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Abstract
A series of studies have demonstrated that activation of the sympathetic nervous system

(SNS) causes osteopenia via β2-adrenoceptor (β2-AR) signaling. However, in a recent

study, we found an unexpected and generalized phenotype of high bone mass in female

mice with chronic sympathetic hyperactivity, due to double gene inactivation of adrenocep-

tors that negatively regulate norepinephrine release, α2A-and α2C-AR (α2A/2C-AR
-/-). These

findings suggest that β2-AR is not the single adrenoceptor involved in bone turnover regula-

tion and show that α2-AR signaling may also mediate the SNS actions in the skeleton. In

addition, we found that α2A/2C-AR
-/- animals are resistant to the thyrotoxicosis-induced

osteopenia, suggesting that thyroid hormone (TH), when in supraphysiological levels, inter-

acts with the SNS to control bone mass and structure, and that this interaction may also

involve α2-AR signaling. In the present study, to further investigate these hypotheses and to

discriminate the roles of α2-AR subtypes, we have evaluated the bone phenotype of mice

with the single gene inactivation of α2C-AR subtype, which mRNA expression was previ-

ously shown to be down regulated by triiodothyronine (T3). A cohort of 30 day-old female

α2CAR
-/- mice and their wild-type (WT) controls were treated with a supraphysiological dose

of T3 for 30 or 90 days, which induced a thyrotoxic state in both mouse lineages. The micro-

computed tomographic (μCT) analysis showed that α2C-AR
-/- mice present lower trabecular

bone volume (BV/TV) and number (Tb.N), and increased trabecular separation (Tb.Sp) in

the femur compared with WT mice; which was accompanied by decreased bone strength

(determined by the three-point bending test) in the femur and tibia. The opposite was

observed in the vertebra, where α2C-AR
-/- mice show increased BV/TV, Tb.N and trabecular

thickness (Tb.Th), and decreased Tb.Sp, compared with WT animals. In spite of the con-

trasting bone phenotypes of the femur and L5, thyrotoxicosis negatively regulated most of

the micro architectural features of the trabecular bone in both skeletal sites of WT, but not of
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α2C-AR
-/- mice. T3 treatment also decreased biomechanical properties (maximum load and

ultimate load) in the femur and tibia of WT, but not of knockout mice. The mRNA expression

of osteocalcin, a marker of mature osteoblasts, and tartrate-resistant acid phosphatase,

which is expressed by osteoclasts and is involved in collagen degradation, was increased

by T3 treatment only in WT, and not in α2C-AR
-/- mice. Altogether, these findings suggest

that α2C-AR subtype mediates the effects of the SNS in the bone in a skeletal site-depen-

dent manner, and that thyrotoxicosis depends on α2C-AR signaling to promote bone loss,

which sustains the hypothesis of a TH-SNS interaction to modulate bone remodeling and

structure.

Introduction
It is well known that hyperthyroidism is one of the major causes of secondary osteoporosis
[1,2]. Thyroid hormone (TH) stimulates both bone formation and resorption by regulating the
activity of osteoblasts and osteoclasts, respectively. In hyperthyroidism, both bone formation
and resorption are increased [3,4], but the latter predominates [5], favoring resorption [3], neg-
ative balance of calcium [6], and bone loss [7]. In contrast, in hypothyroidism, bone turnover
is slowed and bone mass might be slightly increased [8,9]. The mechanisms through which TH
regulates bone remodeling are not completely understood. It is known that TH can modulate
bone metabolism indirectly, regulating the synthesis and/or secretion of other hormones and
factors, such as growth hormone and IGF-I [10,11,12]. A body of evidence also suggests that
TH acts directly in bone cells, modifying their proliferation and differentiation and/or modu-
lating the expression of several bone-related genes [13,14,15]. It is generally accepted that most
of T3 actions are mediated by its nuclear receptors, which were shown to be expressed in osteo-
blasts [16], osteoclasts [17], and chondrocytes [18].

Over the last 15 years, a series of studies has demonstrated that the sympathetic nervous sys-
tem (SNS) also controls bone metabolism [19]. Evidence shows that the SNS activation nega-
tively regulates bone formation and positively regulates bone resorption, via β2-AR signaling,
leading to bone loss [20,21,22]. β2-AR mRNA expression was detected in osteoblastic and oste-
oclastic cells [20,23], and β2-AR knockout mice (β2-AR

-/-), which do not present metabolic and
endocrine abnormalities, present a generalized phenotype of high bone mass (HBM), with
increased bone formation and decreased bone resorption [24]. In vitro studies, with bone cells
derived from wild-type (WT) and β2-AR

-/- mice showed that the SNS limits bone formation by
acting directly on osteoblasts and favors bone resorption by increasing expression in osteoblast
progenitor cells of the osteoclast differentiation factor RANKL (receptor activator of nuclear
factor kappa-B ligand) [24]. Accordingly, administration of propranolol, a β-blocker, and iso-
proterenol, a β-agonist, was demonstrated to increase and decrease bone mass, respectively, in
adult animals [20,25,26].

On the other hand, later studies by our group have shown that female mice with chronic
sympathetic hyperactivity, due to the double gene inactivation of adrenoceptors that negatively
regulate norepinephrine release, α2A-AR and α2C-AR (α2A/α2C-AR

-/-), present an unexpected
phenotype of HBM, with decreased bone resorption and increased bone formation [27]. These
findings suggest that β2-AR is not the single adrenoceptor involved in bone mass regulation
and evoke that α2A-AR and/or α2C-AR signaling may also mediate the SNS actions in the
skeleton.

Single α2C-AR Gene Disruption and Bone Phenotype
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There are three subtypes of α2 adrenoceptors, α2A-AR, α2B-AR and α2C-AR. All these recep-
tors are expressed in the presynaptic membranes of adrenergic neurons, where they inhibit cat-
echolamine release, acting, therefore, as autoreceptors [28]. They are also expressed in non-
adrenergic neurons of the peripheral and central nervous system (CNS), where they can act as
heteroceptors [28], inhibiting the release of many neurotransmitters, including serotonin [29],
GABA [30] and dopamine [31]. All α2 receptor subtypes are also expressed in non-neuronal
cells, where they have important roles, such as regulation of body temperature, intraocular
pressure, lipolysis, insulin release, and pain perception [28,32,33,34]. All these receptors were
also detected, by immunohistochemistry, in osteoblasts, osteocytes, osteoclasts and chondro-
cytes in histological sections of the femur and vertebra of mice. [27]. In addition, α2A-AR was
recently detected in human osteoblasts and lining cells [35].

Considering that TH interacts with the SNS to control several physiological processes,
including thermogenesis, lipolysis, and glycogenolysis [36]; and that treatment of hyperthyroid
patients with propranolol corrects their hypercalcemia [37] and decreases their urinary excre-
tion of hydroxyproline, a biochemical marker of bone resorption [38], we have raised the
hypothesis that TH, when in supraphysiological levels, could also interact with the SNS to regu-
late bone remodeling. In fact, we have found that α2A/2C-AR

-/- animals are resistant to the thy-
rotoxicosis-induced osteopenia [39], which substantiates a TH-SNS interaction to control bone
mass and suggests that this interaction depends on α2A-AR and/or α2C-AR signaling. To fur-
ther investigate these hypotheses and to discriminated the roles of the different α2 isoforms, we
have evaluated the bone phenotype of mice with the single gene inactivation of α2C adrenore-
ceptor subtype (α2C-AR

-/-), which mRNA expression was previously shown to be modulated
by TH [39].

In the present study, we show that α2C-AR
-/- animals present critical skeletal alterations,

with higher bone mass in the vertebra and lower bone mass in the femur, when compared with
WTmice. In addition, these mice also showed to be resistant to the deleterious effects of thyro-
toxicosis on bone microstructure and biomechanical properties, bringing new evidence that
the regulation of bone remodeling by the SNS is extremely complex and that TH, when in
supraphysiological levels, interacts with this system to control bone remodeling and structure
in an α2C-AR subtype-dependent manner.

Materials and Methods

Animal maintenance and manipulation
A cohort of 30-day old female congenic α2C-AR knockout (KO) mice (α2C-AR

-/-) in a C57BL6/
J (B6) background and their WT controls were studied. The animals were considered young
adults, since the pubertal maturation in B6 female mice begins when serum estradiol increases
by day 26 after birth and is complete when vaginal opening occurs by day 31 [40]. The animals
received an injection of T3 (Sigma-Aldrich, Germany), in a daily dose equivalent to 20 fold its
physiological dose (20xT3 = 7g/ 100g body mass/day), for 30 or 90 days (n = 8–10 animals/
group). T3 injections were administered intraperitoneally and at the same time each day. All
animals were weighed once a week to monitor the changes in body mass over the experimental
period and for adjusting the amount of hormone to be administered in order to maintain the
supraphysiological dose of T3 (20xT3). All experimental procedures were performed in accor-
dance with the guidelines of the Standing Committee on Animal Research of the University of
São Paulo, which approved the study (Protocol n°. 35, page 85, book 02). At the end of the
experimental period, the animals were euthanized, and the body length was measured from the
tip of the snout to the base of the tail.

Single α2C-AR Gene Disruption and Bone Phenotype
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Serum levels of thyroxine (T4) and T3
At the end of the experimental period, the animals were euthanized and the blood was col-
lected. The serum was separated by centrifugation and immediately frozen. Total thyroxine
(T4) and T3 serum levels were measured using radioimmunoassay commercial kits (RIA-gnost
T4 and RIAgnost T3; CIS Bio International, Gif-sur-Yvette, France). For the T4 and T3 assays,
standard curves were built in our laboratory with a pool of charcoal stripped mouse serum.
The blood samples were always collected 2 hours after the last T3 administration.

Heart mass
Immediately after the animals were euthanized, the heartwas dissected out and weighed for
wet-mass determination. The heart samples were dehydrated at 60°C for48 hours and weighed
again for dry-mass determination. All masses were expressed in milligrams per gram of body
mass (BM).

Micro-Computed Tomography (μCT) analysis
A bone sample representative of the axial and appendicular skeleton, the fifth lumbar vertebra
(L5) and femur, respectively, were scanned using a μCT unit (SkyScan 1172, SkyScan, Aartse-
laar, Belgium), where they were rotated through 360° at a rotation step of 0.7 degree. The X-ray
settings were standardized to 100 kV for the baseline vertebral body and distal femur speci-
mens, with an exposure time of 590 ms.A 0.05-mm-thick aluminum filter and a beam-harden-
ing algorithm were used to minimize beam-hardening artifacts. The bone parameters were
obtained with CtAn Version 1.5 (SkyScan). Total trabecular area of L5 and the distal metaphy-
sis of the femur were selected as the regions of interest (ROIs). The following 3D structural
parameters of trabecular bone were determined: BV/TV (bone volume/tissue volume), Tb.Th
(trabecular thickness), Tb.N (trabecular number), and TB.Sp (trabecular separation). The fol-
lowing morphometric variables of cortical bone were measured in 2D cross-sectional images of
the vertebral body of L5 and in the diaphysis of the femur: T.Ar (Tissue area), B.Ar (Bone
area), Medulary Area and Endosteal Perimeter.

Three-point bending test
The right femurs and tibias were tested in the same orientation in an Instron testing machine
(Model 3344, Instron Corporation, MA, USA). For the femurs, the anterior cortex was placed
in compression and the posterior cortex in tension during the test; for the tibias, the lateral
right cortex was placed in compression and the lateral left cortex in tension during the test. A
constant displacement rate of 5 mm/minute was applied until the bone fractured. Fracture was
taken as complete loss of load carrying ability. To stabilize the specimen, a small preload (5%
of the average maximal load) was applied before actual testing. During the bending test, load-
displacement data were collected by a computerized data-acquisition system at a sampling rate
of 80 Hz. The biomechanical properties evaluated were the maximum load [a measure of the
maximum force that the bone withstood before fracture (N)], the ultimate load [the load at the
fracture point (J)], Young´s modulus (mPa), resilience [a measure of the ability of a bone to
suffer elastic deformity (J)] and stiffness [a measure of the extrinsic rigidity of the bone tissue
(N/mm)].

Gene expression by Real Time PCR
Expression of receptor activator of nuclear factor kappa-B (RANK), RANK ligand (RANKL),
osteoprotegerin (OPG), osteocalcin (OC) and tartrate-resistant acid phosphatase (TRAP) were

Single α2C-AR Gene Disruption and Bone Phenotype
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determined by real time PCR in the whole femur and fourth lumbar vertebra (L4), as described
previously [41]. The total RNA was extracted from these whole bones, including the bone mar-
row, using Trizol (Invitrogen, Carlsbad, CA, USA), following the manufacturer´s instructions.
Total RNA was reverse transcribed using TURBO DNA-free kit (Ambion, Foster City, CA,
USA). Syber Green Super Mix (Applied Biosystems, Warrington, UK) was used for the
real-time PCR using the ABI Prism 7500 sequence detector. All primers used in this study:
RANK_F: TCT GCA GCT CTT CCA TGA CAC T and R: CGA TGA GAC TGG GCA GGT AAG
(NM_009399), RANK-L_F: GGC CAC AGC GCT TCT CAG and R: GAG TGA CTT TAT GGG
AAC CCG AT (NM_011613.2), OPG_F: AGT CCG TGA AGC AGG AGT G and R: CCA TCT GGA
CAT TTT TTG CAA A (NM_U94331), 18S_F: GTA ACC CGT TGA ACC CCA TT and R: CCA
TCC AAT CGG TAG TAG CG (NM_11188), TRAP_F: F: TGC ACA GAT TGC ATA CTC TAA
GAT CTC, R: TTT TGA AGC GCA AAC GGT AGT (NM_007388), OC_F: F: CTC ACA GAT GCC
AAG CCC A, R: CCA AGG TAG CGC CGG AGT CT (NM_U11542) were synthetized (Integrated
DNA Technologies, Coralville, IA) specifically for real-time PCR using Primer Express soft-
ware (Applied Biosystems). The amplification reaction was carried out for 40 cycles, with dena-
turation at 95°C for 5 seconds, and annealing/extension at 60°C for 31 seconds. Melt curve
analysis was conducted after each run. Each pair of primer generated a single peak. The relative
abundance of each target was calculated as 1,000 × 2(Ct target gene–Ct Gapdh), in which Ct

represents the threshold cycle for each transcript, and Cyclophilin or 18s is the reference.

Results

Induction of a thyrotoxic state in α2C-AR
-/- mice

We evaluate the effect of daily administration of 20 times the physiological dose of T3 (20 X
T3 = 7 μg x 100 g bw-1 x day-1) on bone of 30-day old female WT and α2C-AR

-/- mice for 30 and
90 days. We first evaluated the induction of a thyrotoxic state by analyzing serum levels of TH,
heart mass and body mass. Both 30- and 90-day-long T3 treatments increased by 8-fold the
serum concentration of T3, and, as expected, decreased by half the T4 serum levels both in WT
and KOmice (Fig 1A and 1B), which reflects TSH inhibition by negative feedback [42]. Serum
levels of T4 were not different betweenWT and KOmice (receiving saline or T3) by 60 days of
age (30-day treatment group). On the other hand, by 120 days of age (90-day treatment group),
saline- and T3-treated α2C-AR

-/- animals (Fig 1B) presented important decrease on T4 levels (7-
fold and 9-fold, respectively), compared with their WT controls (saline–and T3-treated mice),
suggesting that the lack of α2C-AR leads to a decline in the thyroid function, as the animals age.
Corroborating previous studies that report cardiac hypertrophy in conditions of thyrotoxicosis
[43], the 30-day and 90-day T3 treatments significantly increased heart mass in WTmice by
20% (p<0,001), which is an indirect measure of cardiac hypertrophy. Surprisingly, the heart
mass of KO mice was not affected by the thyrotoxic state (Fig 2). Body mass was quite similar
between saline-treated WT and KOmice (Fig 3A), but an unexpected result was also observed
regarding to the effect of T3 on this parameter. As predicted, body mass decreased by 10–15%,
as a consequence of the thyrotoxic state inWTmice (Fig 3B), which was clearly observed during
the last 7 weeks of T3 treatment. In contrast, T3-treated α2C-AR

-/- mice showed a 6–9% increase
in body mass compared with untreated KOmice (Fig 3C). These latter results also suggest a par-
ticipation of α2C-AR in the thyrotoxicosis-induced cardiac hypertrophy and body mass loss,
two well known consequences of a chronic thyrotoxic condition [43,44].

T3 effects on bone microarchitecture of WT and α2C-AR
-/- mice

Significant differences in trabecular bone microarchitecture were observed between WT and
KOmice, whereas cortical bone showed to be quite similar between these two mice strains

Single α2C-AR Gene Disruption and Bone Phenotype
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(Figs 4–5 and S1 Fig). The μCT analysis of the distal methaphysis of the femur showed that the
30-day and 90-day saline-treated α2C-AR

-/- mice (60-day and 120-day old animals, respec-
tively) presented lower BV/TV (1.8-fold and 8-fold, respectively) and Tb.N (70% and 85%,
respectively) than their WT controls (Fig 4A, 4E, 4C and 4G), whereas Tb.Sp was increased by
95% in the 90-day saline-treated KO mice (Fig 4H). In contrast, the analysis of the lumbar ver-
tebra (L5) showed the opposite (Fig 5A–5H). The 30-day and 90-day saline-treated KO mice
presented higher BV/TV (55 and 48%, respectively), Tb.Th (10 and 9%, respectively) and Tb.N
(80 and 40%, respectively); and lower Tb.Sp (27 and 16%, respectively) than their WT controls.
In spite of these site skeleton differences (low and high trabecular bone mass in the femur and
vertebra of KO mice, respectively, compared with WT mice), α2C-AR

-/- mice showed to be
resistant to the deleterious effects of thyrotoxicosis on the trabecular bone of both femur and
vertebra (Figs 4A–4H and 5A–5H). In contrast and, as expected, in WT animals, T3 treatment
negatively affected the trabecular μCT parameters in both skeletal sites, but mainly in the
femur, which is known to be more sensitive to the toxic effects of T3 [45,46]. 30- and 90-day

Fig 1. T3 and T4 serum levels in WT and α2C-AR
-/- mice. (A) Serum levels of T3. (B) Serum levels of T4.

Animals were treated with saline or a supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1). Significance
between groups was determined by two-way ANOVA followed by Tukey’s test. Values are expressed as
means ± SEM (n = 8-10/group). *P <0.05, versus the respective saline-treated animals (WT vs. WT+T3, KO
vs. KO+T3).

doi:10.1371/journal.pone.0146795.g001

Single α2C-AR Gene Disruption and Bone Phenotype
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T3-treament decreased femoral BV/TV (5-fold and 6-fold, respectively) and Tb,N (3-fold and
5-fold, respectively), and increased femoral Tb.Sp (47 and 80%, respectively) in WT animals
(Fig 4A, 4C, 4D, 4E, 4G and 4H). In the vertebra of WT animals (Fig 5), 30- and 90-day
T3-treament decreased BV/TV (60 and 50%, respectively), Tb.Th (30 and 10%, respectively)
and Tb.N (43 and 49%, respectively), and increased Tb.Sp (27%, only after 90 days of T3-treat-
ment). As commented above, all these negative effects of T3 were not observed in the vertebra
of α2C-AR

-/- mice or were poorly observed in the femur of KO mice: only BV/TV and Tb.N
were decreased (2 and 1.4 times, respectively) by T3 treatment in the femur KO animals, it

Fig 2. Effect of T3-treatment on heart mass of WT and α2C-AR
-/- mice. 30d and 90d, refer, respectively, to 30 and 90 days of treatment with saline or a

supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1). The dependent values were calculated dividing heart mass per body mass [(g of heart mass/g of
body mass) x 100]. Significance between groups was determined by two-way ANOVA followed by Tukey’s test. Values are expressed as means ± SEM
(n = 10–12 per group). ***P <0.001 versus the respective saline-treated animals (WT vs. WT+T3, KO vs. KO+T3).

doi:10.1371/journal.pone.0146795.g002

Fig 3. Bodymass of WT and α2C-AR
-/- mice. (A) WT versus α2C-AR

-/- mice. (B) WT versusWT+T3. (C) α2C-AR
-/-versus α2C-AR

-/-+T3. Animals were treated
with saline or a supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1). The significance between all groups, presented in figures A, B and C, was
determined in a single test by two-way ANOVA, followed by Tukey’s test. The groups were separated in figures A, B and C to more clearly show the
differences between groups. Values represent the mean ± SEM (n = 10–12 per group). *P< 0.05, **P< 0.01, versus the respective saline-treated animals
(WT vs. WT+T3, KO vs. KO+T3), +P < 0.05 (WT vs. KO).

doi:10.1371/journal.pone.0146795.g003
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Fig 4. Effect of T3-treatment on the structural parameters of the trabecular and cortical bone of the distal metaphysis of the femur in WT and α2C-
AR-/- mice assessed by μCT. (A–D) Effect of 30-day treatment on trabecular parameters. (E-H) Effect of 90-day treatment on trabecular parameters. (I-L)
Effect of 30-day treatment on cortical parameters. (M-P) Effect of 90-day treatment on cortical parameters. Animals were treated with saline or a
supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1). Significance between groups was determined by two-way ANOVA followed by Tukey’s test.
Values are expressed as means ± SEM (n = 10–12 per group). *P<0.05 and **P< 0.01 vs. the respective saline-treated animals (WT vs. WT+T3, KO vs. KO
+T3). +P< 0.05, ++P< 0.01 and +++P< 0.001 for differences betweenWT and KOmice, as indicated. BV/TV, trabecular bone volume; Tb.Th, trabecular
thickness; Tb.N, trabecular number; Tb.Sp, trabecular speculation; T.Ar, total area; B.Ar, bone area; Ma.Ar, medullary area; Ec.Pm, endocortical perimeter.

doi:10.1371/journal.pone.0146795.g004
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occurred only after 90 days of treatment (whereas decreases in these parameters occurred after
30 and 90 days of treatment in WT animals) and in a much lower magnitude than in WT ani-
mals. Although less evident, the cortical bone was also differentially affected, in some way, by
TH excess in the femur and vertebra of KO animals. In the femur, T.Ar decreased 16% and Ec.
Pm increased 25% only in WT animals. All the other cortical parameters responded similarly
to thyrotoxicosis in WT and KO animals (Fig 4I–4P). The thyrotoxic status also decreased
some cortical parameters of the vertebra of WT mice, such as T.Ar (8–36%) and B.Ar (24–
35%). Once again, KO mice showed to be resistant to these T3 effects (S1 Fig).

TH effects on the bone biomechanical parameters of WT and α2C-AR
-/-

mice
In agreement with the μCT analysis that revealed lower BV/TV and Tb.N in the femur of α2C-
AR-/- mice, the three-point bending test showed that maximum load and ultimate load, which

Fig 5. Effect of T3-treatment on the structural parameters of the trabecular bone of the vertebral body of L5 in WT and α2C-AR
-/- mice assessed

by μCT. (A–D) Effect of 30-day treatment on trabecular parameters. (E-H) Effect of 90-day treatment on trabecular parameters. (I-L) Effect of 30-day
treatment on cortical parameters. (M-P) Effect of 90-day treatment on cortical parameters. Animals were treated with saline or a supraphysiological dose of
T3 (7 μg�100 g body wt-1�day-1). Significance between groups was determined by two-way ANOVA followed by Tukey’s test. Values are expressed as
means ± SEM (n = 10–12 per group). *P <0.05 and **P< 0.01 vs. the respective saline-treated animals (WT vs. WT+T3, KO vs. KO+T3). +P< 0.05, ++P< 0.01
and +++P< 0.001 for differences betweenWT and KOmice, as indicated. BV/TV, trabecular bone volume; Tb.Th, trabecular thickness; Tb.N, trabecular
number; Tb.Sp, trabecular speculation.

doi:10.1371/journal.pone.0146795.g005
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are measures of bone strength, were significantly lower in the femur and tibia of KO mice, as
compared with WT controls (Fig 6B, 6D, 6E, 6G, 6H, 6J and 6K). Resilience was significantly
lower only in the tibia of 120-old KO mice as compared with WT mice (Fig 6L). Once again
corroborating the μCT findings, 30 or 90 days of T3 treatment significantly decreased femoral
and tibial bone strength (maximum load and ultimate load) in WT animals, but not in KO
mice (Fig 6A, 6B, 6E, 6G, 6H, 6J and 6K), except for femoral maximum load that was also
decreased by 90 days of T3-treatment in KO animals (Fig 6D). Resilience, which reflects the
elasticity of a material, was decreased by T3 treatment (30- and 90-day long) in the tibia of WT
mice, but not in the tibia or femur of α2C-AR

-/-mice (Fig 6I and 6L). Altogether, these data
reinforce the bone resistance of KO mice to the negative effects of TH excess.

TH effects on the gene expression of the RANKL-RANK-OPG system
and on bone remodeling markers
To further investigate the involvement of α2C-AR in bone physiology and in the TH-SNS inter-
action to control bone remodeling, we evaluate the effect of T3 on the gene expression of the
RANKL-RANK-OPG system. RANKL mRNA levels were higher in the femur (95%) and lower
in the vertebra (56%) of 30-day saline-treated α2C-AR

-/-mice (60-day old mice), as compared
with WT controls (Fig 7A and 7M). These mRNA differences were not observed in 90-day
saline-treated animals (120-day-old mice). We also observed that 30 days of T3 treatment
increased RANK and RANKL mRNA expression (2.5- and 2.6-fold) and decreased OPG
mRNA (50%) expression in the femur of WT mice, but not in the femur of KO mice (Fig 7A–
7C). These effects were not observed when the T3 treatment was increased to 90 days

Fig 6. Effect of T3-treatment on the biomechanical parameters of the femur and tibia in WTmice and α2C-AR
-/- mice.Data were assessed by means of

the 3-point bending test. Animals were treated with saline or a supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1). Values are expressed as
means ± SEM (n = 10–12 per group). Significance between groups was determined by two-way ANOVA followed by Tukey’s test. *P <0.05 and **P< 0.01
vs. the respective saline-treated animals (WT vs. WT+T3, KO vs. KO+T3). +P< 0.05, ++P < 0.01 and +++P < 0.001 for differences betweenWT and KOmice,
as indicated.

doi:10.1371/journal.pone.0146795.g006
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Fig 7. Effect of T3-treatment on the relative mRNA expression of bonemetabolism-related genes. (A-L) Genes expressed in the femur. (M-X) Genes
expressed in the vertebra. (A-F and M-R) Effect of 30-day treatment. (G-L and S-X) Effect of 90-day treatment. Receptor activator of nuclear factor-ҡB
(RANK), RANK ligand (RANKL), osteoprotegerin (OPG), osteocalcin (OC) and tartrate-resistant acid phosphatase (TRAP). mRNA expression was
determined by real-time PCR analysis. Animals were treated with saline or a supraphysiological dose of T3 (7 μg�100 g body wt-1�day-1) for 30 or 90 days.
Values are expressed as means ± EPM (n = 4 to 5/group). Significance between groups was determined by two-way ANOVA followed by Tukey’s test.
*P < 0.05 and **P< 0.01, ***P<0.001 vs. the respective saline-treated animals (WT vs. WT+T3, KO vs. KO+T3), +P< 0,05, ++P< 0,01 and +++P< 0,001 for
differences betweenWT and KOmice, as indicated.

doi:10.1371/journal.pone.0146795.g007
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(Fig 7G–7I). The single effect of this longer treatment was the decrease of OPG mRNA expres-
sion (Fig 7I), which was observed in the femur of both WT and KO animals (93% and 50%,
respectively). The RANKL/OPG ratio was drastically increased by 30 and 90 days of T3 treat-
ment (4 and 12 times, respectively) in the femur of WT but not KO animals (Fig 7D and 7J).
The responses of the RANKL-RANK-OPG system to T3 treatment were quite different in the
vertebra. RANKL was decreased in 40% by 30 days of T3 treatment and increased in 2.3-fold
by 90 days of T3 treatment in WT animals, which was not observed in KO animals (Fig 7M
and 7S). RANK and RANKL/OPG ratio were not affected by any treatment (Fig 7N, 7T, 7P
and 7V), whereas OPG mRNA expression was increased (from 42% to 100%) by 30 and 90
days of T3 treatment both in WT and KOmice (Fig 7O and 7U). We also evaluated the mRNA
expression of the bone formation- and bone resorption-related genes, osteocalcin (OC) and
tartrate-resistant acid phosphatase (TRAP), respectively. T3 treatment, 30- and 90-day long,
increased OC mRNA expression both in the femur (2.6- and 1.2-fold, respectively) and verte-
bra (1.6- and 1.7-fold, respectively) of WT mice (Fig 7E, 7K, 7Q and 7W); this effect of T3 was
not observed in the femur of α2C-AR

-/-mice after 30 days of treatment (Fig 7E) and in the verte-
bra of KO mice after 90 days of treatment (Fig 7W), revealing certain KO resistance to the
T3-induction of OC mRNA expression, a well known effect of T3 [13]. TRAP mRNA expres-
sion was significantly increased (2- to 2.5-fold) by 30 and 90 days of T3-treatment in the femur
and by 90 days of T3-treatment in the vertebra of WT animals. These effects were cleared
impaired by the lack of α2C-AR (Fig 7F, 7L and 7X).

Discussion
We recently showed that young adult mice with global double gene inactivation of α2A-AR and
α2C-AR (α2A/2C-AR

-/-) present a phenotype of HBM [27] and are resistant to the osteopenic
effects of thyrotoxicosis [39]. These findings strongly suggest that α2A-AR and/or α2C-AR sig-
naling mediate actions of the SNS in the skeleton and that TH, when in toxic levels, interact
with this system to cause bone loss. To gain insights regarding the specific roles of the different
α2-AR subtypes in these processes, we evaluated, in the present study, the bone phenotype of
mice with the global single gene inactivation of α2C-AR subtype (α2C-AR

-/- mice), and the skel-
etal responses of these KO animals to chronic conditions of TH excess (30 or 90 days of thyro-
toxicosis). Similarly to α2A/2C-AR

-/- mice, α2C-AR
-/- animals also present sympathetic over

activity with increased circulating and urine levels of epinephrine [47].
Interestingly, the bone phenotype of α2C-AR

-/- mice showed to be different from that of
α2A/2C-AR

-/- mice. While the latter present a generalized phenotype of HBM [27], α2C-AR
-/-

mice present lower trabecular bone mass in the femur compared with WT mice, which was
accompanied by decreased bone strength in the femur and tibia. The opposite was observed in
the vertebra, where α2C-AR

-/- mice show increased trabecular bone mass compared with WT
animals, likewise α2A/2C-AR

-/- mice. This heterogeneous bone phenotype presented by α2C-
AR-/- mice reinforces the hypothesis that the SNS regulates bone remodeling and structure, via
α2C-AR signaling, but also implies that this regulation occurs in a skeletal site-dependent way.
It is important to consider that the lower bone mass observed in the femur of α2C-AR

-/- mice
may be the result of local activation of β2-AR, since these animals present a hyperadrenergic
state [47]. An intriguing question is why it does not happen in the vertebra of α2C-AR

-/- mice
and in the whole skeleton α2A/2C-AR

-/- mice. The fact that the double KO animals (α2A/2C-
AR-/-) present a generalized phenotype of HBM, regardless of the elevated sympathetic tone,
suggests that α2A-AR and/or α2C-AR also mediate osteopenic actions of the SNS. Therefore,
the lack of both receptors could result in anabolic effects that could overcome the negative
effects of β2-AR activation in the bone [27]. Following this reasoning, the comparison of α2C-
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AR-/-and α2A/2C-AR
-/-mice phenotypes suggests that the lack of only α2C-AR is sufficient to

surpass the osteopenic effects of β2-AR activation in the vertebra, while both α2A-AR and α2C-
AR absences, or the single α2A-AR absence, may be necessary to overcome the osteopenic
effects of β2-AR activation in the femur.

Similarly to α2C-AR
-/- mice, leptin deficient mice (ob/ob mice) also exhibit a heterogenic

skeletal phenotype, with higher cancellous bone mass in lumbar vertebra and lower cancellous
bone mass in distal femur metaphysis when compared to WT animals [48]. A possible explana-
tion to the complex skeletal phenotype of ob/ob animals maybe a balance between anabolic
actions of peripheral leptin and antiosteogenic actions of hypothalamic leptin [48,49].

The mechanisms of α2-AR action in the bone are still unknown. The presence of α2 adreno-
ceptor subtypes in mouse and human bone cells suggest direct actions of the SNS, via α2-AR
signaling, in the skeleton. This hypothesis is supported by the responsiveness of in vitro mouse
calvaria-derived osteoblasts and mouse bone marrow-derived osteoclasts to the selective α2–
AR agonist clonidine and to the nonspecific α-AR antagonist phentolamine [27,39]. However,
given the broad distribution of α2 receptors in non-neuronal cells, and specially in the periph-
eral and CNS (as autoreceptors and heteroceptors), it is much more likely that α2-AR mecha-
nisms of action involve both central and local pathways, which are important points to be
investigated in future studies.

Further evidence for the involvement of α2-AR signaling in the neuro-endocrine regulation
of bone remodeling was shown in humans. Mkalar et al, 2010 identified expression of α2A-AR
in osteoblasts and lining cells and showed associations of the α2A-AR gene locus with bone
mineral density and with important bone remodeling markers, such as serum C-terminal
cross-linking telopeptide of type I collagen,serum cathepsin K and plasma osteocalcin. In addi-
tion, α2A-AR was shown to be upregulated in osteoblasts derived from osteoporotic patients
relative to osteoblasts derived from non-osteoporotic patients [50].

In spite of the heterogeneous bone phenotype, low bone mass in the femur and high bone
mass in the vertebra, α2C-AR

-/- mice presented resistance to the thyrotoxicosis-induced bone
deterioration in both skeletal sites, similarly to α2A/2C-AR

-/- mice [39]. As expected, thyrotoxi-
cosis negatively regulated most of the micro architectural features of the trabecular bone of the
distal metaphysis of the femur and vertebral body of L5 in WT animals, what was not observed
or occurred in a much lower magnitude in α2C-AR

-/- mice.. This resistance was very evident in
the vertebra of KO animals, where no negative effects of toxic levels of T3 were detected in
any μCT parameter, after 30 or 90 days of T3-treatment. On the other hand, two trabecular
parameters of the femur (BV/TV and Tb.N), which is a skeletal site known to be very sensitive
to TH [45,46], were negatively affected by thyrotoxicosis also in KO animals. However, these
osteopenic effects were detected only after 90-days of T3-treatment (whereas they were
detected after 30 and 90 days of T3-treatment in WT animals) and in a much lower magnitude
than that observed in WT animals, also revealing a reasonable degree of resistance to the thyro-
toxicosis-induced osteopenia. In addition, the chronic T3 treatments (30- and 90-day long)
also had negative effects on the biomechanical properties (maximum load and ultimate load)
of the femur and tibia of WT, but not of KO mice. These findings support a TH-SNS interac-
tion to control bone remodeling and structure. More importantly, these new findings strongly
suggest that the mechanism of action of TH to promote bone loss depends on α2C-AR subtype
signaling. Once again, it is still unknown if the TH-SNS interaction occurs locally (in the skele-
ton) or at the CNS level. Previous in vitro studies with calvaria-derived osteoblasts, showed
that the known negative effects of T3 on cell growth [16,51] were completely absent or reversed
in α2A/2C-AR

-/- cells. Additionally, the combination of T3 with clonidine had an additive effect
on the inhibition of WT cell growth, whereas T3 attenuated the positive effect of clonidine on
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α2A/2C-AR
-/- cell growth. Altogether, these findings suggest that a TH-SNS interaction involv-

ing α2-AR signaling may occur in osteoblasts to locally regulate bone remodeling [39].
To further investigate the basis of the complex bone phenotype of α2C-AR

-/- mice and their
resistance to the T3-induced bone weakening, we evaluated the effect of T3 on gene expression
of the RANKL-RANK-OPG system, which plays an essential role in the differentiation and
activity of osteoclasts [52]. RANKL is expressed by the osteoblasts and is the ligand of RANK,
an osteoclast plasma membrane receptor. The RANKL-RANK interaction induces osteoclast
formation, function, and survival [52]. OPG is also expressed by the osteoblasts, and is the nat-
ural inhibitor of osteoclastic activity, since it binds RANKL and thereby impairs RANKL/
RANK association. An interesting result was that RANKL mRNA levels were higher in the
femur and lower in the vertebra of 60-day old α2C-AR

-/-mice, as compared with WT controls.
This substantiates the lower and higher trabecular bone volume in the femur and vertebra of
KO mice, respectively. These mRNA differences, however, were not observed in 120-day-old
mice. We also observed that 30 days of T3 treatment increased RANK and RANKL mRNA
expression and decreased OPG mRNA expression in the femur of WT mice, but not in the
femur of KO mice. These effects, however, were no longer observed when T3 treatment was
increased to 90 days. More interestingly, the RANKL/OPG ratio was significantly increased by
both 30 and 90 days of T3 treatment in the femur of WT but not KO animals. The responses of
the RANKL-RANK-OPG system to T3 treatment were quite different in the vertebra and were
fairly similar between WT and KOmice. Altogether, these findings suggest that the RANKL--
RANK-OPG system may partially mediate the effects of T3-treatment only in the femur and
that this system may need an intact α2C-AR signaling to work properly. We also evaluated the
mRNA expression of bone turnover-related genes, such as osteocalcin (OC), which is expressed
by mature osteoblasts [53], and tartrate-resistant acid phosphatase (TRAP), which is expressed
by mature osteoclasts and is involved in bone resorption [54]. As expected, the supraphysiolo-
gical T3 treatment increased mRNA expression of OC in the femur and vertebra of WT mice,
which is a known effect of TH [13]. This effect, however, was much less evident in α2C-
AR-/-mice. TRAP mRNA expression was also significantly increased by T3-treatment both in
the femur and vertebra of WT animals, and this effect was cleared impaired by the lack of α2C-
AR as well. The increases in OC and TRAP mRNA expression reflect an increase in bone turn-
over. It is well known that TH excess increases both bone formation and resorption, but the lat-
ter is favored leading to bone loss [8,55]. The unresponsiveness of OC and TRAP mRNA
expression to T3 treatment in KO mice suggests that the lack of α2C-AR considerably impairs
the thyrotoxicosis-induced activation of both osteoblasts and osteoclasts and, once more, sup-
port a TH-SNS interaction to control bone remodeling in a α2C-AR-dependent manner.

In summary, we have shown that the global gene inactivation of α2C-AR subtype in young
adult mice results in a heterogeneous bone phenotype, with decreased bone mass in the femur
and increased bone mass in the vertebra. In spite of these differences, the global absence of
α2C-AR subtype also results in resistance to the deleterious effects of thyrotoxicosis on bone
structure and strength of both skeletal sites. Altogether, these results bring new evidence that
(i) α2-AR signaling mediates sympathetic actions in the skeleton; that (ii) these actions might
be dependent on the skeleton site; and that (iii) α2C-AR signaling, but not α2A-AR signaling, is
relevant to the thyrotoxicosis-induced osteopenia. It is important to consider, however, that
the KOmice of the present study lack global α2C-AR isoform since conception, which may pro-
mote indirect developmental defects or adaptations that could explain, at least partially, the
bone phenotypes of these mice and the differential responses to thyrotoxicosis. Nevertheless,
the findings of the present study show that the SNS actions in the skeleton are much more
complex than initially proposed.
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Supporting Information
S1 Fig. Effect of T3-treatment on the structural parameters of the cortical bone of the verte-
bral body of L5 in WT and α2C-AR

-/- mice assessed by μCT. (A–D) Effect of 30 days of T3
treatment. (E-H) Effect of 90 days of T3 treatment. Animals were treated with saline or a supra-
physiological dose of T3 (7 μg 100 g body wt-1 day-1). Significance between groups was deter-
mined by two-way ANOVA followed by Tukey’s test. Values are expressed as means ± SEM
(n = 10–12 per group). �P<0.05 vs. the respective saline-treated animals (WT vs. WT+T3, KO
vs. KO+T3). ++P< 0.01 for differences between WT and KOmice, as indicated. T.Ar, tissue
area; B.Ar, bone area; Ma.Ar, medullary area; Ec.Pm, endocortical perimeter.
(TIF)
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