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Abstract

2-Methoxyestradiol (2-ME2) is an endogenous metabolite of estradiol. In preclinical models, 2-

ME2 is effective against different types of tumors. Unfortunately, only low systemic 

concentrations of 2-ME2 can be achieved following oral administration, even after very high 

doses are administered to patients. In an effort to solve this problem we have now synthesized and 

tested a new prodrug of 2-ME2 that is water soluble due to a bio-reversible hydrophilic group 

added at the 3-position and more effectively resists metabolic inactivation due to an ester moiety 

added to mask the 17-position alcohol. We are reporting here for the first time that this double 

prodrug of 2-ME2 is effective as an antiproliferative and anti-cancer agent for both in vitro and in 

vivo studies against Barrett's esophageal adenocarcinoma (BEAC), and provided greater potency 

than 2-ME2 in inhibiting the growth of BEAC xenografts. Finally, studies indicate that, like 2-

ME2, the 2-ME2-PD1 exhibits anticancer effect through possible disruption of microtubule-

network.
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Introduction

2-ME2 is an endogenous metabolite of 17β-estradiol (E2), which is generated from a two-

step activation process involving sequential hydroxylation at the 2C position of 17β-

estradiol by cytochrome P450 enzymes followed by methylation at the same position by 

catechol-O-methyl transferase (COMT) (1, 2). Our laboratory has studied the anticancer 

activities of 2-ME2 for many years (3-6). In addition, multiple in vitro and in vivo studies 

have documented that 2-ME2 is effective against many different types of tumors by virtue of 

its potent antiproliferative, antiangiogenesis and proapoptotic activities (7-9).

Despite the great promise and broad anticancer properties demonstrated for exogenous 2-

ME2, clinical application is limited because the in vivo effect of 2-ME2 is inconsistent and 

weak due to poor bioavailability of the 2-ME2. The published literature identifies very high 

patient-to-patient variability in systemic exposure following oral administration. In all cases 

there is low serum bioavailability (approximately 1 - 2%) and a limited temporal window 

with measurable serum levels (1, 10-12). Thus, high oral doses of 2-ME2 that present dosing 

challenges would be necessary to maintain therapeutic level of the drug in the plasma for 

effective lengths of time.

The major barriers to oral delivery of 2-ME2 to systemic circulation include, but are not 

limited to, formulation, solubility, permeability, transporter effects, and first-pass 

metabolism (1). Prodrug approaches have been employed with varying degrees of success to 

overcome all these barriers (13-15). Thus, designing a prodrug of 2-ME2 would be one 

promising approach to solving the problem of oral delivery. A prodrug is a chemically 

modified drug designed to be endogenously converted to the active drug. Unfortunately, 

prior studies devoted to the design and testing of 2-ME2 prodrugs have not produced a 

successful chemotherapeutic agent (1).

Building on the successes and limitations noted for the first generation of 2-ME2 analogues, 

we devised a strategy to create improved 2-ME2 prodrugs that exhibit more predictable 

pharmacokinetics. In summary, we describe the synthesis of a novel prodrug that, by virtue 

of its initial assessments, promises to be an effective oral anticancer agent against 

esophageal cancer.

Materials and Methods

Cell line

OE33 cells, was purchased from American Type Culture Collection (ATCC; Manassas, 

VA). OE33 cells used in this study were from 5th through 10th passages and were routinely 

maintained in Dulbecco's modified Eagle's medium ((DMEM), Sigma, St Louis, MO) 

supplemented with 10% fetal bovine serum (Hyclone, Logan, UT) and antibiotics (Sigma), 

penicillin (100 U/mL), and streptomycin (100μg/ml). The cell line authentication and the 

status of mycoplasm were carefully determined before and after performing the experiments 

needed for these studies. In these studies, we used only one cell line as widely used BEAC 

cell lines (i.e., BIC-1, SEG-1 and TE-7) are in serious identity crisis (16, 17). FLO-1 cell 
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line, which has been utilized for various studies as evidenced by citations in PubMED, and 

has been authenticated with the parental tumor, is unavailable now in ATCC.

Reagents

The 2-ME2 was purchased from Sigma (St. Louis, MO), and 20 μM stock solutions of 2-

ME2 were prepared in absolute ethyl alcohol and stored at -20°C. All other chemical were 

obtained either from Sigma (St. Louis, MO) or Fisher Scientific (Fisher Scientific Company, 

Fair Lawn, NJ). All newly synthesized compounds were characterized by using analytical 

tools.

Animals

Fasted Sprague Dawley rats (male, 250-300 mg) were purchased from Charles River 

Laboratories. Six- to 8-wks-old athymic male athymic nude mice (BALB/c-nu/nu) were 

obtained from Charles River Laboratories. All animals were maintained in a sterile 

environment and daily 12-h light/12-h dark cycle. All the animals were maintained 

according to standard guidelines of American Association for the Accreditation of 

Laboratory Animal Care with the approval of the Institutional Animal Care and Use 

Committee of the Kansas City VA Medical Center, Kansas City, MO and the University of 

Kansas, Lawrence, KS.

Rationale for the Design of the 2-ME2 Prodrug

2-ME2 is a poorly soluble compound with a predicted aqueous solubility of 4.8 

micrograms/mL (calculated using the Advanced Chemistry Development Software V8.14 

for Solaris). 2-ME2 possesses poor aqueous solubility over the complete pH profile of the 

gastrointestinal tract. Since bioavailability has been increased through recent developments 

in nanocrystal formulation (10-K SEC Filing, filed by Entremed Inc. on 3/6/2008), there is 

evidence suggesting that a more soluble form of 2-ME2 would help increase its absolute 

bioavailability.(1, 11). Thus, to overcome the unpredictable pharmacokinetics of the parent 

2-ME2 compound, the synthetic efforts have been focused on (i) increasing the aqueous 

solubility/dissolution rate through the addition of a bioreversible hydrophilic group at the 3-

position and (ii) altering drug metabolism by masking the 17-position through covalent 

addition of an ester moiety (Fig. 1).

Synthesis of the 2-ME2 Prodrug (2-ME2-PD1)

The synthesis of the main compound, 2-ME2-PD1 - disodium (((8R,9S,13S,14S,17S)-17-

acetoxy-2-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl)oxy)methyl phosphate (C22H29Na2O8P) is as follows (Fig. 

1).

Step 1: 300 mg (8R,9S,13S,14S,17S)-2-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-ol (2-methoxy estradiol; 0.1 mmol) and 0.140 

mL chloromethyl methyl sulfide (1.67 mmol) were dissolved in 20-mL of dry 

dimethylformamide. 150 mg of 60% sodium hydride was added. The mixture was stirred at 

room temperature for one hour. Next the solvent was removed in vacuo and the resulting 

solids dissolved in ethyl acetate. The organic layer was washed with water then filtered 
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through silica gel. The ethyl acetate was removed in vacuo. The solids were dissolved in a 

1:2 v/v mixture of ethyl acetate and hexanes and the major product isolated with elution on a 

silica gel column with the same solvents (Rf =0.45) to provide 313 mg (8R,9S,13S,14S,

17S)-2-methoxy-13-methyl-3-((methylthio)methoxy)-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-ol (Precursor 1; 86% yield).

Step 2: 208 mg of MTM 2-ME2 (0.57 mmol) and 126 mg acetic anhydride (1.23 mmol, 3 

eqv.) were dissolved in 10-mL dry pyridine at 0°C. The reaction was stirred overnight and 

allowed to come to room temperature. The solvent was removed in vacuo and the resulting 

solid was dissolved in a 1:2 v/v mixture of ethyl acetate and hexanes. The major product was 

isolated with elution on a silica gel column with the same solvents (Rf = 0.81) to provide 

157 mg (8R,9S,13S,14S,17S)-2-methoxy-13-methyl-3-

((methylthio)methoxy)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-17-yl acetate (Precursor 2; 68% yield).

Step 3: 157 mg of OAc MTM 2-ME2 (0.39 mmol), 325 mg dibenzyl hydrogen phosphate 

(1.16 mmol, 3 eqv.), and 320 mg N-iodosuccinimide (1.42 mmol, 3.6 eqv.) were dissolved 

in 5-mL of dry tetrahydrofuran at room temperature. After one hour, the reaction was stirred 

and the solvent was removed in vacuo. The resulting solid was dissolved in a 1:2 v/v 

mixture of ethyl acetate and hexanes and the major product isolated with elution on a silica 

gel column with gradient elution (1:2 v/v ethyl acetate:hexanes to 1:1 v/v ethyl 

acetate:hexanes; Rf = 0.62) to provide 120 mg (8R,9S,13S,14S,17S)-3-

(((bis(benzyloxy)phosphoryl)oxy)methoxy)-2-methoxy-13-

methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl acetate 

(Precursor 3; 49% yield).

Step 4: 50 mg of Dibenzyl phosphate OAc MTM 2-ME2 (0.079 mmol) was dissolved in a 

mixture of 2 mL water and 25 mL tetrohydrofuran at room temperature. 11 mg disodium 

carbonate monohydrate and 50 mg 10% palladium on carbon were added and the reaction 

was stirred two hours under hydrogen at atmospheric pressure. The mixture was then filtered 

through a 0.45 micron Nylon filter and lyophilized to provide 39 mg of the title compound 

(2-ME2-PD1; 100% yield). Identity was confirmed by mass spectroscopy using a Shimadzu 

2010 single quadrupole spectrometer in negative ion mode (free acid theoretical mass: 

454.45 amu, found M-1 at 452.95 amu).

Pharmacokinetic Analysis of 2-ME2-PD1 and 2-ME2

2-ME2-PD1 and 2-ME2 were dissolved independently in 0.2 M hydroxypropyl-β-

cyclodextrin (Sigma-Aldrich) or 0.1 M Captisol® (Ligand Pharmaceuticals, Inc) at 

concentrations between 10 mg/mL and 21 mg/mL. The solutions were sterile filtered 

through 0.2 micron filters prior to use. A cannulated rat model was used to study the 

intravenous (iv) and oral absorption of 2-ME2 and 2-ME2-PD1. Sprague Dawley rats were 

implanted with carotid artery, and jugular and/or femoral vein catheters. These studies were 

automated with the animals connected to the Culex Automated Pharmacology System 

allowing for direct comparison of pharmacokinetic behavior between the orally and 

intravenously administered compounds in the same animal. Following surgery, the animals 

were connected to the Culex and allowed to recover and acclimate.
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Oral doses were given via gavage to the animal under light anesthesia. Blood was sampled 

at times ranging from 5 to 1440 minutes into heparinized vials containing a cocktail of 

phosphatases and esterase inhibitors stored on the chilled fraction collector, and remained 

there until sampling was complete. Blood samples were processed to plasma via 

centrifugation and stored at -80 °C until analysis for 2-ME2-PD1, 2-ME2 and associated 

metabolite concentrations by liquid chromatography-mass spectrometry (LC-MS/MS). 

Bioanalytical methods for the 2-ME2-PD1 and 2-ME2 analysis were modified from those of 

Lakhani et al (18). Quantitation was made relative to deuterated internal standards. 

Pharmacokinetic analysis of the resulting plasma concentration time data was performed 

using PK Solutions software (Summit PK).

In vitro cell proliferation assay

The antiproliferative effect of 2-ME2 and 2-ME2-PD1 on OE33 cells was evaluated using 

crystal violet cell proliferation assay according to previous method (19). Eight duplicate 

wells were used for each determination. Inhibition of cell proliferation was calculated as a 

percentage using following equation-

Induction and treatment of tumor xenograft and sample collection

OE33-tumor xenografts were generated essentially as previously described (20, 21). Briefly, 

semiconfluent OE33 cells (2.5×106) were re-suspended in Matrigel and were injected sc into 

the right hind leg of each mouse for the development of the tumor. The animals were 

distributed into three groups (5 mice/group). After detection of palpable tumor, mice were 

given daily equivalent doses of 2-ME2 or 2-ME2-PD1 (75 mg/kg/day) by orogastric feeding 

or vehicle (control). 2-ME2-PD1 was dissolved in saline water + peptamen (Nestle) and 2-

ME2 was dissolved in DMSO + peptamen (milk) in an appropriate ratio. The control group 

was given an equal volume of peptamen. Tumor growth was monitored by measuring two 

perpendicular diameters twice weekly. Tumor volume was calculated according to the 

formula V= a × b2/2, where a is length and b is width, respectively. All mice were killed 

after 12 d of treatment. Tumors were isolated carefully and were immediately fixed in 4% 

neutral-buffered formalin, placed in fixative overnight, embedded in paraffin and sectioned 

at 5 μm intervals before immunofluorescence analysis.

Immunofluorescence

The immunofluorescence procedure was the same as previously described (21, 22). Briefly, 

for in vitro analysis, OE33 cells were fixed with acetone and permeabilized with 0.1% 

Triton X-100. For in vivo analysis, tumor xenograft paraffin-embedded tissue sections were 

deparaffinized and then rinsed in distilled water. Nonspecific binding sites were blocked by 

Super Block Blocking Buffers (Thermo) followed by incubation with rabbit monoclonal 

anti-α-Tubulin (Alexa Fluor® 555 Conjugate) and counter stained with DAPI. Images were 

captured by a Nikon Eclipse Ti-U fluorescence microscope.
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Statistical Analysis

Analyses of data were achieved with GraphPad Prism version 4.00, GraphPad Software, San 

Diego California USA. All data are expressed as the mean ± SD. Statistically significant 

differences between groups were determined by using the paired Student's two-tailed t-test. 

A value of P < 0.05 was considered statistically significant.

Results

Pharmacokinetics of 2-ME2 prodrug (2-ME2-PD1) relative to 2-ME2

2-ME2-PD1 was synthesized in 28% overall yield, starting from 2-ME2 as precursor. Unlike 

2-ME2, 2-ME2-PD1 readily dissolves in sterile water for easy use and rapid preparation of 

doses. Validation studies with the phosphatase and esterase inhibitors demonstrated the 

stability of 2-ME2-PD1 and its ester metabolite in whole blood following sampling. There 

were no observable effects in the animals following dosing of 2-ME2-PD1 and 2-ME2 in the 

pharmacokinetic studies. Non-parametric analysis of the resulting plasma concentration-time 

data was performed and the pharmacokinetic parameters were derived following the 

standard methods (23), (Fig. 2 and Tables S1 and Table 1). For oral doses of 2-ME2, no 

compound could be detected in plasma at any time point studied using Limit of 

Quantification (LOQ; < 2 ng/mL) demonstrating again the limited bioavailability of oral 2-

ME2. Intravenous 2-ME2 dosing does produce measurable drug levels in plasma, but these 

levels are short-lived due to presumed rapid clearance (Table 1). Our data suggest that the 

strategy employed to develop 2-ME2-PD1 does deliver meaningful levels of 2-ME2 to the 

systemic circulation for extended periods of time following either oral or intravenous 

administration. The studies demonstrate that therapeutic levels of 2-ME2 are sustained for at 

least 240 minutes, and significant amounts are present for as long as 480 minutes for the 

higher doses (31.5 mg/kg of orally administered 2-ME2-PD1) (Fig. 2). This suggests, in 

these limited studies, that the oral bioavailability of 2-ME2-PD1 appears to be dose-

dependent. No analyzed sample displayed detectable levels of 2-ME2 when plasma was 

analyzed at times greater than 480 minutes.

These experiments demonstrate that oral 2-ME2-PD1 administration results in a higher 

systemic exposure relative to 2-ME2. The absolute bioavailability of orally administered 2-

ME2-PD1 relative to intravenous administration of 2-ME2 is in the 4-5% range. A plasma 

half-life of 262 minutes is obtained for intravenous 2-ME2-PD1 as opposed to 59 minutes 

for a comparable intravenous dose of 2-ME2. Orally, 2-ME2-PD1 produces far superior 

results compared to 2-ME2 and yields a 2-ME2 plasma half-life of 411 to 807 minutes, 

which is a marked improvement over what can be obtained with 2-ME2 itself. These data 

suggest that more detailed and extensive studies should be conducted to further establish our 

proof-of-concept for this new prodrug.

The effect of 2-ME2-PD1) on viability of OE33 cells relative to 2-ME2

Previously, we demonstrated that 2-ME2 dose-dependently inhibits the BEAC cell 

proliferation and the 50% inhibitory concentration (IC50) was ∼ 5 μM of 2-ME2 (21). In this 

study, we sought to determine if 2-ME2-PD1 exhibits similar effect on the viability of OE33 

cells. To do so, OE33 cells were treated with either 2-ME2-PD1 or 2-ME2 at various 
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concentrations for 48 hours followed by crystal violet dye colorimetric assay for the viability 

of OE33 cells. As shown in Fig. 3, a dose-dependent inhibition of OE33-proliferation was 

observed when the cells were exposed to 2-ME2 or 2-ME2-PD1 but 2-ME2 is much more 

potent than the pro-drug. The IC50 for 2-ME2 was found to be approximately 6 μM after 48 

h of incubation while for the prodrug the IC50 was obtained at approximately 17 μM, 

indicating that the prodrug provides significantly less in vitro antiproliferative effect on 

OE33 cells as compared to the parent 2-ME2.

Alteration in Cellular Morphology of OE33 Cells by 2-ME2 and 2-ME2-PD1-treatment

Morphological alterations such as vacuolation and atrophy due to membrane blebbing, and 

cytoplasmic shrinkage are the common cytotoxic effects of an anticancer drug (24, 25). We 

therefore investigated whether 2-ME2 and 2-ME2-PD1 are able to alter the cellular 

morphology of OE33 cells. To test this, the phase contrast images of the treated and 

untreated cells were studied (Fig. 4A-D). Untreated OE33 cells showed that cells were 

closely arranged with uniform size, as well as good viability with retained shape, 

morphology and refractivity after 48 h of culture (Fig. 4A), while aberrations in the cellular 

morphology were observed in both 2-ME2 and 2-ME2-PD1 treated cells in a dose-

dependent fashion. In the presence of 2.5 μM of -2-ME2-PD1 only mild to no alterations in 

the cellular morphology were observed (Fig. 4B), but when exposed to 5 μM of 2-ME2-

PD1, the cells displayed atrophy (Fig. 4C). In contrast, the effect of each concentration of 2-

ME2 (i.e., 2.5 μM or 5 μM), on cellular morphology was much more drastic as compared to 

2-ME2-PD1 treated (Fig. 4D).

Disruption of the Microtubule Network in OE33 Cells by 2-ME2 and 2-ME2-PD1 treatment

Since anti-mitotic and anti-proliferative action of 2-ME2 is mediated via microtubule 

disruption (26), we sought to determine whether the cellular microtubule network also acts 

as a target for the 2-ME2-PD1 actions. To do so, immunofluorescence against α-Tubulin in 

2-ME2-treated, 2-ME2-PD1-treated or untreated OE33 cells was performed to determine 

whether the prodrug is mimicking the function of 2-ME2 under similar in vitro conditions. 

In untreated OE33 cells organized microtubules were observed with characteristic fibrous 

network (Fig. 4E). Microtubule disruption was not very prominent in OE33 cells when 

treated with 2.5 μM 2-ME2-PD1 for 48h (Fig. 4F), but in the presence of 5 μM 2-ME2-PD1 

(Fig. 4G) the organized microtubule structure was significantly disrupted with the gradual 

disappearance of the fibrous network like microtubule structure as observed in untreated 

cells (Fig. 4E). Consistent with the previous findings (26), we observed that in the presence 

of 5 μM 2-ME2 cellular microtubules were totally disrupted in OE33 cells (Fig. 4F). Taken 

together, these results underscore that the anti-proliferative effects of 2-ME2-PD1 on OE33 

cells mimics 2-ME2 actions in a dose-dependent fashion, and provide proof that 2-ME2-

PD1, although less effective than 2-ME2, retains the anti-microtubule disruptive anti-cancer 

properties of its parent drug, 2-ME2.

The effect of 2-ME2-PD1 on OE33 xenograft tumors relative to 2-ME2

In the next set of experiments we compared the in vivo effects of 2-ME2-PD1 with 2-ME2 

on OE33 xenograft tumors. As illustrated in Fig. 5, our data shows that 2-ME2-PD1 strongly 
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and consistently, in a time-dependent fashion, inhibited the growth of established OE33 

xenografts tumors in nude mice after 12 days of treatment as compared to the control group 

as well as 2-ME2 treated group where the effect was inconsistent. The parental 2-ME2 effect 

is in agreement with our previous work (21). Tumor size increased much more rapidly in the 

control animals relative to prodrug-treated group. Thus, the studies indicate that the prodrug 

appeared to provide better antitumor activity than did the parent compound in these 

experiments.

Because our in vitro studies showed that both 2-ME2 and 2-ME2-PD1 alter cellular 

morphology and microtubules distribution in OE33 cells, we investigated whether prodrug 

similarly affects on cellular morphology and microtubule networking under in vivo 

microenvironment. To do so, the distribution of microtubules was characterized in 2-ME2-

PD1-treated and untreated tumor-xenograft-sections by immunofluorescence analysis using 

anti-α-Tubulin antibody. Consistent with in vitro data (Fig. 4), studies show striking 

alteration in microtubule distribution in conjunction with cellular morphology suggestive of 

mesenchymal (spindle-shaped) to epithelial (cuboidal) transition (MET) in 2-ME2-PD1 

treated OE33-tumor xenografts as compared to untreated samples (Fig. 6).

Discussion

The present study effectively formulated a novel prodrug of 2-ME2 (2-ME2-PD1) and tested 

its antiproliferative and antitumorigenic efficacy in BEAC tumor models. The studies show 

that unlike parent 2-ME2, the 2-ME2-PD1 is water soluble, and the bioavailability of orally 

administered 2-ME2-PD1 is significantly higher as compared to intravenous and/or oral 

administration of 2-ME2 (Fig. 2). Although the 2-ME2-PD1 does not inhibit the in vitro 

growth of BEAC cells as effectively as parent 2-ME2 does (Fig. 3), the antitumorigenic 

action of 2-ME2-PD1 on BEAC xenograft is highly and significantly effective than the 

parent molecule (Fig. 5). Moreover, the antitumorigenic effect 2-ME2-PD1 on BEAC cells, 

like 2-ME2, is predominantly mediated through altering the microtubule networks as well as 

morphological changes from mesenchymal to epithelial type (Fig. 4 and 6).

Esophageal cancer remains a leading cause of cancer mortality worldwide, and in the United 

States it is the seventh leading cause of cancer death (27). Thus, there is an urgent need to 

investigate effective and less-toxic chemotherapeutic options to effectively combat this 

dangerous cancer. In pursuit of this goal, we have studied the anti-tumor properties of 2-

ME2 in our laboratory for many years. We and others have found this compound to be 

effective against many different types of cancer (3, 4, 21, 28-30). Unfortunately, due to the 

limited aqueous solubility and less bioavailability, very high oral doses of 2-ME2 are needed 

to maintain therapeutic plasma levels of drug for an effective length of time, which is a great 

hindrance to its use as an anticancer drug (1, 10, 31, 32). Thus, designing the proper prodrug 

to defeat first-pass metabolic inactivation seems to be the best approach in developing a 

practical therapeutic agent from 2-ME2.

To advance our earlier work focused on BEAC, we undertook the task of designing a better 

prodrug of 2-ME2 by following a two-prong strategy directed at increasing aqueous 

solubility through addition of a bio-reversible hydrophilic group at the 3-position and then 
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altering in vivo metabolism by masking the 17-position through the covalent addition of an 

ester moiety (Fig. 1). The 3-position promoiety is designed to be cleaved at the brush-border 

of the intestinal epithelium providing high local concentrations of the prodrug intermediate 

for intestinal absorption. On the first-pass through the intestinal epithelium and liver, the 

masked 17-position will undergo de-esterification. Our results show that oral administration 

of this double 2-ME2 prodrug, 2-ME2-PD1, provides an absolute bioavailability of 4-5% 

(Fig. 2), and this is a significant improvement over what is observed with oral 2-ME2 and 

the first generation prodrugs of 2-ME2 (1). The first generation prodrugs did not include a 

methylene spacer between the alcohol and the phosphate ester group. The addition of the 

spacer greatly increases the ability of phosphatases to cleave the phosphate ester enroute to 

the generation of 2-ME2.

It is noteworthy that 2-ME2-PD1 is easily dissolved in sterile water for injection, and this 

made the prodrug much easier to use for in vitro dosing than 2-ME2, which being non-

aqueous is usually dissolved in DMSO. In the in vitro experiments, comparison between the 

effect of 2-ME2 and the 2-ME2-PD1 on the viability of OE33 cells showed that the IC50 

values of the 2-ME2-PD1 were ∼3-fold higher than those of 2-ME2 (Fig. 3). Although the 

in vitro mechanisms of 2-ME2-PD1 are not yet fully known, these results suggest that the 

active compound, 2-ME2, is being generated at the cellular level. This is not unexpected as 

alkaline phosphatase is present in cellular membranes and esterases are prevalent 

intracellularly. However, at the cellular level we have not yet determined whether through 

enzyme-mediated hydrolysis the prodrug is being converted to 2-ME2, and if so, it would be 

helpful to know the actual efficiency at which this conversion occurs.

The results of our in vivo experiments indicate that 2-ME2-PD1 has potent antitumor 

activity against BEAC xenograft tumor in nude mice over 12 days. An oral dose of 75 

mg/kg/d of 2-ME2-PD1 significantly inhibit the growth of OE33-induced tumors in nude 

mice with reduction in tumor volume of 60 ± 5% relative to the control group and 2-ME2 

group as well (Fig. 5). This result is highly significant as the prodrug dose is equivalent to a 

45.5 mg/kg/d dose of 2-ME2. More simply stated, the prodrug dosed at 60% the level of 2-

ME2 produced significantly higher reduction in tumor volume relative to 2-ME2. Thus 

confirming that, as compared to tissue culture conditions, in the enzyme-rich environment of 

the OE33-tumor xenografted animals there is more efficient and preferential conversion of 

2-ME2-PD1 into systemically bioavailable 2-ME2.

Under in vitro conditions, 2-ME2 is known to inhibit the polymerization of the purified 

tubulin (26, 33) and impair microtubule dynamics (34) to mediate its tumor-suppressive 

actions on cancer cells. Here we report that the anti-proliferative effects of 2-ME2-PD1 on 

OE33 cells mimic those of its parent derivative, 2-ME2, and we provide evidence that these 

effects are pharmacodynamically mediated by the 2-ME2-PD1 induced dose-dependent 

alteration of the microtubule network as well as cellular architecture of these cells (Fig. 4 

and 6). Normally, the morphology of OE33 cells is spindle-shaped of mesenchymal type. 

However, following treatment with parental 2-ME2 or 2-ME2-PD1, the morphology 

drastically changes from mesenchymal to an epithelial architecture (MET) (Fig. 4 and 6). 

Future studies are warranted to study the signaling pathways that are involved in 2-ME2-

PD1 mediated MET event.
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In summary, 2-ME2-PD1 functions as an effective prodrug that greatly improves the oral 

bioavailability of 2-ME2 and thus provides a unique opportunity for more focused 

development of 2-ME2-PD1 as chemotherapy for BEAC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sequential events of synthesis of the 2-ME2 prodrug, 2-ME2-PD1, from 2-
Methoxyestradiol
The first step in the synthesis of 2-ME2-PD1 is the selective formation of the 

methylthiomethyl ether intermediate at the phenolic hydroxyl of 2-ME2 (selectively favored 

over the secondary alcohol on the opposite side of the molecule). This step was followed by 

acylation of the secondary alcohol (to protect and hinder metabolism at C-17 position). The 

acetylated product was purified by column chromatography and used in the formation of the 

protected phosphate ester. Final removal of the dibenzyl groups on the phosphate ester (C-3 

position) and formation of the sodium salt gives the desired prodrug structure.
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Figure 2. Rat plasma 2-ME2 levels as a function of time following the administration of 2-ME2-
PD1 or 2-ME2 by various routes
A cannulated rat model was used to study the plasma 2-ME2 concentrations following oral 

and intravenous administration of 2-ME2-PD1 relative to 2-ME2.
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Figure 3. The differential effect of 2-ME2 and 2-ME2-PD1 on OE33 cell proliferation in vitro
Approximately 60-70% confluent OE33 cells were grown in the presence or absence of 

indicated concentrations of 2-ME2 or 2-ME2-PD1 for 48 h, and cellular viability/

proliferation was determined using crystal violet dye colorimetric assay. The values with 

error bars are expressed as mean ± standard deviation (SD) of three independent 

experiments P- values were determined by Student's t-test. *P <0.001; **P<0.0001 versus 

control.
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Figure 4. The differential effect of 2-ME2 and 2-ME2-PD1 on cellular morphology and 
microtubule organization in OE33 cells in vitro
To study cellular morphology, semiconfluent OE33 cells were exposed to 2-ME2 or 2-ME2-

PD1 for 48 h or left untreated and cellular morphological changes were monitored using a 

Nikon Eclipse Ti-U phase-contrast microscope [left panels (A-D)]. To determine the 

microtubule disruption by 2-ME2 and 2-ME2-PD1, semiconfluent OE33 cells were exposed 

to 2-ME2 or 2-ME2-PD1 for 48 h or left untreated. Treated or untreated cells were fixed and 

stained with TRITC-conjugated antibody to anti-α-Tubulin to visualized microtubules (red) 

and counterstained with DAPI (4, 6-diamidino-2-phenylindole) to visualize nuclei (blue). 

Images of the cellular microtubules were captured using a Nikon Eclipse Ti-U fluorescence 

microscope [right panels (E-H)].
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Figure 5. The differential effect of 2-ME2 and 2-ME2-PD1 on OE33 tumor xenografts in nude 
mice
OE33 cells with Matrigel were injected sc into the right hind leg of each athymic nude mice 

as described in Materials and Methods section. After palpable tumors developed, animals 

were exposed to 2-ME2 or 2-ME2-PD1 or vehicle alone every day for 12 days. The change 

in tumor volume is plotted for untreated (control), 2-ME2 treated and 2-ME2-PD1 treated. 

Bars, SD. *P< 0.01; **P<0.001; #P<0.005 vs untreated.
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Figure 6. The differential effect of 2-ME2-PD1 on cellular morphology and microtubule 
organization in OE33-tumor xenograft
2-ME2-PD1-treated or untreated (control) tumor tissue samples were collected and 

immunofluorescent staining of microtubule filaments (red) in paraffin embedded sections of 

the tumors was performed using monoclonal anti-α-Tubulin antibody.
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Table 1
Summary of 2-ME2 and 2-ME2-PD1 pharmacokinetic parameters

Sprague Dawley rats were implanted with carotid artery, and jugular and/or femoral vein catheters. The Culex 

Automated Pharmacology System facilitated pharmacokinetic analysis of the resulting plasma concentration-

time data was performed using PK Solutions software.

2-ME2 2-ME2-PD1

Route Intravenous Intravenous Oral Oral

Dose (mg/kg) 5.21 10 20 31.5

Corrected Dose (mg/kg) 5.21 6.06 12.13 19.11

AUCt-480 (ng•min•mL-1) 19253 4967 2006 3516

Cmax (ng/mL) 1221 121 8.4 9.9

T1/2 (min) 59 262 807 411

Bioavailability1 (%) 100 21.8 4.4 4.9

1
Bioavailability values are through 480 minutes
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