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Abstract

Background—Many individuals with moderate and severe stroke are unable to use their paretic 

hand. Presently, the effect of conventional therapy on regaining meaningful hand function in this 

population is limited. Efforts have been made to use brain-machine interfaces (BMI) to control 

hand function. To date, almost all of BMI classification algorithms are designed for detecting hand 

movements with a resting arm. However, many functional movements require simultaneous 

movements of arm and hand. Arm movement will possibly impact the detection of intended hand 

movements, specifically for individuals with chronic stroke who have muscle synergies. The most 

prevalent UE synergy --- flexor synergy --- is expressed as an abnormal coupling between shoulder 

abductors and elbow/wrist/finger flexors.

Objective—We hypothesized that due to flexor synergy, shoulder-abductor activity would affect 

the detection of the hand-opening (a movement inhibited by flexion synergy) but not the hand-

closing task (a movement facilitated by the flexion synergy).

Methods—We evaluated the accuracy of a BMI classification algorithm in detecting hand-

opening versus closing after reaching a target with two different shoulder-abduction loads in six 

individuals with stroke.

Results—We found a decreased accuracy in detecting hand-opening when a stroke individual 

intends to open the hand while activating shoulder abductors. However, such decreased accuracy 

with increased shoulder loading was not shown during detecting a hand-closing task.

Conclusions—This study supports that one should consider the effect of shoulder abduction 

activity when designing BMI classification algorithms for the purpose of restoring hand function 

in individuals with moderate to severe stroke.
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I. INTRODUCTION

Stroke is the leading cause of disability in the United States. About 40% of all individuals 

after a stroke are not able to use their paretic hand [1]. Presently, for individuals with 

severely affected upper extremity (UE) post stroke, the evidence that conventional therapy 

can restore meaningful hand function is limited [2–6]. Therefore, exploring the usage of a 

brain-machine interface (BMI) to control a neuroprosthesis that provides an artificial means 

to regain basic hand function merits further investigation.

Since 2008, the effect of BMI-mediated detection of activities, such as grasping or finger 

extension, has been tested in individuals with stroke [7–17]. However, these BMI studies 

have detected the intention of hand movements in isolation without consideration of the 

effect of arm activity on the hand. In reality, arm activity is often required to implement 

functional motor tasks, such as reaching and grasping an object. This clear gap between the 

current BMI classification algorithm design and real-world requirements could significantly 

impact the effectiveness of the targeted neuroprosthetics and negatively influence a stroke 

user’s willingness to use it.

The importance of exploring the effect of proximal arm activity on detecting a hand-task in 

individuals with stroke comes from the loss of independent joint control in the paretic arm 

due to the abnormal muscle synergies. The most prevalent muscle synergy [18, 19], the so-

called flexor synergy, is expressed as an abnormal coupling between shoulder abductors and 

elbow/wrist/finger flexors in the paretic upper limb. Recent research in our lab provided 

evidence demonstrating that due to the flexor synergy, lifting the paretic arm resulted in 

synergy-related finger/wrist EMG activity and thus reducing the ability of a more severely 

impaired stroke individual to generate volitional wrist/finger extension [20]. Furthermore, 

we found that synergy-induced abnormal muscle coactivation patterns were associated with 

changes in cortical activity [21]. Therefore, it is likely that synergic activities also impact the 

accuracy of a BMI classification algorithm. As previous studies already shown that 

abduction affected the elbow/wrist/finger extension more than flexion, we hypothesized that 

shoulder abduction would affect the detection of a hand-opening (i.e., a task inhibited by the 

synergy) but not a hand-closing task (i.e., a hand movement that is less affected by the 

synergy as compared to opening).

II. Method

A. Subject

Six subjects with chronic hemiparetic stroke were recruited for this study (see Table 1 for 

subject information). All the subjects sustained a unilateral lesion at least 1 year before 

participating in the study. The following inclusion criteria were applied to the participants: 

1) without motor impairment in the non-paretic limb; 2) without brainstem and/or cerebellar 
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lesions; 3) without severe concurrent medical problems (e.g. cardiorespiratory impairment); 

4) without acute or chronic pain in the upper extremities or spine; 5) able to provide 

informed consent; 6) able to elevate the paretic limb against gravity up to horizontal and 

generate some active elbow extension, and 7) able to understand the required tasks. The 

level of impairment severity were evaluated using the upper extremity portion of the Fugl-

Meyer Motor Assessment (FMA) [22]. Participants scoring 10 to 60 out of 66 on the FMA 

were admitted in the study. All of subjects provided written consent that was approved by 

the Institutional Review Board of Northwestern University prior to participating in this 

study.

B. Experimental setup

The Arm Coordination Training (ACT3D) robot was used to modulate the shoulder load 

during motor tasks. This admittance controlled robot can generate constant shoulder 

abduction loads during reaching tasks, as shown by both kinetic and kinematic data, and can 

thus precisely modulate the amount of flexion synergy expressed at more distal joints of the 

paretic upper limb [23–26].

During the all the experiments, participants sat in a Biodex chair that restrained the trunk 

and pelvis with straps to prevent motion during the experiment. Each subject’s forearm was 

strapped into a forearm-hand orthosis attached to the end effector of the ACT3D robot. At the 

start of the experiment, the subject’s limb lengths were measured and entered into the 

computer in order to scale the OpenGL-rendered graphical representation of the limb 

(avatar). Then the tested arm was positioned at a “home position” of a 45° shoulder flexion 

angle, 75° shoulder abduction angle, and 90° elbow flexion angle (see figure 1); and the 

“target position” was set as far as the tip of the hand could reach based on segment lengths 

with the configuration of a 95° shoulder-flexion angle, 75° shoulder-abduction angle, and 0° 

elbow-flexion angle.

Before data collection, a short training/preparation session was conducted to help subjects to 

get familiar with the motor tasks and associated feedback. At the beginning of a trial, the 

subject was instructed to move the paretic arm to the home position and relax there for 3 

seconds. During this phase, the target position appeared as a blue or green sphere, with the 

color indicating a hand opening (blue) or closing (green) trial. The home target then 

disappeared indicating to the subject that s/he should reach at a comfortable speed for the 

target within 2 seconds (i.e., the reaching phase). The average duration of the reaching phase 

was about 1–1.5 seconds. A monitor continuously displayed an avatar of the true position of 

the tested arm/hand during the reaching phase. In some instances, subjects were unable to 

reach the target. In this case, they were instructed to perform the task to the best of their 

ability. After reaching or attempting to reach the target for more than 2 seconds, the target 

position changed to yellow and the position of the avatar then went to the target position 

where it was frozen. Upon seeing the yellow target, the subject was instructed to concentrate 

on either opening or closing the hand for 1 to 2 seconds while holding his/her arm in the 

same posture.

The hand opening/closing tasks were performed with 2 different shoulder loads: the 

“supported” condition, where subjects were supported by a frictionless haptic table 
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generated by the robot; or the “unsupported” condition, during which the virtual table was 

lowered by 5 cm, requiring the subject to actively elevate and hold the paretic arm against 

gravity above the haptic table. When performing the hand task during the “unsupported” 

condition, a beeping sound was given to the subject when the paretic arm touched the table. 

All subjects were able to elevate the paretic arm once hearing the beeping sound. If during 

an a block of 20–30 trials, there were 3 consecutive trials with a short beeping signal, the 

data collection was paused and a longer resting period was incorporated before starting the 

next block. Overall, 4 different tasks (opening /closing tasks in supported or unsupported 

conditions) were performed by each subject. Subjects finished the opening and closing tasks 

under the supported condition on the first day and the unsupported condition 2 or 3 days 

later. In each condition, opening and closing tasks were performed randomly in several 

blocks of 20–30 trials for a total of 120–200 trials for each task. The experiment for each 

session lasted approximately 4 hours, including 2 hours for setup time and 2 hours for data 

collection. To minimize fatigue, a resting period of 8–20 seconds between trials was 

implemented as well as a 10–20 minute period between blocks.

We simultaneously collected EMG signals from the wrist/finger extensors (extensor carpi 

radialis longus & brevis and the extensor digitorum) and flexors (flexor carpi radialis and the 

flexor digitorum superficialis) of the tested arm, as well as 160-channel EEG from the scalp 

and 2-chanel electrooculography (EOG) signals from above and beneath the eye (Biosemi, 

Inc., Active II, Amsterdam, The Netherlands) during each session (see figure 1). All signals 

were collected with the reference placed at both ears and sampled at 1024 Hz.

C. EEG Data analysis

The 160-channel EEG signals were first visually inspected to identify and remove channels 

constantly contaminated by noise (i.e., channels with bad contact or movement artifacts). On 

average, about 8–10 peripheral channels were eliminated. The remaining EEG signals were 

then aligned to the onset of wrist/finger flexor (for closing task, or for opening task when the 

activity of wrist/finger extensors was absent) or wrist/finger extensor (for opening task). 

Subsequently, they were segmented from −1 s to 1 s with 0 representing the onset of EMG 

activity. The segmented EEG signals were then baseline corrected by removing the average 

voltage level during the baseline phase (−1 to −0.8 s) from all data points in the segment. 

Subsequently, a finite-difference Surface Laplacian [27] transformation was applied to each 

EEG channel as a spatial high-pass filter to reduce the smearing effects caused by the head 

volume conductor and to increase the signal-to-noise-ratio [28]. This resulted in the 

elimination of the outermost electrodes (about 29 channels), and thus a spatial pattern of 

activation was generated by a total of about 120 electrodes throughout all sessions. 

Additionally, visual inspection of the processed signals was performed to remove trials 

contaminated by ocular or movement artifacts. Within each shoulder load condition, 80–150 

trials remained for the two hand tasks combined. These remaining trials were then down-

sampled to 256 Hz and exported to MATLAB for further analysis.

In the MATLAB environment, a classification algorithm utilizing time-frequency 

synthesized spatial patterns (TFSP) [29–31] with a newly-added rejection scheme was 

implemented as follows:
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First, for a single trial of EEG data, the signal from one channel was decomposed into 13 

frequency bands using constant Q value (Q = 4) band-pass filters with their center 

frequencies ranging from 5–34 Hz. Subsequently, the Hilbert transform was used to extract 

profiles of the oscillatory activities, which were then divided into 72 equal-length time 

intervals (55 ms of each interval) with a 50% overlap. Next, the instantaneous power (i.e., 

integration of the profile) was calculated in each of the time–frequency bins, and thus the 

EEG signal from a single channel was represented by a 72×13 matrix of coefficients. The 

above processing was repeated in all channels. As a result of above decomposition process, a 

single trial EEG signal was characterized by a series of spatial features represented in each 

of the 72×13 time-frequency bins (t-f bins).

After decomposing spatial feature onto 72×13 t-f bins, the classification of the hand-

opening/closing tasks was performed for the supported and unsupported conditions 

separately. Under a given shoulder load, we first calculated the characteristic spatial patterns 

for each hand task in each of the specific t-f bins by averaging all the spatial patterns within 

such specific t-f bin (i.e., for a given shoulder load, the characteristic spatial patterns (P) for 

hand-opening  and for hand-closing 

, where n and m were the indices of trials; and N and M were 

the total number of the trials in the training datasets for opening and closing task, 

respectively). Then, a similarity judgment Sp(t, f) within a specific time–frequency bin (t,f) 
was made by comparing correlation coefficients between the spatial pattern of a testing trial 

(p) and the two characteristic spatial patterns (P) as follows:

(1)

A Sp(t, f) equal to 1 or −1 indicated a detection result of hand-opening or a hand-closing 

trial; and 0 represented an uncertain judgment. As shown in the equation (1), at this first-

level, the correlation coefficient between the testing trial and the 2 characteristic patterns 

was used to quantify the distance between the testing trial and the characteristic pattern. The 

decision of one t-f bin went to the class whose characteristic pattern was closer to the testing 

trial. A rejection scheme was added to the original TFSP BMI algorithm at each of the time-

frequency bins. When the difference in the similarity judgment was smaller than the 

rejection threshold (Threj), the corresponding grid did not contribute to the final decision-

making. The output of the first-level Sp(t, f) by each of the t-f bins was then used at the 

second level to determine a final decision. The second level synthesis worked akin a voting 

system, in which each individual (equal to each of the t-f bins) voted, and the final judgment 

went to the decision that was agreed by most of the individuals. All the accepted grids 

shared the same voting rights, and the final judging decision R(p) regarding the class of a 

testing trial was made by summing the results over the entire 72×13 time–frequency grids as 

follows: R(p)= sign (sum(Sp(t,f))). A positive R(p) indicated that a majority of bins judge 

that the current trial was a hand-opening event, while a negative one indicated a hand-
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closing event. No trial would be rejected completely unless R(p)= sign (sum(Sp(t,f))=0, 

which never happened in any test trials to date.

Finally, we calculated the true positive rate (TPR, defined as the number of hand-opening 

trials that were correctly recognized, normalized by the number of total hand-opening trials) 

and true negative rate (TNR, defined as the number of hand-closing trials that were correctly 

recognized, normalized by the number of total hand-closing trials). The BMI algorithm was 

repeated with a rejection threshold of 0 to 0.95 with a step increase of 0.05. The leave-four-

out cross validation method [32] was used to test the overall performance under either the 

supported or unsupported conditions with each of the given rejection thresholds.

In order to understand the neural underpinnings of our results, we further identified the t-f 

bins that performed differently under ‘supported’ and ‘unsupported’ conditions, separately 

for each of the 2 hand tasks. To implement this, we first gave a score equal to 1, −1 or 0 to 

each of the t-f bins, if it detected a single trial correctly, falsely, or refused to make a 

decision, respectively. The final recognition score of a t-f bin was then calculated by 

summing the scores cross all of the trials with the rejection threshold setting as 0.35 (i.e., the 

overall optimal rejection threshold). Subsequently, we used a one-way Repeated Measure of 

Analysis of Variance (RMANOVA) to identify t-f bins with a significant change in the 

recognition score when a different level of limb support was applied (dependent factor: 

recognition score, independent factor: ‘supported’ vs. ‘unsupported’ condition, samples are 

different trials, p<0.05). These t-f bins were defined as shoulder-load sensitive t-f bins (SS t-

f bins). Finally, we counted the number of SS t-f bins in Theta (4–7 Hz), Alpha1 (8–10 Hz), 

Alpha2 (10–13 Hz), Beta1 (13–20 Hz), and Beta2 (20–30 Hz) bands before and after the 

EMG onset.

To explore the spatial features, we reconstructed the cortical activity of subject S2 from 0 to 

50 ms while performing hand-opening and hand-closing tasks using his paretic left arm 

under the supported and unsupported conditions. Inverse source reconstruction was 

conducted using the LORETA method (Lp=1) [33, 34] based on ensemble-averaged EEG 

signals and a subject-specific boundary element head model developed by subject-specific 

anatomic MRI. Although the inverse procedure was performed over the whole cortex, only 

the activities in the region of interest (ROI), consisted of the bilateral the premotor (PM), 

supplementary motor area (SMA, including both preSMA and SMA proper), primary motor 

(M1) and primary somatosensory (S1) cortices were shown. Due to the absence of MRI data 

in the remaining 5 subjects, cortical activity reconstruction was not performed in the other 5 

subjects.

Statistical analyses were applied to detect the difference at a p<0.05 significance level or a 

trend of reaching significance at a p between 0.05 and 0.1.

III. Results

Overall, equal numbers of hand opening and closing trials were used: A two-way ANOVA 

(hand task, support level) analysis result showed no significant difference in the trail 
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numbers between the hand-opening and closing tasks (p=0.78, F=0.07) or between the 

unsupported versus supported conditions (p=0.40, F=0.75).

The box plots of true positive rates (TPR) and true negative rates (TNR) under the supported 

and unsupported conditions with each of the rejection thresholds were plotted in figure 2. 

Results from a one-way MANOVA (independent factor: shoulder abduction load with the 

rejection threshold as the nested factor; dependent factors: TPR and TNR) showed that 

shoulder abduction load significantly influenced the accuracy rate for detecting hand-

opening (F=28.737, p<0.0001) but not the accuracy rate for detecting a hand-closing 

(F=0.0824, p>0.1). Scheffe post-hoc tests showed that the classification algorithm detected 

the hand opening with significantly higher accuracy during the supported condition as 

compare to the unsupported condition (mean difference =12.8%, p<0.0001).

Across-subjects mean and standard errors of the number of shoulder-load sensitive t-f bins 

(SS t-f bins) were shown in Figure 3. As shown in figure 3, overall more SS t-f bins were 

found for the hand-opening task (gray bars of figure 3) than for the hand-closing task (white 

bars). A three-way RMANOVA was used to test the effect of the time window (2 levels--- 

before and after EMG onset), frequency band (5 levels) and hand task (2 levels --- opening 

and closing tasks) on the number of SS t-f bins. Results of RMANOVA reported a 

significant effect of the hand task (F=9.854, p=0.0257) on the number of SS t-f bins but not 

the other two factors (time window: F=0.091, p=0.7745; and frequency band: F=0.353, 

p=0.839). There were no significant interactions between these three within-subject factors, 

either. A non-parametric Friedman post-hot test reported a significantly greater number of 

SS t-f bins in low beta band (13–20 Hz) after EMG onset for hand opening task as compared 

to closing task (p<0.05). No other significant results were found by the post-hoc analysis.

Cortical activities of subject S2 from 0 to 50 ms while performing hand-opening and - 

closing tasks with the paretic left arm during supported and unsupported conditions were 

shown in figure 4. As illustrated in Figure 4, during the supported condition, only the 

contralateral M1/S1 cortical regions were involved in the hand-opening task (figure 4 a); 

however, bilateral activity was detected during the hand-closing task (figure 4 c). Thus the 

spatial patterns during the supported condition for the two hand tasks were quite different. 

However, during the unsupported condition, bilateral cortical activity was observed for both 

the hand-opening and - closing tasks (see figure 4 b and d). The similarity in cortical spatial 

patterns for the two hand tasks during the unsupported condition reduced the accuracy of the 

classification algorithm.

IV. Discussion

Our results obtained from the paretic arm of 6 subjects with chronic hemiparetic stroke 

showed a significant reduction in the accuracy of detecting the hand opening with an 

increased shoulder abduction load. However, such shoulder-abduction induced reduction in 

the accuracy was not demonstrated in hand-closing task.
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The loss of independent joint control in individuals of stroke affects the accuracy in 
detecting the hand-opening task

We believe that the SABD-load induced reduction in the accuracy for detecting hand-

opening task is due to changes in brain activity that also results in a flexor synergy. Previous 

reports from our laboratory have shown that the flexion synergy decreases the ability to 

reach [25, 26] and open the hand [21], when increased shoulder abduction loading was 

applied. The main underlying neural mechanism is postulated to be an increased reliance on 

brainstem descending pathways, like the cortico-reticular spinal tract (CRST), due to the loss 

of corticospinal tract (CST) fibers from the lesioned hemisphere. It is well known that CST 

monosynaptically facilitates contralateral extensor and flexor muscles [35], and ipsilateral 

CST activation of spinal motoneurons is absent or very weak [36]. In contrast, CRST is a 

bilaterally organized system. Previous studies have shown that CRST projects to both 

motoneurons and interneurons involved in digital control [37]. CRST tends to facilitate 

flexors and suppress extensors ipsilaterally, and the reverse contralaterally [38–40]. Thus it 

is possible that the ipsilateral CRST and remaining CST projections are both effective 

resources to drive hand-closing regardless of the supporting conditions. The case of hand 

opening is more complex. As we already know that ipsilateral CRST suppresses extensors. 

Therefore, residual CRST from the non-lesioned ipsilateral side may not be a good backup 

for hand opening, and hand opening may be primarily depended on contralateral residual 

CS. Such dependence on contralateral residual CST is also reflected as the greater paralysis 

of finger extensors regardless of shoulder abductor activity [41]. During the supported 

condition, using contralateral residual CST for opening task versus using bilateral CRST and 

CST for closing task might allow for the detection of the two hand tasks. However, when 

additional shoulder abductor muscle was required, ipsilateral CRST was used for both hand-

tasks and contralateral cortical activity related to hand opening might no longer be 

detectable. This explanation was supported by the cortical activity results from a single 

subject, as shown in figure 4. It was also supported by the significant change of the number 

of SS t-f bins in detecting hand opening at lower beta band (13–20 Hz) after EMG onset 

when different SABD loading was required. As reported before, cortico-muscular 

communication conducted via the CRST oscillates in a lower frequency band (10–15 Hz) 

[42, 43] than that conducted via CST that is in a higher frequency band [15–40 hz see 44]. 

Our finding of a significant difference in the number of SS t-f bins for hand-opening task in 

the low beta band probably also reflects that CST and CRST were used to drive hand 

opening during the ‘supported’ as compared to the ‘unsupported’ condition.

In short, our results show that shoulder loading has a significant impact on the accuracy of 

detecting a hand-opening task in individuals with stroke, presumably because hand-opening 

is more exclusively dependent on activity in the contralateral lesioned hemisphere via the 

lateral CST. Conversely, the impact of shoulder abduction loading on the detecting of hand-

closing task is not significant, presumably because hand-closing can be generated by both 

contralateral cortical activity via the CST and ispilateral cortical activity via the CRST.

Possible limitations in the interpretation of our data

Previous literature has shown that the human brain, even after a stroke, can still adapt to a 

BMI device to improve performance [12]. Because we always conducted experiments under 
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the supported condition on the first day, and experiments under the unsupported condition 

about 2 or 3 days later, it is reasonable to expect that the effect of learning could impact our 

findings. In case a subject learned from the 1st day’s experiment, any potential learning 

effects should favor the unsupported condition, and thus, imply an even lower detection rate 

under an unsupported condition if there is no effect of learning. Therefore, the order of the 

experiments should not invalidate our results. If anything it should only strengthen them. 

Furthermore, there is no reason to believe that the effect of learning would affect the hand-

opening and -closing tasks differently. Because of the above 2 reasons, we ruled out an 

effect of learning on our findings.

Results of conducting the experiments in a fixed sequence could also be affected by some 

random differences: such as the subject’s overall mental state, noise from random sources, 

day-to-day impedance differences between electrodes and skin, and so on. These differences 

will be reflected as baseline differences and have been removed from analysis. Furthermore, 

because of their random nature, there is no reason to believe that noise from random sources 

should bias one testing condition over another.

Other possible confounding factors that may impact our signals are muscle fatigue and EMG 

contamination of EEG activity. It is possible that, the subject may be more fatigued on the 

2nd day than that on the 1st day. To avoid this issue, we have separated the 2 experiments by 

2 or 3 days. In order to limit the effects of muscle fatigue within a day, we included longer 

resting periods between trials and between blocks for experiments in the unsupported 

condition. No subjects reported fatigue during or after the experiment. We also checked the 

frequency spectrum of EMG data. We did not find a significant difference in the EMG 

spectrum between the first 10 and last 10 trials. Therefore, no clear evidence of muscle 

fatigue was found. Consequently, we argued that muscle fatigue was not a primary 

contributor to the observed decrease in BMI performance when a greater shoulder abduction 

load was applied.

Additionally, higher muscle artifacts might be introduced to EEG signals under the 

unsupported condition as compared to the supported condition. The increased EMG activity 

mostly affected the outside EEG electrodes, which were removed from further analysis, 

thereby reducing their influence on EEG signals. Furthermore, we argued that if EMG 

activity indeed contaminated EEG to a greater extent when the arm was not supported, then 

it should have affected both the opening and closing tasks similarly. However, our results 

showed that different shoulder loads only significantly affected the accuracy in detection of 

the hand-opening task. To further confirm that EMG did not affect time-frequency bins 

differently for various conditions, a two-way repeated measure of ANOVA (i.e., supporting 

conditions and the hand tasks) was used to compare the spectrum in two control frequency 

bands: 30–40 Hz and 40–50 Hz. In these two bands, the spectrum should not be significantly 

modulated by a brain signal change but could very easily be modulated by an EMG artifact 

signal. Repeated measures of MANOVA did not report any significant effects (p>0.1).

The difference in sensory input under the supported and unsupported conditions as well as 

additional motor output for shoulder abduction under unsupported condition could also 

contribute to the changes in BMI performance. We argued that the sensory input and motor 
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output caused by shoulder abductor activation were the same to both hand-opening and 

hand-closing task. However, we only observed the changes in the BMI performance for 

hand-opening task but not for hand-closing task. Therefore, the common sensorimotor 

information caused by the shoulder activity cannot explain selective changes in the BMI 

performance for the hand-opening task only but not for the closing task.

Finally, our discussion of possible neural mechanisms for our findings (i.e., shoulder loading 

affects the BMI performance of hand opening task but not closing task) was partially based 

on imaging results from a single subject. Imaging results on increased number of subjects 

are required for a more solid answer to the neural mechanisms. In short, our results provide 

for the first time evidence that shoulder loadings impact the BMI performance differently for 

hand opening as opposed to closing task.

Clinical implications and future directions

In this paper, we provided evidence of a decreased accuracy of the classification algorithm in 

detecting hand opening when an individual after a stroke intended to activate the hand while 

also activating shoulder abductors. This conclusion is based on the off-line performance of 

the TFSP algorithm. However, this conclusion is likely generalizable to real-time 

applications as well. Our conclusion about shoulder activity impacting the accuracy in 

detecting hand tasks can probably also be generalized to other joints, such as the elbow and 

the wrist; and to other synergetic patterns, such as the impact of shoulder adduction on the 

detection of the hand-closing task. In short, our results demonstrate the necessity of 

considering the impact of multi-joint activity when designing a BMI device such as a 

neuroprosthetics for potential future clinical usage in individuals with stroke and suggest 

that regaining more independent shoulder and elbow control may be vital to improve BMI 

performance for the purpose of recapturing basic hand function.
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Figure 1. 
Experimental Setup. The tested arm is required to move from the “home position” (red dot) 

to the “target position” (blue dot) at a comfortable speed at which point the subject either 

opens or closes the hand.
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Figure 2. 
The box plot of the BMI performance over the 6 subjects under supported (left column) and 

unsupported (right column) conditions with different rejection thresholds applied. 

*p<0.0001 and °p>0.1. In this figure, the applied rejection threshold was indicated in the x-

axis, and the TPR or TNR was indicated in the y-axis.
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Figure 3. 
The numbers of t-f bins with significant difference in recognition score between the 

‘supported’ and ‘unsupported’ conditions at different frequency bands during the time 

window of before EMG onset (left) and after EMG onset (right).
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Figure 4. 
The inverse results in stroke subject S2 when performing tasks of hand-opening (the upper 

row) and hand-closing (the lower row) using his paretic arm (left arm) under supported (left 

column) and unsupported conditions (right column), respectively. The green dot lines 

indicate the central sulcus and the red dots represent the center of gravity (CoG) of the 

cortical activity within ROI.
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