL subjects. Comparisons were performed with U-test, unpaired t-test, or Fisher’s exact test as appropriate.
AD, Alzheimer disease; CTRL, control.
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progression remains unclear. Twomodels could be proposed.
At one extreme, plaques could cause local damage to the
neuropil as they deposit, but then remain relatively static
lesions10 as the disease pathologic process becomes
increasingly dominated by nonplaque pathologies, including
tau-associated lesions such as neuropil threads and tangles,
neuronal and synaptic loss, and noneplaque-associated glial
reactions.5 At the other extreme, plaques could increasingly
contribute to local neural system destruction over the entire
course of the disease. Therefore, we tested the hypothesis that
the microenvironment in the vicinity of plaques becomes
more andmore toxic as the disease advances. Specifically, we
investigated whether the plaque-associated features of
neuritic changes and reactive glia have already reached a
plateau at dementia onset or parallel the progression of
dementia and continue to accrue over time. Although cross-
sectional postmortem studies are not able to unambiguously
distinguish the prior history of the brain during life, we reasoned
that examining specimens from individuals who had known
durations of illness would provide insight into these questions.
With the use of quantitative neuropathologic measures in
postmortem specimens and robust statistical methods, we
demonstrate that these markers of plaque toxicity change
throughout the clinical course of AD, leading to an overall
increase in local plaque-associated damage as time goes on. The
temporal accrual of features of plaque-associated injury is in-
dependent of the APOEε4 allele.
Materials and Methods

Subjects

Paraffin-embedded sections from the temporal neocortex (BA
38) of 40 AD subjects and nine nondemented control (CTRL)
subjects were obtained from the Massachusetts General Hos-
pital Alzheimer Disease Research Center. Next of kin for
study subjects provided informed consent to donate their brain,
and the study was approved by the Institutional Review Board
at Massachusetts General Hospital. All AD subjects met the
clinical11,12 and neuropathologic diagnostic13e15 criteria of
AD. CTRL subjects had no clinical or neuropathologic
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evidence of any neurodegenerative disease. AD subjects were
selected on the basis of disease duration from symptom onset
as assessed by their neurologist at the patient’s first clinical
encounter with Massachusetts General Hospital Alzheimer
Disease Research Center Neurology team (�5 years, n Z 10;
6 to 10 years, nZ 10; 11 to 15 years, nZ 10, and>15 years,
n Z 10). The demographic and clinical characteristics of AD
and CTRL subjects and of AD subgroups by APOEε4 status
are depicted in Table 1. The temporal neocortex was chosen
because it is a region with abundant and early amyloid
deposition and because our prior quantitative neuropathologic
studies in this area have revealed marked glial responses.5,16,17

Immunohistochemistry

Eight-micronethick paraffin sections were cleared with
xylenes, rehydrated with decreasing concentrations of ethanol,
and subjected to a standard antigen retrieval procedure
(microwave for 20 minutes at 95�C in boiling citrate buffer
0.01 mol/L with 0.05% Tween 20, pH 6.0) before immuno-
histochemistry. Primary antibodies and concentrations used
were mouse anti-SMI312 (dilution 1:1000; Covance,
Princeton, NJ; catalog no. SMI312R), rabbit anti-GFAP
(dilution 1:1000; Sigma-Aldrich, St. Louis, MO; catalog no.
G6296), rabbit anti-IBA1 (dilution 1:250; Wako, Osaka,
Japan; catalog no. 019-19741), and mouse anti-CD68 (dilution
1:100; Dako, Glostrup, Denmark; catalog no. M0814).
Cyanine 3-conjugated anti-rabbit or anti-mouse secondary
antibodies were obtained from Jackson ImmunoResearch
Laboratories (West Grove, PA) and used at a 1:200 con-
centration. Sections were counterstained with Thioflavin
S (Sigma-Aldrich) 0.05% in 50% ethanol for 8 minutes and
differentiated in 80% ethanol for 30 seconds before being
coverslipped with Vectashield mounting media with DAPI
(Vector Labs, Burlingame, CA; catalog no. H-1200).

Quantitative Neuropathologic Studies

Single paraffin-embedded temporal neocortex sections
were randomly sampled with the use of a stereology
microscope-computer system, and 100 dense-core
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Quantitation of plaque-associated features in the temporal
neocortex. A and B: Arrows show how GFAPþ astrocytes (A) and CD68þ

microglia (B) with a DAPIþ visible nucleus within the 50-mm halo (out-
lines) of the nearest plaque were counted. One hundred dense-core
(Thioflavin-Sþ) plaques were randomly selected on single paraffin sections
with the use of a stereology system.

Figure 2 Plaque-associated features accumulate over the clinical
course of AD. AeD: Plots represent the KS difference between the distri-
bution histogram from pairs of subjects against their difference in symptom
duration. Note that the larger the difference in symptom duration between
two subjects, the larger the difference in their distribution histograms for
SMI312þ dystrophic neurites (A), GFAPþ astrocytes (B), and CD68þ

microglia (D) per plaque, indicating accrual over the clinical course of the
disease. This association was, however, not significant for IBA1þ microglia
per plaque (C). n Z 40 AD subjects and 9 CTRL subjects (8 CTRL for
SMI312þ dystrophic neurites). AD, Alzheimer disease; CTRL, control; KS,
Kolmogorov-Smirnov.

Plaque Toxicity Accrues over Time in AD
(Thioflavin-Sþ) amyloid plaques per subject were selected
from randomly sampled microscopic fields by a trained
observer (A.S.-P.). Briefly, sections were placed on a
motorized stage of an upright Olympus BX51 epifluor-
escence microscope controlled by a computer with the
computer-assisted stereological toolbox software version
2.3.1.5 (Olympus, Tokyo, Japan). Reactive (GFAPþ)
astrocytes and activated (IBA1þ or CD68þ) microglia
within 50 mm from the edge of the dense-core plaques
were manually counted as previously described.16,18 This
boundary was selected on the basis of our previous
animal and human postmortem quantitative stud-
ies.5,16,18e22 Only glial cells with a DAPIþ visible nu-
cleus were counted. To prevent double counting of cells
in areas rich in plaques, individual astrocytes and
microglia that were close to two or more plaques were
split among those plaques (ie, 0.5 cells if close to two
plaques, 0.33 if close to three plaques, 0.25 if close to
four plaques, etc.). The number of SMI312þ axonal
swellings/spheroids and distorted neurites >2.5 mm
The American Journal of Pathology - ajp.amjpathol.org
embedded within the Thioflavin-Sþ area or in contact
with its edges were manually counted as described
before.18 Figure 1 shows examples of these quantitative
methods.
Statistical Analysis

Analyses were conducted blinded to clinical diagnosis,
symptom duration, and APOEε4 status. After completing
the above quantifications, each of the 40 AD subjects yiel-
ded a histogram distribution with 100 values for each of the
neuropathologic quantitative measures. For some CTRL
subjects, the number of dense-core plaques was lower than
the goal of 100 plaques, despite sampling 100% of the
cortex included in the section. CTRL subjects were
excluded from analyses of measures for which they had
<100 plaques. Data for SMI312þ dystrophic neurites were
not available for one CTRL subject.

We used symptom duration as a surrogate of progres-
sion because i) duration of illness and clinical severity are
generally correlated; ii) duration of illness overcomes
biases inherent to formal neuropsychological testing in
advanced dementia patients, including floor effect of
psychometric measures, loss to follow-up, impact of
377
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Table 2 Summary of Study Results for All Subjects

All subjects

Symptom duration

SMI312þ

dystrophic
neurites GFAPþ astrocytes IBA1þ microglia CD68þ microglia

Kendall t P Kendall t P Kendall t P Kendall t P Kendall t P

Symptom duration 0.34* 0.001* 0.30* 0.003* 0.045 0.655 0.48* <0.0001*
SMI312þ dystrophic neurites 0.34* 0.001* �0.028 0.735 0.006 0.943 0.008 0.929
GFAPþ astrocytes 0.30* 0.003* �0.028 0.735 �0.137 0.064 �0.014 0.849
IBA1þ microglia 0.045 0.655 0.006 0.849 �0.137 0.064 0.109 0.151
CD68þ microglia 0.48* <0.0001* 0.008 0.929 �0.014 0.849 0.109 0.151

Depicted are correlations between the Kolmogorov-Smirnov distances of pairs of distribution histograms of a given plaque-associated feature and the
difference in symptom duration of that pair of subjects, and the correlations between the median values of the distribution histograms for a given pair of
plaque-associated features (ie, GFAPþ astrocytes versus CD68þ microglia). Data refer to all subjects, that is, 40 AD and 9 CTRL subjects (8 for SMI312þ

dystrophic neurites).
*Statistically significant results.
AD, Alzheimer disease; CTRL, control.
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intercurrent illnesses (eg, cataracts, medications) on test
performance, and variable period of time between last
follow-up and death; and iii) in prior studies we have
found correlation between duration from symptom onset
and variables of progression such as number of neurons
and tau-related pathology,23 cortical atrophy,5 and glial
responses.4,5

Because histograms are multidimensional, to investigate
the correlation between each of the plaque-associated
features and symptom duration, we used the signed
Kolmogorov-Smirnov (K-S) measure of distance between
two histograms and estimated its association with symp-
tom duration with the use of Kendall t (nonparametric
rank) correlation. The K-S distance is the maximum ab-
solute distance between subjects’ empirical distribution
functions, across all values of the variable. The signed
version of K-S distance inherits the sign (positive or
negative) of the distance that yields the K-S distance;
therefore, a larger positive distance between subject i’s
histogram and subject j’s histogram suggests that subject j
has larger values than subject i.

To investigate whether the strength of the association
between each plaque-associated feature and symptom
duration remains constant throughout the clinical course of
the disease or changes over time, we plotted Kendall t
correlation coefficients that were calculated for subsets of
subjects defined by moving windows of symptom duration.
Cross-correlations between plaque-associated features (ie,
CD68þ microglia versus SMI312þ dystrophic neurites)
were estimated with Kendall t test with the use of the
medians of the distributions. Finally, the numbers of
SMI312þ dystrophic neurites per plaque were compared
between APOEε4 carriers and noncarriers with the use of a
two-sided Wilcoxon rank-sum test that accommodates
clustered data.24

All analyses were conducted including and excluding
CTRL subjects. Statistical significance was set at a
level of P < 0.05. Analysis and graphs were performed
with the statistical software package R version 3.2
378
(http://www.r-project.org/about.html), except for the
two-sided clustered Wilcoxon rank-sum test, which was
run in SAS version 9.3 (SAS Institute, Cary, NC).

Results

Plaque-Associated Features Accumulate over the
Clinical Course of AD

We have shown before that amyloid plaque burden and
plaque size remain relatively constant throughout the clin-
ical course of AD. Here, we investigated whether plaque-
associated features also remain constant or, by contrast,
continue to accrue as the disease advances. To this goal, we
counted the number of SMI312þ axonal swellings and
spheroids, GFAPþ astrocytes, IBA1þ microglial cells, and
CD68þ microglial cells per plaque in 100 randomly selected
dense-core Thioflavin-Sþ amyloid plaques from the tem-
poral cortex of 40 AD subjects with a symptom duration that
ranged between 4 and 20 years and up to nine CTRL sub-
jects. Counts were performed without knowledge of clinical
history or APOE genotype. These analyses yielded up to 49
histograms with 100 values per subject.
Histograms can be summarized with the use of central

measures (ie, mean for normal distributions and median for
nonnormal distributions) and dispersion measures (ie,
interquartile range), but these descriptive measures are
limited because they can still be influenced by outliers, and
they reduce the multidimensional information to a single
number. To avoid these limitations, we compared the his-
tograms among pairs of subjects with the use of the K-S test
and correlated their signed K-S difference (or distance) with
their difference in symptom duration. A positive correlation
between the K-S distance from distribution histograms of
pairs of subjects for a certain plaque-associated feature and
their difference in symptom duration indicates an accrual of
that plaque-associated feature over time.
Figure 2 contains plots of the histogram distance versus

the difference in disease duration for each pair of subjects. It
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Lack of effect of APOEε4 allele on the temporal accrual of plaque-
associated features over the clinical course of AD. AeH: Plots represent the KS
difference between the distribution histogram from pairs of subjects against
their difference in symptom duration for SMI312þ dystrophic neurites (A and
B), GFAPþ astrocytes (C and D), IBA1þ microglia (E and F), and CD68þ

microglia (G and H) per plaque for APOEε4 noncarriers (A, C, E, and G) and
carriers (B, D, F, and H). Note that all plaque-associated features exhibit a
similar behavior over time regardless of the presence of the APOEε4 allele except
for CD68þmicroglia that exhibits a stronger association with symptom duration
in APOEε4 noncarriers. n Z 40 AD subjects (21 APOEε4 carriers and 19
noncarriers) and 9 CTRL subjects (3 APOEε4 carriers and 6 noncarriers). AD,
Alzheimer disease; CTRL, control; KS, Kolmogorov-Smirnov.

Plaque Toxicity Accrues over Time in AD
is seen that the number of SMI312þ dystrophic neurites
(Figure 2A), GFAPþ astrocytes (Figure 2B), and CD68þ

microglia (Figure 2D) but not IBA1þ microglia (Figure 2C)
per plaque increase with increasing duration of illness. As
The American Journal of Pathology - ajp.amjpathol.org
expected from these graphs, a positive correlation was found
between symptom duration and number of SMI312þ

dystrophic neurites (Kendall tZ 0.34, PZ 0.001), GFAPþ

astrocytes (Kendall t Z 0.30, P Z 0.003), and CD68þ

(Kendall t Z 0.48, P < 0.0001) but not IBA1þ microglia
(Kendall t Z 0.045, P Z 0.655). When CTRL subjects
were removed from the analyses, only the association be-
tween CD68þ microglia and symptom duration remained
significant (Kendall t Z 0.39, P Z 0.0003) (Supplemental
Figure S1 and Supplemental Table S1).

No significant correlation was found between any pair of
plaque-associated features, either in AD subjects or in all
(AD and CTRL) subjects (Table 2).

Lack of Effect of APOEε4 Allele in the Accrual of
Plaque-Associated Features over the Clinical Course
of AD

The APOEε4 allele is the strongest known genetic risk
factor for the development of sporadic AD, and it does so by
promoting the accumulation of amyloid b (Ab) peptide and
its deposition in plaques (reviewed in Holtzman et al25), but
whether plaques from APOEε4 carriers are more toxic to the
surrounding neuropil than plaques from APOEε4 non-
carriers remains unclear. There were 21 APOEε4 carriers
and 19 APOEε4 noncarriers among the 40 AD subjects and
3 APOEε4 carriers and 6 APOEε4 noncarriers among the
nine CTRL subjects in this sample. With the use of this
same data set, we have previously reported that dense-core
plaques from AD APOEε4 carriers and noncarriers do not
differ in the magnitude of glial responses.16 Here, we
investigated whether they differ in the magnitude of neuritic
change, specifically if dense-core plaques from APOEε4
carriers contain more neuritic dystrophies than those from
noncarriers. The number of SMI312þ dystrophic neurites
per dense-core plaque was not significantly different be-
tween APOEε4 carriers and noncarriers, either for AD
subjects (P Z 0.77), CTRL subjects (P Z 0.11), or all
subjects combined (P Z 0.96).

We next asked whether the temporal accrual of plaque-
associated features described in the previous section is driven
by the presence of the APOEε4 allele. Figure 3 plots show that
essentially no difference was found in the temporal accrual of
SMI312þ dystrophic neurites (Figure 3, A and B), GFAPþ

astrocytes (Figure 3, C and D), and IBA1þ microglia (Figure 3,
E and F) per plaque between APOEε4 carriers and noncarriers.
However, CD68þ microglia exhibited a stronger association
with symptom duration in APOEε4 noncarriers than in
APOEε4 carriers (Figure 3, G and H).

Association between Plaque-Associated Features and
Symptom Duration Is Linked to the Clinical Course of AD

Next, we investigated whether the strength of the above
associations is constant or changing throughout the clinical
course of the disease. To this goal, we estimated and plotted
379

http://ajp.amjpathol.org


Figure 4 The association between SMI312þ dystrophic neurites per
plaque and symptom duration is stronger at initial stages. A and B: As-
sociation between Kendall t correlation coefficients and symptom duration
for a length shorter (A) or longer (B) than that indicated in the x axis.
Therefore, the most relevant results in A are the leftmost values and in
B the rightmost values. n Z 40 AD subjects and 8 CTRL subjects. AD,
Alzheimer disease; CTRL, control.

Serrano-Pozo et al
the Kendall t correlation coefficients for subsets of subjects
defined by moving windows of symptom duration. The left-
hand plots in Figures 4, 5, 6, and 7 show the Kendall t
correlation coefficients for symptom durations < x years;
therefore, their leftmost values are the most relevant. The
right-hand plots depict the Kendall t correlation coefficients
for symptom durations > x years; therefore, their rightmost
values are the most relevant.

For SMI312þ dystrophic neurites per plaque, the strength of
the association was positive when restricted to short durations
and negative when restricted to long durations of >10 years of
symptoms. In other words, a longer symptom duration was
associated with a reduced number of dystrophic neurites per
plaque beyond a decade of symptoms (Figure 4).

The strength of the association between GFAPþ astro-
cytes per plaque and symptom duration was also largest in
magnitude and positive when restricted to short durations
and was close to zero or slightly negative when restricted to
long durations (Figure 5).

For IBA1þ microglia per plaque, the correlations between
Kendall t and symptom duration (Figure 6) showed a weak
association throughout the clinical course of the disease, slightly
stronger in the earliest and latest years. This is consistent with
the lack of significant association between plaque-associated
IBA1þ microglia and symptom duration in this plaque-
centered quantitative study. By contrast, the strength of the
association between CD68þmicroglia per plaque and symptom
duration was strong and positive through out the clinical course
of the disease, with the strongest associations at the initial and
final stages (Figure 7).

Similar results were obtained when CTRL subjects were
excluded from these analyses (data not shown).
Figure 5 The association between the number of GFAPþ astrocytes per
plaque and symptom duration is stronger at initial stages. A and B:
Association between Kendall t correlation coefficients and symptom
duration for a length shorter (A) or longer (B) than that indicated in the x
axis. Therefore, the most relevant results in A are the leftmost values and in
B, the rightmost values. n Z 40 AD subjects and 9 CTRL subjects. AD,
Alzheimer disease; CTRL, control.
Discussion

To test the hypothesis that plaque-related local toxicity
accrues with increasing duration of the disease, we
examined neuronal, astrocytic, and microglial markers of
380
local plaque-associated damage in a large series of
autopsied subjects who had symptomatic AD for various
durations. Overall, we found an accumulation of markers
of local damage around plaques as the disease advanced,
arguing that plaques are not static lesions that deposit and
then no longer further contribute to disease, but instead
that they remain important contributors to neural system
dysfunction by increasing disruption of the neuropil.
Plaque-associated dystrophic neurites are thought to be

the result of the direct neurotoxic effect of Ab oligo-
mers,26 reactive oxygen species,27 and the inflammatory
milieu28,29 that exist around dense-core plaques. There are
many markers for plaque-associated dystrophic neurites,
including amyloid precursor protein, phosphorylated
neurofilament, ubiquitin, and phospho-tau. We selected a
phosphorylated neurofilament because it was reported to
be an early marker, labeling neuritic dystrophies in pla-
ques from nondemented healthy subjects, whereas
phospho-tau is considered a later marker.30 Although
there is no question that tau-related accumulation of
neuropil threads, the accumulation and spread of neuro-
fibrillary tangles, and synapse and neuronal loss all par-
allel and provide a major contribution to the progression
of AD dementia,23,31e36 the present data emphasize that
plaques also contribute. In agreement with this conclu-
sion, in a large autopsy data set derived from the National
Alzheimer’s Coordinating Center, we reported that the
Consortium to Establish a Registry for Alzheimer’s Dis-
ease (CERAD) semiquantitative score of neuritic plaques
was correlated with the extent of cognitive impairment,
even after taking into account the extent of tangle distri-
bution as measured by the Braak stage.37

Ab species, particularly oligomers, can activate both
astrocytes and microglia.38,39 Recently, genetic data40e44

corroborated by experimental studies45e49 have directly
implicated microglia in the pathogenesis of AD through
mechanisms that involve either Ab phagocytosis or the
secretion of proinflammatory cytokines. Similarly, reactive
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 The association between number of IBA1þ microglia per
plaque and symptom duration is overall weak, but stronger at initial and
late stages. A and B: Association between Kendall t correlation coefficients
and symptom duration for a length shorter (A) or longer (B) than that
indicated in the x axis. Therefore, the most relevant results in A are the
leftmost values and in B the rightmost values. n Z 40 AD subjects and 9
CTRL subjects. AD, Alzheimer disease; CTRL, control.

Figure 7 The association between the number of CD68þ microglia per
plaque and symptom duration is stronger at initial and late stages. A and B:
Association between Kendall t correlation coefficients and symptom
duration for a length shorter (A) or longer (B) than that indicated in the x
axis. Therefore, the most relevant results in A are the leftmost values and in
B the rightmost values. n Z 40 AD subjects and 9 CTRL subjects. AD,
Alzheimer disease; CTRL, control.

Plaque Toxicity Accrues over Time in AD
astrocytes were shown to promote either neuronal hyper-
excitability50 or inhibition,51,52 thereby causing neural
network dysfunction. Thus, the observation of increasing
numbers of activated microglial cells and reactive astrocytes
around plaques the longer the symptom duration supports a
critical role of these nonneuronal cells in the progression of
the disease. The activated microglia markers IBA1 and
CD68 exhibited a similar pattern of association with
symptom duration, but CD68 association was stronger.
IBA1 is a calcium-binding protein constitutively expressed
in microglia and other macrophages and up-regulated in
activated microglia,53 whereas CD68 is a lysosomal marker
specifically expressed by activated phagocytic cells.54

Although the IBA1 protein levels are increased in the AD
brain, we have previously shown that the number of IBA1þ

microglia detected by fluorescent immunohistochemistry
does not substantially differ between AD and healthy
control subjects.17 By contrast, CD68 is a marker of acti-
vated microglia much more specific for AD.5 Our present
data suggest that increasing duration of AD is specifically
associated with a change of microglia toward a phagocytic
phenotype.

It is well established that the presence of the APOEε4
allele is associated with a higher amyloid plaque bur-
den.55e60 An association of the apolipoprotein E4 with
enhanced glial responses compared with the E3 isoform
was proposed as well.61e64 However, we have previ-
ously reported that plaque-associated glial responses in
APOEε4 carriers and noncarriers are similar in magni-
tude.16 Here, we report that plaque-associated glial
responses and neuritic changes (assessed per plaque)
accrue throughout the clinical course of AD with
essentially a similar rate in the presence and absence of
the APOEε4 allele (only CD68þ microglia exhibited a
stronger association with symptom duration in APOEε4
noncarriers). This observation is in agreement with the
idea that APOEε4 affects primarily the levels of Ab
peptide (thereby leading to a higher plaque burden, a
The American Journal of Pathology - ajp.amjpathol.org
higher risk of AD, and an earlier age of symptom onset),
but it has no or little effect on pathologic processes
downstream of Ab.25

Although they should be viewed as preliminary, given
the modest sample size and that complex interactions
among the variables may not have been adequately
modeled, some interesting observations can be extracted
from the secondary analyses of rate of change of markers
over time. The fact that the increase in number of
dystrophic neurites seems to slow down in the longest
duration cases might suggest that the neurites, or the
neurons that give rise to them, were lost in the long-
duration cases. The pattern of association with symptom
progression exhibited by reactive astrocytes was remark-
ably similar to that of dystrophic neurites, strongest at
initial stages and weakest or even negative at late stages,
suggesting that the astrocytic response is directed toward
(or against) plaque-associated neuronal damage rather
than plaques themselves. By contrast, activated phago-
cytic (CD68þ) microglia exhibited a distinct pattern, with
a stronger association during initial and late stages and a
weaker association during intermediate stages. Whether
this observation is explained by the occurrence of two
waves of microglial activation and/or migration toward
plaques, the first aiming at engulfing amyloid deposits and
their halo of bioactive soluble Ab species, and the second
aiming at engulfing neurite debris, cannot be answered in
human postmortem specimens but warrants further in vivo
studies in AD mouse models. We have previously
described that the number of IBA1þ and CD68þ microglia
close to dense-core plaques correlates positively with
plaque size, whereas the number of GFAPþ astrocytes
does not, supporting the idea that both glial cell types
have different preferential targets within the senile pla-
que: Ab versus dystrophic neurites.16 This interpretation
is in agreement with recent animal data indicating that
depopulation of reactive astrocytes from plaques is asso-
ciated with an increase in the number of dystrophic
381
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neurites per plaque,65 whereas depopulation of microglia
has no effect on dystrophic neurites.66

Anti-Ab immunization was successful at reducing pla-
que deposition in AD mouse models and in the handful
of human patients who have come to autopsy, but sub-
stantial clinical benefit or at least stabilization of cognitive
decline has not been observed.67e69 This has led to the
postulate that antibody-mediated plaque removal in
patients with established disease (ie, mild-to-moderate
dementia) might be too late, because plaques may not
contribute substantially to cognitive impairment during the
symptomatic stages of dementia. The observation that
both neuronal and glial markers of damage accumulate
near plaques with increasing duration of illness suggests,
by contrast, that plaques increasingly disrupt their local
microenvironment during the clinical course of AD.
Importantly, anti-Ab immunization is effective at cor-
recting plaque-associated neuritic changes in both AD
mouse models70,71 and human AD brain,18,72 and it was
also shown to ameliorate microglial activation,73,74 further
reinforcing the idea that the presence of plaques is a key
factor that contributes to neuritic and glial alterations and
neuropil disruption even after decades of illness.

Although limitations of cross-sectional analyses of post-
mortem specimens must be acknowledged, the strength of
our study stems from the following: i) a well-characterized
series of subjects with no other concurrent central nervous
system diseases; ii) a range of clinical illness duration wide
enough (4 to 20 years), so that clinician-derived variability
in assessment of symptom onset would be expected to have
a minimal impact on the analyses; iii) the stereology-based
unbiased selection of the plaques analyzed and the blind
quantification of four separate neuronal and glial markers of
toxicity in their vicinity; and iv) the use of robust statistics
that encompass all the information collected. Taken
together, these data support the idea that amyloid plaques
are not merely static extracellular deposits of Ab but dy-
namic lesions characterized by an increasingly neurotoxic
microenvironment, likely contributing to AD-related
cognitive decline. The presence of the APOEε4 allele does
not seem to have a main impact on the magnitude of plaque-
associated neuritic changes and glial responses or their
accrual. Although these observations support the continuing
development of antieAb-directed therapeutics in AD, they
also argue that understanding the biology of plaque-
associated dystrophic neurites and glial responses could
lead to the development of novel noneAb-directed disease-
modifying therapies.
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