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Abstract

Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and 

lateral (perpendicular to the beam) directions is an important task for several clinical applications 

such as shear strain imaging, modulus reconstruction and temperature imaging, where a full 

description of the two or three dimensional (2D/3D) deformation field is required. In this study we 

propose an improved speckle tracking algorithm where axial and lateral motion estimations are 

simultaneously performed to enhance motion tracking accuracy. More specifically, using 

conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the 

peak correlation between two segments of the pre- and post-deformation ultrasound 

radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the 

correlation function that corresponds to the unknown (sub-sample) motion vector between these 

two segments of echo data.

This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking 

phantom, and in vivo breast lesion data. Computer simulation results show that the method 

improves the accuracy of both lateral and axial tracking. Such improvements are more significant 

when the deformation is small or along the lateral direction. Results from the tissue-mimicking 

phantom study are consistent with findings observed in computer simulations. Using in vivo breast 

lesion data we found that, compared to the 2D quadratic subsample displacement estimation 

methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-

to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-

frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated 

that this conceptually and computationally simple method could improve the image quality of 

ultrasound-based strain elastography (SE) with current clinical equipment.
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Introduction

Ultrasound-based strain elastography (SE; (Shiina et al., 2015)) (Ophir et al., 1991; 

O'Donnell et al., 1994; Hall et al., 2003), an imaging modality complementary to 

conventional ultrasound, is a surrogate for manual palpation to assess variations in tissue 

elasticity. In SE, tissue elasticity information can be readily estimated from ultrasound 

radiofrequency (RF) echo data acquired by obtaining an RF echo frame, deforming the 

tissue, obtaining another RF frame, and then tracking displacements that occurred between 

those two frames of RF data. Since several orders of magnitude difference between the 

elastic modulus of normal and abnormal tissues exists in many organ systems, SE has been 

successfully applied to clinical management of neoplasms and cardiovascular diseases, 

including non-invasive differentiation of breast tumors (Itoh et al., 2006; Regner et al., 

2006; Burnside et al., 2007), monitoring thermal ablation for liver tumors (Kolokythas et al., 

2008; Rubert et al., 2010), characterizing thyroid lesions (Rago et al., 2007; Bae et al., 

2007), imaging vascular plaques (Cespedes et al., 1997) and assessing the age of deep vein 

thrombosis (Xie et al., 2004).

To further develop SE techniques, all components of the displacement vector field and/or 

their spatial derivatives will be required. Both axial and lateral displacements are needed to 

estimate shear strains (Konofagou and Ophir, 1998a; Rao et al., 2008), to measure thermal 

expansions for estimating temperature distributions (Simon et al., 1998; Miller et al., 2004), 

and to reconstruct modulus distributions through mathematical inversions (Kallel and 

Bertrand, 1996; Zhu et al., 2003; Oberai et al., 2004). However, in typical SE systems, 

lateral (and elevational) displacement estimates (perpendicular to the ultrasound beam) are 

lower in quality as compared to that of axial displacement estimates.

Previous efforts to improve estimation of non-axial motion have been well documented and 

can be divided into two categories. Methods in the first category require significant 

modifications of the ultrasound imaging system (e.g. special beamforming or rapid beam 

steering). A method independently proposed by Jensen (Jensen and Munk, 1998) and 

Anderson (Anderson, 1998) attempted to introduce non-axial oscillations/modulations in 

their respective imaging point spread functions. Techavipoo et al. used “angular 

compounding” to improve lateral displacements (Techavipoo et al., 2004). Methods in the 

second category (Lubinski et al., 1996; Konofagou and Ophir, 1998a; Chen et al., 2004; 

Ebbini, 2006; Brusseau et al., 2008; Zheng et al., 2007) fall into the area of (software) image 

processing. Particularly, in order to improve displacement estimation, tissue 

incompressibility has been frequently used to explicitly tie relevant axial and lateral 

displacements together. For instance, Konofagou and Ophir (Konofagou and Ophir, 1998b) 

proposed a subsample estimation approach where axial and lateral displacements can be 

iteratively improved by re-correlating ultrasound echo signals through instantaneous motion 

compensations. In more recent work by Brusseau et al. (Brusseau et al., 2008), they 

formulated motion tracking between two echo frames as an optimization process to find 

local 2D affine transformations. Therefore, both axial and lateral translations can be jointly 

solved using constrained nonlinear programming. Viola and Walker (Viola et al., 2008) 

proposed multi-dimensional tracking using spline functions. Since this extension enables 

them to simultaneously solve the axial and lateral displacements, their work nicely fits into 
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the category of coupled subsample displacement estimation. Rivaz et al. have also applied 

physical constraints to simultaneously regularize axial and lateral speckle tracking using 

multiple (time) frames of RF echo data to improve displacement estimations (Rivaz et al., 

2014). Their method also yielded good results. To improve lateral displacements, an 

assumption of tissue incompressibility can also be applied directly to an estimated 

displacement vector field as an off-line “de-noising” method. Our group (Zheng et al., 2007) 

has implemented a partial differential equation (PDE)-based method. Our formulations were 

derived based on the calculus of variation and solved using finite difference scheme.

Our objective in this study was to develop an alternative method to improve both axial and 

lateral speckle tracking using conventional ultrasound echo data acquired by clinical 

imaging systems. The remainder of the paper is structured as follows. In the Methods and 

Materials Section, the correlation function between the pre- and post-deformation echo 

signals was derived. We then demonstrated that isocontours of the “log-compressed” 

correlation function were a series of ellipses sharing an isocenter. The center of any of these 

ellipses corresponds to the peak of the correlation function. This approach simultaneously 

estimates both axial and lateral displacements by locating the center of one of these ellipses 

in a least square sense. In the Results Section, the coupled tracking algorithm was tested 

using Field II-simulated RF echo signals (Jensen, 1991), data acquired from a tissue-

mimicking phantom (Pavan et al., 2012), and in vivo breast tissue data (Hall et al., 2003). 

Closing remarks are provided in the Discussion and Conclusion Sections.

Materials and Methods

A. Theoretical Background

In linear systems theory the radiofrequency (RF) echo signals of a medical ultrasound 

system are modeled based on the shift-invariant point spread function (PSF) (Meunier and 

Bertrand, 1995; Jensen, 1991; Li and Zagzebski, 1999) as follows:

(1a)

(1b)

where s is the RF echo signal consisting of a set of A-lines, h is the system PSF, z is the 

acoustic impedance difference of tissue modeled by a 2D Gaussian random field and, x and 

y are lateral and axial coordinates, respectively. In Eqns. (1a) and (1b), s1 and s2 are two 

grossly aligned segments of RF signals and are only separated by a subsample displacement 

vector (dx, dy). The log-compressed cross-correlation function (between s1 and s1) can be 

written as follows,

(2a)
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(2b)

where C1 and C2 are related to the ultrasound system parameters but are two constants for 

two given signals s1 and s2. In Eqns. (2a) and (2b), Δx and Δy represent a uniform grid from 

which a correlation map can be obtained. Eqn. (2a) indicates that, in the vicinity the 

correlation peak, the (log-compressed) correlation function can be approximated as a 

second-order polynomial surface. The role of subsample speckle tracking is to find locations 

corresponding to the true maximum of the correlation function ρ (Eqn. (2a)). Therefore, one 

approach to estimate the subsample displacements is to fit correlation values in the 

proximity of the correlation peak (at the integer level) to 1D (Cespedes et al., 1995) or 2D 

(Zahiri Azar et al., 2010) quadratic functions. Our method takes a different approach. We set 

the right hand side of Eqn. (2a) equal to a constant K. Consequently, as seen from Eqn. (2b), 

an iso-contour of the log-compressed correlation function ρ is an ellipse. To this end, 

locating the center of this ellipse (dx, dy) is equivalent to finding the theoretical peak of the 

correlation function ρ, i.e., the correlation function ρ reaches its maximum when and only 

when Δx = dx and Δy = dy

In short, this method of estimating the unknown (subsample) displacement vector (dx, dy) is 

to first select one correlation value K around the (integer level) correlation peak, then to fit 

the chosen iso-contour to an ellipse, in a least-squares sense, to determine the center of the 

fitted ellipse. The center of the fitted ellipse is mathematically equivalent to the unknown 

(subsample) displacement vector (dx, dy). A brief derivation of Eqn. (2a) is provided in 

Appendix for the sake of completeness.

B. Implementation of the coupled subsample displacement estimation

The coupled subsample displacement estimation technique involves three steps for a given 

subsample displacement estimate: (1) estimate the initial displacement and strain using a 

modified block matching (MBM) algorithm (Jiang and Hall, 2011), (2) shift and stretch the 

post-deformation kernel locally using integer displacement and axial strain estimates 

(assuming that tissue is locally incompressible) to maximize cross correlation, and (3) 

calculate the correlation function in the neighborhood of its peak to determine the center of 

one iso-contour of the correlation function. Essential implementation details are provided 

below.

In the first step, the MBM algorithm (Jiang and Hall, 2011) was used to obtain initial 

displacement vectors at the integer level (dxi, dyi). This MBM algorithm starts motion 

tracking from a set of “high quality seeds” to avoid large tracking errors due to “false 

correlation peaks” (Walker and Trahey, 1995). More details can be found in a previous 

publication (Jiang and Hall, 2011).

In the second step, initial displacements obtained from Step 1 were used to shift the search 

kernel on the post-deformation RF frame by the amount of the integer displacements 

estimated. This process is known as (partial) “motion-compensation” (Alam and Ophir, 

1997). In the third step, to simultaneously calculate subsample displacement estimates (dx, 
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dy), we first calculated a discretely-sampled correlation function with improved resolution 

(e.g. 0.05-mm [lateral] × 0.005-mm [axial]) around the vicinity of the correlation peak 

known from the integer displacement estimation in Step 1. A fast B-spline interpolation 

developed by Unser et al. (Unser, 1991) was used to locally up-sample the RF data so that 

the search kernel can ‘translate’ beyond the integer level. Therefore, the resolution of the 

correlation map can be improved without up-sampling the entire RF data sets. To choose an 

iso-contour near the correlation peak, the following empirical equation was used to 

determine the value of K (Eqn. 2b):

(3)

where ρi,j is the peak correlation value located at the ith row and the jth column of the 

correlation map. Consequently, the selected K value is the averaged correlation values 

among one-ring and two-ring neighbors of the correlation peak ρi,j at the integer level. To 

obtain the subsample displacement vector (dx, dy), we fit coordinates of the selected iso-

contour (at the correlation value K defined by Eqn. (3)) to an ellipse (Fitzgibbon et al., 

1996). It is worth noting that the selected iso-contour should be close to the correlation peak 

ρi,j because Eqn. (2a) is only valid in the vicinity of the correlation peak. However, selecting 

a value that is too close to the peak of the (discretely sample) correlation function will result 

in fewer points to define the iso-contour, causing problems for the subsequent fitting of the 

ellipse. Therefore, Eqn. (3) represents a practical balance. The final high quality 

displacement vector (tdx, tdy) was the sum of the integer displacement vector (dxi,dyi) from 

Step 1 and the subsample displacement vector (dx, dy) from the current step (i.e. Step 3).

C. Strain Estimation

The axial and shear strains can be estimated as follows,

(4)

(5)

In this study, we estimated local axial strain and shear strain using a least-square method 

(Kallel and Ophir, 1997).

D. Recovery of Large Deformations Using Multiple-Step Accumulation

Many correlation-based tracking algorithms provide low quality displacement estimates for 

in vivo tissue when single-step deformation is large (e.g. frame-average strain is greater than 

2%). However, large tissue deformation may be recovered through accumulations of smaller 

deformation in a multi-step process (Jiang et al., 2006; Du et al., 2006) as follows. Given a 

sequence of N ultrasound echo fields under a monotonic compression, sequential motion 

tracking was first performed between two adjacent frames using any above-described 

motion tracking algorithm (including the coupled tracking) to obtain (N-1) frames of 
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displacement fields. More formally, the ith displacement field represents the 2D 

displacement vector field obtained between the ith and (i+1)th RF echo frames. Next, those 

displacement and strain frames in this sequence were mapped to the coordinate system of 

the first ultrasound echo frame using B-spline interpolations to provide spatially-registered 

data for the analysis described below (subsection F).

E. Experimental Validation

The coupled subsample displacement estimation algorithm was tested using computer-

simulated data, tissue-mimicking phantom data, and in vivo breast tissue data. The first test 

was to compute bias errors and variances using FIELD II-simulated RF signals (Jensen, 

1991). A virtual phantom (40mm × 40mm × 10 mm) was uni-axially compressed under the 

plane strain condition from 0.1% to 5% to generate pre- and post-deformation RF echo data. 

Density of randomly positioned point scatterers was set to be approximately 35 scatterers 

per mm3, satisfying the Rayleigh scattering condition (Rao et al., 1990). The virtual 

phantom was imaged with a 192-element linear array probe using 64 active elements. The 

simulation used a 6 MHz center frequency with a 50% of fractional bandwidth and sampling 

frequency was 50 MHz (i.e. 15.4 μm spacing between adjacent samples along an A-line). A 

single transmit focus was set at 20 mm depth, and dynamic receiving focusing was modeled 

to generate the RF lines. In total, 150 RF lines were simulated along a width of 30 mm for 

each frame, resulting in a line spacing of 198 μm.

The bias errors of axial and lateral displacements were calculated by comparing the 

estimated axial and lateral displacement fields to the known axial and lateral displacement 

fields. Error variances obtained by this 2D coupled tracking algorithm were compared to the 

1D and 2D quadratic subsample estimation methods (Zahiri Azar et al., 2010). All three 

methods have been incorporated into the MBM algorithm (Jiang and Hall, 2011).

In the second test, a tissue mimicking (TM) phantom (10 cm × 10 cm × 10 cm) (Pavan et al., 

2012) was used to demonstrate the coupled tracking algorithm in a controlled setting. The 

spherical target (10mm diameter) was approximately four times stiffer than the background. 

RF echo data were acquired using a Siemens SONOLINE(tm) Antares (Siemens Medical 

Solutions Inc., Mountain View, CA) equipped with a multi-row linear array transducer 

(VFX9-4) sampling at 40 MHz and the AXIUS Direct Ultrasound Research Interface (URI) 

software package (Nock et al., 2002). The ultrasound transducer was pulsed at 8.89 MHz. 

The phantom was compressed using an acyclic plate (a 17 cm square) by 1%.

The third test compared the performance of the coupled tracking algorithm to the 2D 

quadratic interpolation algorithm using in vivo breast tissue data. Tests 1 and 2, and data 

available in the literature, provide a basis to argue that the 2D quadratic algorithm out-

performs the 1D quadratic subsample displacement estimation algorithm (Zahiri Azar et al., 

2010). From an archived database of ultrasound scans of human breast lesions, 2 RF echo 

data sets (one fibroadenoma [FA] and one invasive ductal carcinoma [IDC]) were arbitrarily 

chosen. The detailed protocol for acquisition of that data was previously reported (Hall et 

al., 2003).
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Two metrics were chosen to compare the performance among three above-mentioned 

methods. The first metric, the “displacement quality metric” (DQM) (Jiang et al., 2006), is 

the product of the normalized cross correlation (NCC) among the pre-deformation and 

motion-compensated post-deformation RF echo fields (a measure of motion tracking 

accuracy applied to the entire region of interest) and the cross correlation between two 

consecutive motion-compensated strain images (a measure of strain image consistency) 

(Jiang et al., 2006). NCCs were used to assess above-mentioned correlations. Therefore, all 

DQM values lied between 0 and 1, with 1 indicating the best result. More details of this 

metric can be found in an early publication (Jiang et al., 2006).

The second metric is the weighted contrast-to-noise ratio (CNR) (Song et al., 2004):

(6)

where I and σ2 denote means and variances of signals, and subscripts b and t represent the 

background and target, respectively. To calculate the CNR using Eqn. (6) for each strain 

image, the lesion was manually segmented (representing the ‘target’) and the rest of strain 

image represented the ‘background’. w is a weighting of the area of the target and the 

background to the total area given by wx= areax / areatotal. Consideration of the weighted 

area is necessary because the target and the background contribute differently to the noise 

estimates (Song et al., 2004).

Performance comparison among these three algorithms were done off-line on a Windows 7 

computer (1.8-GHz, i5-CPU, 8GB, VAIO, Sony Inc., Tokyo, Japan) using ANSI C and the 

MEX interface to Matlab (Mathworks Inc., MA, USA). Of note, in the first test, large 

deformations among numerical phantoms were tracked both in a single step and in a 

multiple step fashion (every 0.5%), whereas large deformations in two in vivo breast lesion 

data (test 3) were tracked in a multi-step fashion (see Section II-D). In the second test, single 

step (1%) tracking was done for the tissue-mimicking phantom. For all three subsample 

displacement estimation algorithms, displacement estimation spacing was approximately 0.5 

mm × 0.5 mm.

Results

A. Numerical Phantom Results

Results are shown in Table 1 where approximately 2000 statistically independent 

realizations were used to estimate error variances and absolute values of the mean errors (i.e. 

estimation bias) for a 1% compression. For all three methods, results in Table 1 indicated 

that the displacement estimate biases were reasonably low, and the coupled tracking method 

had the lowest bias for all kernel sizes investigated. Through an analysis of tracking error 

variances, we found that the coupled tracking algorithm also consistently out-performed 

both the 1D and 2D quadratic subsample displacement estimation methods. For instance, 

when the search kernel was 0.63 [axial] × 1.0 [lateral] mm both axial and lateral error 

variances were among the lowest, and the coupled tracking algorithm outperformed the 1D 
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and 2D quadratic subsample methods by factors of 4.8 and 2.2, respectively, for lateral 

displacements. Axial speckle tracking improved, relative to the 1D and 2D interpolation 

results, by factors of 2.9 and 1.2, respectively, for the same search kernel. However, the 

performance improvement decreased as the kernel size increased beyond that size (Table 1).

The simulations were repeated for different applied deformation (0.1–5% uniaxial strain) 

using a kernel size of 0.6-mm (axial length) by 1.0-mm (lateral width). Results using a 

single-step tracking strategy are plotted in Figs. 1(a) and 1(b) where error bars denote one 

standard deviation from 5 realizations. Of note, the search kernel (0.6 × 1.0 mm) is close to 

an ‘optimal’ tracking kernel that results in ‘lowest’ axial and lateral error variances for all 

three methods (see Table 1). Figs. 1(a) and 1(b) show that the error variances of both axial 

and lateral displacement estimates were lower when the coupled tracking method was used. 

Particularly, the coupled tracking method improved the lateral tracking more significantly, 

as compared to its improvements to the axial tracking. We also found that the greatest 

improvement with the coupled algorithm occurred at the low deformations, for instance, by 

approximately factors of 1.7 and 5 at the 0.1% strain for axial and lateral tracking, 

respectively, as compared to the 2D quadratic subsample method.

When a multi-step tracking strategy was employed (i.e. accumulating displacements tracked 

from every 0.5% deformation), the coupled tracking algorithm maintained substantially 

lower error variances both for axial and lateral tracking (see Figs. 1(c) and 1(d)). The 

improvement rate by the coupled tracking algorithm was significant at 5% accumulated 

strain (i.e. improvement factors of approximately 20 and 3 for axial and lateral tracking, 

respectively, as compared to using the 2D quadratic subsample method).

B. Axial Strain and Shear Strain Results from the TM phantom

Results from the tissue-mimicking phantom under a 1.0% compression are shown in Fig. 2. 

Similar to the simulation results in Fig. 1, comparable axial displacements (Figs. 2a-c) were 

obtained from the phantom experiment. The estimated CNR values from axial strain images 

obtained from three methods were 4.2 (1D-Quad), 4.3 (2D-Quad) and 5.2 (Coupled), 

respectively. The lateral displacement images (Figs. 2d-f) contained significant noise 

compared to their axial counterparts. Consequently, the full shear strain images (Figs. 2J-L) 

had lower target detectability. Nevertheless, the coupled method improved the lateral 

tracking (Fig. 2f) and the subsequent shear strain image (Fig. 2L). Consistent with visible 

perception, the estimated CNR values from shear strain images obtained from three methods 

were 0.22 (1D-Quad), 0.32 (2D-Quad) and 0.49 (Coupled), respectively.

C. Axial Strain Results from In vivo Breast Tissue Data

Representative results from in vivo invasive ductal carcinoma (IDC) data were used to 

demonstrate the performance of the coupled tracking method. The frame-average strain was 

approximately 1%. Figs. 3b, 3d and 3f show that the 2D quadratic subsample method makes 

some suspected errors (see arrows), while the coupled tracking method is able to avoid 

them. The general appearance of the axial and lateral displacement images (Figs. 3c and 3e) 

obtained using the coupled tracking method is smoother as compared to results from the 2D 

quadratic method (Figs. 3b and 3d).
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d. Shear Strain Results from In vivo Breast Tissue Data

Figures 4b and 4d show images of axial shear (Thitaikumar et al., 2008) (i.e. the second 

term on the right hand side of Eqn. (5)) and full shear strain (i.e. Eqn. (5)), respectively, 

occurring in the IDC (shown in Fig. 3) obtained using the coupled tracking algorithm. The 

full shear strain image of the same IDC using the 2D quadratic subsample method is 

displayed in Fig. 4c. The lesion is clearly visible in the full shear strain image obtained with 

the coupled tracking method. However, the detectability of the lesion in Fig. 4c is low since 

the lateral displacement estimates obtained with the 2D quadratic subsample method are 

lower quality (see Fig. 3e vs. Fig. 3d).

Similarly, Figs. 5c and 5d show (full) shear strain images for the in vivo fibroadenoma (FA). 

In both breast lesions, tissue interfaces identified by high shear regions in the full shear 

strain image (see arrows in Figs. 4d and 5d) are more consistent with the layered tissue 

structures shown on the corresponding B-mode images (see Figs. 4a and 5a).

e. Performance Assessment

Estimated DQM and CNR values of (accumulated) axial strain images using the coupled 

tracking and the 2D quadratic subsample methods were plotted in Figs. 6(a) and 6(b), with 

respect to different axial deformations for the in vivo IDC (Figs. 3 and 4) and the FA (Fig. 

5). Figure 6c shows a plot of estimated CNR values of (accumulated) full shear strain 

images obtained from the in vivo IDC and FA breast lesions with respect to their axial 

deformations.

In all three plots, large deformations were accumulated from displacement estimates 

obtained from two adjacent RF echo frames (Methods Section D). Higher DQM and, CNR 

values of the axial strain and shear strain images were obtained using the coupled subsample 

displacement estimation method, as compared to the 2D quadratic sub-sample method. This 

observation is consistent with a subjective analysis of Figs. 3, 4 and 5. The improvement 

ratio in DQM values for the coupled subsample displacement estimation algorithm is only 

5.4%±3.7% (mean ± standard deviation), while the improvement ratio in CNR values of 

axial strain images is higher (8.0% ± 2.2%). The improvement ratio in CNR values of (full) 

shear strain images is 18.6% ± 5.3%. The image sequences corresponding to data in Fig. 6 

can be found in Movies 1 (IDC) and 2 (FA) in the supplement materials. In both movies, 

accumulated axial strain and (full) shear strain images obtained from the coupled tracking 

and the 2D quadratic method are compared side by side as the tissue being deformed.

Discussion

In this study, we have quantitatively demonstrated that the coupled tracking method can 

improve both the accuracy of motion tracking (DQM and displacement estimate error 

variances) and the quality of axial strain and full shear strain images (CNR). It is worth 

noting that the displacement estimate bias of the coupled tracking method was also the 

lowest (Table 1), as compared to both the 1D and 2D quadratic interpolation methods. Here, 

we stipulate one possible explanation. Equation (2a) showed that the underlying correlation 

function can be represented by a second-order polynomial, so the advantage of the coupled 
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algorithm could be viewed, to some extent, as an averaging process – estimating the center 

of an ellipse from multiple angular locations. Cespedes et al. have demonstrated that 1D 

sub-sample displacement estimation can be iteratively reconstructed by first finding two 

locations with equal correlation values around the correlation peak (integer level) and, then 

using the middle point between those two locations as the peak (sub-sample level) of the 

correlation function (Cespedes et al., 1995). They showed that their method has a lower 

displacement estimate bias, as compared to the 1D quadratic interpolation method.

Our preliminary results (Figs. 1c and 1d) showed that the coupled tracking algorithm has 

lower noise sensitivity for displacement estimate accumulation (using a 0.5% axial strain 

increment), largely due to lower lateral tracking errors. Recall that, in the framework of 

multi-compression tracking (Jiang et al., 2006; Du et al., 2006), we first track tissue 

deformations through a long sequence of echo data and then map all deformations back to 

the initial reference state through interpolations before accumulation. That is why both axial 

and lateral displacements play roles in the displacement accumulation. Hence, we anticipate 

that the availability of the coupled tracking algorithm may help for nonlinear modulus 

inversion (Hall et al., 2009; Oberai et al., 2009; Goenezen et al., 2012). The initial result is 

encouraging and therefore warrants further investigations.

Recently, the use of the axial shear strain alone has shown value in characterization of breast 

lesions (Thitaikumar et al., 2008). However, to fully quantify “shearing” as a surrogate for 

tissue connectivity around a breast lesion, contributions from the lateral shear strain cannot 

be ignored. Figs. 4 and 5 demonstrated that horizontal interfaces around those two breast 

lesions could not be identified in the axial shear strain images. Although there has not been a 

demonstration of the clinical use of the full shear strain imaging, the feasibility of obtaining 

full shear strain data using conventional ultrasound echo data is the first step toward 

exploring its clinical utility.

The coupled tracking method is straightforward and enhances image quality using 

conventional ultrasound signals. However, it is worthwhile to note that this method is 

restricted to signals from “linear” medical ultrasound systems (Meunier and Bertrand, 1995). 

While coded excitation methods (Chiao and Hao, 2005) may provide improved signal-to-

noise ratio and resolution, they could complicate speckle tracking by confounding nonlinear 

contributions to received echo signals.

Currently, we have implemented the coupled subsample displacement estimation algorithm 

in Matlab (Mathworks Inc., MA) for the convenience in algorithm testing. The method runs 

offline and requires approximately 20 minutes (on an i5 CPU with 8GB memory) to obtain a 

50 × 50 grid of displacement estimates. Since coupled tracking in the ROI are completely 

independent, translating the current implementation to a multi-core GPU (NIVIDIA Inc., 

Santa Clara, CA), together with algorithm optimization, will likely lead to high quality 

displacement and strain images in real-time (> 20 frames/second).
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Conclusions

The theoretical basis for a novel coupled sub-sample estimation algorithm is presented. 

Computer simulation results show that the method improves the accuracy of both lateral and 

axial tracking, as compared to the 1D and 2D quadratic sub-sample displacement estimation 

methods. The improvement is more significant at small deformations (e.g. 0.1%-0.5%) and 

along the lateral direction (e.g. factors of 10 and 6, respectively, as compared to the 1D and 

2D quadratic subsample estimation methods, respectively at the 0.1% deformation). From 

the in vivo breast lesion data investigated, we found high quality displacements and shear 

strains can be estimated for large accumulated deformations (up to 5% frame-to-frame and 

15% local strains). Particularly, the coupled tracking method can improve the contrast-to-

noise ratios (18.6±5.3%) among full shear strain images. Our initial results demonstrated 

that the proposed method could be used to improve displacements for strain elastography 

(SE) with current clinical equipment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Derivation of 2D Correlation Function

Based on the linear systems description of ultrasound imaging systems (Meunier and 

Bertrand, 1995), two 2D segments of RF signals, before and after a small deformation, can 

be expressed as follows:

(A1)

(A2)

where s is the RF echo signal consisting of a set of A-lines, h is the system point spread 

function (PSF) and z is the scatterer distribution function. The subscripts 1 and 2 in Eqn. 

(A2) denote the pre- and post-deformation data, respectively. In Eqns. (A1) and A(2), since 

the displacement vector (dx, dy) is at the subsample level, the same coordinate system (x, y) 

has been used, implying that two segments of signals are from the same sample volume.

The cross correlation between those two signals s1and s2 can be written as follows (Wagner 

et al., 1988),
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(A3)

where 〈…〉 represents the ensemble average, Δx and Δy are a pair of dummy variables 

representing a uniform grid from which the cross-correlation between the pre- and post-

translation RF signals s1 and s2 is calculated, and * denotes the conjugate.

We assume that the tissue of interest contains a homogenous distribution of scatterers with 

uniform scatterering strength and uncorrelated microstructures, resulting in fully developed 

speckle envelope signal. Therefore, the following equation holds (Li et al., 2001)

(A4)

where a0 is the scattering strength and δ(*) is a 2D Dirac-delta function. Hence, Eqn. (A3) 

can be rewritten as follows,

(A5)

Eqn. A(5) demonstrates that correlation function between s1and s2 from the same sample 

volume can be represented by the “auto-correlation” function of the system's PSF (Li et al., 

2001). Strictly, Eqn. (5) is not the auto-correlation function of the PSF because of the 

presence of a subsample deformation (dx, dy).

We also assume that the 2D PSF h(x, y) is separable in the axial and lateral dimensions. This 

assumption is valid near the focal depth (Wagner et al., 1983). Furthermore, the PSFs in 

Eqns. (A1) and (A2) can be modeled using axial and lateral components of Gaussian 

envelopes as follows,

(A6)

where σx and σy are characteristic widths in the lateral and axial directions, respectively, and 

are related to the lateral and axial bandwidths of the ultrasound system.

As described by Wagner et al. (Wagner et al., 1988), we evaluate the integral in Eqn. (A5) 

along the lateral and axial directions separately,

(A7)

Ix and Iy can be obtained through regular integrations,
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(A8)

(A9)

After a simple reorganization of Eqns. (A7-9), the “log-compressed” correlation function 

[log(ρ)] can be expressed as follows,

(A10)

where C1, C2 and C3 are three constants.

It is worth noting that, in Eqn. (A6), only the Gaussian envelope of the PSF is included. This 

simplification appears to be adequate to model the correlation function in the proximity of 

correlation peak (Rao and Varghese, 2006). If we assume that the PSF is a Gaussian 

modulated cosine function, in the vicinity of the correlation peak, the form of the log-

compressed cross-correlation function will be more complex but approximately remain 

Gaussian.
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Figure 1. 
Plots of the estimated (a and c) axial and (b and d) lateral error variances among 

displacement estimates with simulated RF data using a search kernel size of 0.6 × 1.0 mm. 

The deformation levels varied from 0.1% to 5% strain. In (a) and (b), all error variances 

were obtained using a single step tracking strategy. In (c) and (d), error variances obtained 

from multiple steps (0.5% per step) were compared to those obtained from the single-step 

tracking strategy.
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Fig. 2. 
Images of the tissue mimicking phantom containing a spherical target using three different 

subsample displacement estimation methods. Images in the first, second and third columns 

were obtained using the 1D quadratic interpolation method, the 2D quadratic interpolation 

method, and the coupled tracking method, respectively. The top row, (a) - (c), is axial 

displacement images, while (d) - (f) are lateral displacement images, (g)-(I) are axial strain 

images and (J)-(L) are (full) shear strain images. The arrows on all images point to potential 

tracking errors. The contours in axial strain images segment target boundaries and were used 

for calculations of CNRs. A 3 × 3 median filter was applied to lateral displacement estimates 

for display.
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Fig. 3. 
a) B-mode image of an in vivo invasive ductal carcinoma (IDC), (b), (d) and (f) axial and 

lateral displacement (in mm) and axial strain images obtained using the 2D quadratic 

interpolation method, respectively, compared to (c), (e) and (g) those obtained using the 

coupled tracking method. The arrows in (a) point to the IDC, while arrows in (b), (d) and (f) 

point to the possible tracking errors. The contours in axial strain images were the segmented 

target boundaries and were used for calculations of CNRs.
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Figure 4. 
(a) B-mode, (b) axial shear and (d) full shear strain images estimated from the in vivo IDC 

breast lesion using the coupled tracking method. For comparison, a full shear strain image 

estimated using the 2D quadratic interpolation method is shown in (c). Arrows in the B-

mode image point to the breast lesion. Arrows in (d) point to a tissue interface that cannot be 

seen in the axial shear image (b). The frame-average axial strain is approximately 1%.
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Figure 5. 
(a) B-mode, (b) axial shear and (d) full shear strain images estimated from the in vivo FA 

using the coupled tracking method. For comparison, a full shear strain image estimated 

using the 2D quadratic interpolation method is shown in (c). Arrows in the B-mode image 

point to the breast lesion. Arrows in (d) point to visible interfaces that cannot be seen in the 

axial shear image (b). The frame-average axial strain estimated by the coupled subsample 

displacement estimation method is approximately 1%.
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Figure 6. 
Plots comparing (a) CNR of axial strain images, (b) DQM values, and (c) CNR of (full) 

shear strain images obtained from an in vivo IDC and an in vivo FA using two subsample 

methods: the coupled tracking method and the 2D quadratic subsample method. All metrics 

in all three figures were plotted with respect to accumulated frame-averaged axial strains.
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