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Abstract

Automated nuclear detection is a critical step for a number of computer assisted pathology related 

image analysis algorithms such as for automated grading of breast cancer tissue specimens. The 

Nottingham Histologic Score system is highly correlated with the shape and appearance of breast 

cancer nuclei in histopathological images. However, automated nucleus detection is complicated 

by (1) the large number of nuclei and the size of high resolution digitized pathology images, and 

(2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there 

has been interest in the application of “Deep Learning” strategies for classification and analysis of 

big image data. Histopathology, given its size and complexity, represents an excellent use case for 

application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an 

instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution 

histopathological images of breast cancer. The SSAE learns high-level features from just pixel 

intensities alone in order to identify distinguishing features of nuclei. A sliding window operation 
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is applied to each image in order to represent image patches via high-level features obtained via 

the auto-encoder, which are then subsequently fed to a classifier which categorizes each image 

patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) 

and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE 

was shown to have an improved F-measure 84.49% and an average area under Precision-Recall 

curve (AveP) 78.83%. The SSAE approach also out-performed 9 other state of the art nuclear 

detection strategies.

Index Terms

Feature representation learning; automated nuclei detection; Stacked Sparse Autoencoder; breast 
cancer histopathology

I. Introduction

With the recent advent of cost-effective whole-slide digital scanners, tissue slides can now 

be digitized and stored in digital image form [1]. Digital pathology makes computerized 

quantitative analysis of histopathology imagery possible. The diagnosis from a 

histopathology image remains the “gold standard” in diagnosing considerable number of 

diseases including almost all types of cancer. For breast cancer (BC), the Nottingham 

Histologic Score system enables the identification of the degree of aggressiveness of the 

disease, largely based off the morphologic attributes of the breast cancer nuclei. The 

arrangement and topological features of nuclei in tumor regions of breast histopathology 

thus represent important histologic based biomarkers for predicting patient outcome [2]. 

Accurate determination of breast cancer grade is important for guiding treatment selection 

for patients. Since the scoring system is highly correlated to nuclear appearance, accurate 

nuclei detection is a critical step in developing automated machine based grading schemes 

and computer assisted decision support systems for digital pathology. Additionally, the 

quantitative assessment of lymphocytes in breast tissue has been recently recognized as a 

strong prognostic predictor of favourable outcome [3]. Consequently it has become 

important to be able to automatically identify the extent of lymphocytes in digitized 

pathology images. However, qualitative estimation of the extent of lymphocytic infiltration 

in breast pathology images by pathologists is still largely subjective and manual 

quantification is laborious, tedious, and hugely time consuming. Hence, there is a need to 

develop algorithms for automated detection of individual nuclei.

Additionally, the identification of the location of individual nuclei can also allow for 

automated characterization of spatial nuclear architecture. Features that reflect the spatial 

arrangement of nuclei (e.g. via graph algorithms such as the Voronoi, Delaunay 

Triangulation, Minimum Spanning Tree) have been shown to be strongly associated with 

grade [2] and cancer progression [4]. Thus there are compelling reasons to find improved, 

automated, efficient ways to identify individual cancer nuclei on breast pathology images.

The rest of the paper is organized as follows: A review of previous related works is 

presented in Section II. A brief review of basic autoencoder and its architecture is presented 

in Section VI. A detailed description of Sparse Stacked Autoen-coder (SSAE) is presented 
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in Section III. The experimental setup and comparative strategies are discussed in Section 

IV. The experiment results and discussions are reported in Section V. Concluding remarks 

are presented in Section VI.

II. Previous Related Work

Accurate detection of nuclei is a difficult task because of the complicated nature of 

histopathological images. Hematoxylin and Eosin (H&E) are standard stains that highlight 

nuclei in blue/purple and cytoplasm in pink in order to visualize the structure of interest in 

the tissue [5]. The images are complicated by (1) the large number of nuclei and the size of 

high resolution digitized pathology images, (2) the variability in size, shape, appearance, and 

texture of the individual nuclei, (3) noise and non-homogenous backgrounds. Most current 

nuclei detection/segmentation methods on H&E stained images are based on exploiting low-

level hand-crafted features [6], such as color [7]-[22], edge [23]-[28], contextual information 

[29]-[31], and texture [32], [33]; see Table I for a detailed enumeration of some of these 

approaches.

As Table I illustrates, most of the detection approaches are based on hand-crafted features. 

A number of these approaches, including ones previously presented by our group [15] have 

yielded high degrees of detection accuracy. However, since most of these approaches are 

dependent on either color or intensity related attributes, it is not clear how these approaches 

would generalize from one site to another. To the best of our knowledge, none of the 

approaches in Table I have been extensively tested on multi-site data.

Recently, significant progress has been made in learning image representations from pixel 

(or low) level image features to capture high level shape and edge interactions between 

different objects in images [35]. These higher level shape cues tend to be more consistently 

present and discernible across similar images across sites and scanners compared to lower 

level color, intensity or texture features. These low level image attributes tend to be more 

susceptible to signal drift artifacts. Deep learning (DL) is a hierarchical learning approach 

which learns high-level features from just the pixel intensities alone that are useful for 

differentiating objects by a classifier. DL has been shown to effectively address some of 

most challenging problems in vision and learning since the first deep autoencoder network 

was proposed by Hinton et al. in [36]. An appealing attribute of DL approaches for 

histopathology image analysis is the ability to leverage and exploit large numbers of 

unlabeled instances. Consequently, in the last couple of years there has been interest in the 

use of DL approaches for different types of problems in histopatho-logical image 

classification. For instance, in [34], the authors employed a convolutional autoencoder 

neural network architecture (CNN) with autoencoder for histopathological image 

representation learning. Then a softmax classification is employed for classifying regions of 

cancer and non-cancer. The work in [34], however, only used one-layer autoencoder for 

high-level feature representation.

Unlike CNN-based feature representation which involves convolutional and subsampling 

operations to learn a set of locally connected neurons through local receptive fields for 

feature extraction, the approach presented in this paper (illustrated in Figure 2) employs a 
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full connection model for high-level feature learning. Autoencoder or Stacked Sparse 

Autoencoder (SSAE) is an encoder-decoder architecture where the “encoder” network 

represents pixel intensities modeled via lower dimensional attributes, while the “decoder” 

network reconstructs the original pixel intensities using the low dimensional features. CNN 

is a partial connection model which stresses importance of locality while SSAE is a full 

connection model which learns a single global weight matrix for feature representation. For 

our application, the size of nuclear and non-nuclear patches was set to 34 × 34 pixels. 

Additionally each image patch may contain up to a single object (in this case a nucleus) that 

would be appropriate for construction of a full connection model. Therefore, we choose to 

use SSAE instead of CNN in this paper. On the other hand, SSAE is trained, bottom up, in 

an unsupervised fashion, in order to extract hidden features. The efficient representations in 

turn pave the way for more accurate, supervised classification of the two types of patches. 

Moreover, this unsupervised feature learning is appropriate for histological images since we 

have a great deal of unlabeled image data to work with; image labels typically being 

expensive and laborious to come by. This higher level feature learning allows us to 

efficiently detect multiple nuclei from a large cohort of histopathological images. In our 

preliminary work [37], we employed the SSAE framework for learning high-level features 

corresponding to different regions of interest containing nuclei. These low-dimensional, 

high-level features were subsequently fed into a Softmax Classifier (SMC) for 

discriminating nuclei from non-nuclear regions of interest within an independent testing set. 

In this paper, we extend the framework presented in [37] to automatically detect multiple 

nuclei from whole slide images. To attain this goal, locally maximal confidence scores are 

computed by sliding a window across the entire image in order to selectively identify 

candidate image patches for subsequent nucleus classification. Each automatically selected 

image patch is then fed into a trained classifier, yielding a binary prediction for absence or 

presence of a nucleus in each image patch.

Note that our approach is focused on nuclei detection and not on nuclear segmentation, i.e. 

explicitly extracting the nuclear boundaries [15], [25]. However our approach could be used 

to provide initial seed points for subsequent application of segmentation models such as 

watershed [10], [38], active contour [15], and region-growing approaches [29].

The major contributions of this paper are:

1. Different from hand-crafted feature representation based methods, the SSAE model 

can transform the input pixel intensities to structured nuclei or non-nuclei 

representations. Therefore, the SSAE based framework is able to learn high-level 

structure information from a large number of unlabeled image patches. Our 

approach is thus fundamentally different from a number of existent handcrafted 

methods that rely on low-level image information such as color, texture, and edge 

cues.

2. By training the SSAE classifier with unlabeled instances, the SSAE model employs 

a hierarchical architecture for transforming original pixel signal intensities of input 

image patches into the corresponding high-level structural information. During the 

classification stage, each image patch to be evaluated is fed into the hierarchical 
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architecture and represented by a high-level structured representation of nuclei or 

non-nuclei patches.

3. Using a sliding window approach enables rapid traversal across large images for 

detection of individual nuclei efficiently. Locally, maximal confidence scores are 

assigned to individual image patches and used to identify candidate patches which 

are then fed to a subsequent classifier. This two-tier classification reduces the 

computational burden on the classifier, sieving out non-candidate nuclear patches 

and thus making the overall model more efficient.

To sum up, this paper integrates the SSAE based framework for learning of high-level 

features associated with nuclei. Our approach also employs a sliding window scheme for 

efficiently detecting nuclear patches.

III. Stacked Sparse Autoencoder (SSAE)

The stacked autoencoder is a neural network consisting of multiple layers of basic SAE (see 

Figure 1) in which the outputs of each layer are wired to the inputs of each successive layer 

[39]. The review of the basic SAE is presented in the Appendix. In this paper, we considered 

the two layer SAE, which consists of two hidden layers, and the Stacked Sparse 

Autoencoder (SSAE) to represent the two layer SAE. The architecture of SSAE is shown in 

Figure 2. For simplicity, we did not show the decoder parts of each basic SAE in the Figure 

2.

A. SSAE for high-level feature learning

Similar to SAE, training an SSAE involves finding the optimal parameters θ = (W, bh, bx) 

simultaneously by minimizing the discrepancy between input and its reconstruction. After 

the optimal parameters θ are obtained, the SSAE yields a function  that 

transforms input pixel intensities of an image patch to a new feature representation 

 of nuclear structures.

As Figure 2 shows, with SSAE, each training patch x(k) of pixel intensities is represented by 

a high-level structured representation of nuclei or non-nuclei patches h(2)(k) in the second 

hidden layer of the model. All the training patches can be written as 

where for each k ∈ {1, 2, … , N}, {h(2) (k), y(k)} is a pair of high-level features and its label. 

For the two class classification problem considered in this paper, the label of the k–th patch 

is y(k) ∈ {0, 1}, where 1 and 0 refer to the nuclear and non-nuclear patches, respectively. 

Note that in the SSAE learning procedure, the label information Y is not used. Therefore, 

SSAE learning is an unsupervised learning scheme. After the high-level feature learning 

procedure is complete, the learned high-level representation of nuclear structures, as well as 

its label , are fed to the output layer.

B. The output layer: Softmax Classifier (SMC)

Softmax classifier (SMC) is a supervised model which generalizes logistic regression as
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(1)

where  is a sigmoid function with parameters W(3). When the input z of SMC is a 

high-level representation of nuclear structures learned by SSAE, the SMC’s parameter W(3) 

is trained with training set  to minimize the cost function. By minimizing 

the cost function with respect to W(3) via the gradient descent based approach [39], the 

parameter W(3) can then be determined.

C. The trained SSAE+SMC for nuclei detection

After training, the parameters θ of SSAE and W(3) of SMC are determined. With these 

parameters, SSAE+SMC is ready for nuclei detection. The detection procedure is shown in 

Figure 3. During detection process, each image patch detected by a sliding window is first 

represented by high-level feature h(2)(k). This is then fed to the SMC (function (1)) and 

produces a value between 0 and 1 that can be interpreted as the probability of the input 

image patch corresponding to a nucleus or not.

IV. Experimental Setup

A. Dataset

A set of 537 H&E stained histopathological images were obtained from digitized glass slides 

corresponding to 49 lymph node-negative and estrogen receptor-positive breast cancer (LN-, 

ER+ BC) patients at Case Western Reserve University. The size of each image is about 2200 

× 2200 pixels and there are about 1500 nuclei in each image. The H&E stained breast 

histopathology glass slides were scanned into a computer using a high resolution whole slide 

scanner, Aperio ScanScope digitizer, at 40x optical magnification. The images were 

randomly split into two subgroups for training (37 images) and testing (500 images). We 

also ensured that images from the same patient were not simultaneously in the training and 

testing sets. The complete access to the full dataset is provided with this link: http://

engineering.case.edu/centers/ccipd/data/TMI2015.

B. Parameter setting

In this paper, the patch size is defined as ω × ω = 34×34 = 1156 pixels which is big enough 

to contain a nucleus within the patch under 40X optical magnification resolution images. 

Each patch size has three color channels. Therefore, τ = 3. In the first layer, or input layer, 

of SAE and SSAE (Figures 1, 2, and 3), the input is the vector of pixel intensities 

corresponding to a square patch. This vector is represented as a column vector of pixel 

intensities with size (342 ×3)×1. Therefore, there are dx = s0 = 34×34×3 = 1156×3 input 

units in the input layer. The first and second hidden layers have  = s1 = 400 and  = 

s2 = 225 hidden units, respectively. The nl of SAE and SSAE are 2 and 3, respectively.
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C. Generation of training sets

A pathologist manually placed a dot in the center of each nucleus from each of the 37 

images that comprised the training set. Each nuclear patch is generated from a 34 × 34 

square image window, employing the annotated dot as the center of the window. The size of 

each patch was chosen to be big enough to contain a nucleus within the patch. Each nuclear 

patch was chosen in a way that it only contained a single nucleus within it. The non-nuclear 

patches were randomly generated by identifying those 34 × 34 square image windows whose 

centers are far away (greater than 34 pixels) from the pathologist identified nuclear centers. 

The non-nuclear patches do not contain any nuclei or only contain a part of a nucleus. Our 

training set comprised of 14,421 nuclear and 28,032 non-nuclear patches extracted from 37 

training images. These training patches were then employed for training the SSAE and SMC 

models.

D. Ground truth generation

For all 500 testing images considered in this study, the objective was to automatically detect 

the location of the nuclear regions. Since it was tedious and time consuming to have an 

expert pathologist manually detect each and every nucleus in each of the 500 images (to 

provide ground truth for quantitative evaluation), the expert was asked to randomly pick 

regions of interest on the digitized images where clusters of nuclei were visible. The expert 

then proceeded to meticulously place a dot in the center of each nucleus within the randomly 

chosen ROIs (400 × 400) on each of the 500 digitized images considered in this study. 

Consequently, quantitative evaluation of the different models was limited to these 500 ROIs 

across the 500 images.

E. Training the SSAE+SMC

Before training, the SSAE network was initially assigned a set of hyperparameters θ′ = (θ, 

W(3), s1, s2, α, β) which includes the network parameters θ = (W, bh, bx), the weight of SMC 

(W(3) in (1), number of units in 1st (s1) and 2nd (s2) hidden layers, the weights of the 

sparsity term (α in Eq. (7)), and regularization term (β in Eq. (7)). For 37 images in the 

training set, we used 10-fold cross validation, where each fold consisted of 30 training and 7 

validation images. For each fold, the patches from the training images are used for training 

the SSAE model based on the procedure just described in this section. Then the SSAE 

model is employed for detecting nuclei in the validation images. The detection performance 

on the validation images is used for choosing the best set of hyperparameters. We used F-

measure and Average Precision (defined in (5) and (6)) to evaluate the performance of the 

model. Finally, the hyperparameters θ′ with the highest F-measure and Average Precision 

(AVeP) were chosen as the final set of model parameters.

The architecture of SSAE+SMC is shown in Figure 2. We employ the greedy layer-wise 

approach for training SSAE by training each layer in a sequential manner. The training 

procedure includes the three following steps:

1. First, a Sparse Autoencoder (SAE) is applied to the pixel intensity of image patches 

in training set X to learn primary representation h(1)(x) on the pixel intensities by 

adjusting the weight W(1);
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2. Next, the input pixel intensities are fed into this trained sparse autoencoder, 

obtaining the primary representation activations h(1)(x) for each input image patch 

x. These primary representations are used as the “input” to the other sparse 

autoencoder to learn the secondary representation h(2)(x) on these primary 

representations by adjusting the weight W(2);

3. Following this, the primary representation is fed into the second SAE to obtain the 

secondary representation activations h(2)(x) for each of primary representation 

h(1)(x) (which correspond to the primary representation of the corresponding input 

image patches x). These secondary representations h(2)(x) are treated as “input” to a 

SMC, and it is trained to map h(2)(x) to digitally label Y by adjusting the weight 

W(3).

Finally, all three layers are combined to form a SSAE with 2 hidden layers and a final SMC 

layer capable of detecting the nuclei.

The model involves the SSAE being trained bottom up in an unsupervised fashion, followed 

by a Softmax classifier that employs supervised learning to train the top layer and fine-tune 

the entire architecture. It is easy to see that the label Y is not used during the training 

procedures 1) and 2), until the Softmax classifier is trained. Therefore we can conclude that 

SSAE learns feature representations in an unsupervised manner.

F. The trained SSAE+SMC for nuclei detection

The detection procedure for the trained SSAE+SMC is shown in Figure 3. The red square in 

Figure 3 is an example of a selected image patch for nuclei detection. Each 34 × 34 × 3 

image patch is first converted into a 1156 × 3-dimensional vector. Then each input image 

patch yields an output based on Equation (1). If the output value is ≈ 1, this patch will be 

identified as a nuclear patch; otherwise not.

G. Sliding window detector

Our strategy involves identifying the presence or absence of a nucleus within every 

individual image patch in a histopathologic image. A sliding window scheme is used to 

select candidate patches. Since the sliding window detector will typically evoke multiple 

responses around target nuclei, non-maxima suppression is applied to only retained those 

evoked responses above a pre-defined threshold. The threshold and overlapping rate for the 

non-maxima suppression algorithm are empirically defined as 0.8 and 30%, respectively.

H. Experimental design and comparative strategies

In order to show the effectiveness of the SSAE+SMC model, the model is compared against 

8 other state of the art models (see Table III).

1. SSAE+SMC versus hand-crafted feature based nuclei detection methods: We 

compare SSAE+SMC with extant nuclei detection methods, including Expectation-

Maximization (EM) based [15], Blue Ratio (BR) [7], and Color Deconvolution 

(CD) based [12] algorithms. EM algorithm has been employed to detect nuclei in 

our previous work in [15]. These methods are described in these papers [7], [12], 
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[15] and we direct interested readers to these papers for a detailed description of the 

methods.

The implementation of the EM based nuclei detection was based on our previous 

work in [15]. BR and CD algorithms for nuclei detection were implemented based 

on the paper [7], [12], respectively.

2. SSAE+SMC versus other feature representation based classification models: We 

compare SSAE+SMC with SMC classifier which employs SMC directly on the 

pixel intensities, where a SMC is learned from pixel intensities of training set to 

detect nuclei via the methods described in Section III-B. In the SSAE+SMC based 

framework (Figure 3), the features learned by SSAE are treated as “input” to SMC 

for detection. In this experiment, we additionally attempt to show the efficiency of 

sparsity constraint on the hidden layer. We compare SSAE with the Stacked 

Autoencoder (STAE) without the sparsity constraint, where α = 0 in Eq. (7).

We therefore compare the SSAE+SMC against three other models (see Table III) to evaluate 

the efficiency in detecting nuclei from histopathological images as follows:

1. Softmax Classifier (SMC): In this model, the input z of SMC in (1) are pixel 

intensities of an image patch and the SMC’s parameter W(3) is trained with training 

set  to minimize the cost function. Then SMC (1) with W(3) 

determined during training is integrated with the sliding window detector (see 

Section IV-G) to detect presence of a nucleus within each image patch selected by 

the sliding window.

2. AE+SMC: The parameter α in (7) controls the sparsity constraint on the hidden 

layer of AE. If the sparsity constraint is removed by setting α ≡ 0, the SAE is 

reduced to a one layer AE model. The input z of SMC in (1) is learned via a single 

layer of AE and the SMC is trained and employed for nuclei detection in a way 

similar to that described in Section IV-H2 (1). Then SMC (1) is coupled with AE to 

detect presence or absence of a nucleus within each image patch selected by the 

sliding window.

3. STAE+SMC: Stacked AE (STAE) is a neural network consisting of multiple layers 

of basic AE in which the outputs of each layer are wired to the inputs of the 

successive, subsequent layer. STAE involves a two layered AE which in turn 

comprises of two basic AEs. The input z of SMC in (1) is a feature learned via use 

of a two layer of AE from pixel intensities of a image patch. The SMC is 

subsequently trained and evaluated using the approach discussed in Section IV-H2 

(1).

I. SSAE+SMC vs SAE+SMC

The aim of this experiment was to show the efficiency of using a “deep” versus “shallow” 

architecture when it comes to representing high level features using pixel level intensities. A 

comparative evaluation of the following various architectures was performed.
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1. SAE+SMC: In this model, the input z of SMC in (1) is a feature learned via use of a 

single layer of SAE from pixel intensities of an image patch. The SMC is 

subsequently trained and evaluated using the approach discussed in Section IV-H2 

(1).

2. TSAE+SMC: Three Layer Sparse Autoencoder (TSAE) is a neural network 

consisting of three layers of basic Sparse AE in which the outputs of each layer are 

wired to the inputs of next layer. There are dx = 34 × 34 × 3 = 1156 × 3 input units 

in the input layer. The first and second hidden layers have  = 400,  = 225, 

and  = 100 hidden units, respectively. The input z of SMC in (1) is a feature 

learned via use of a three layer SAE from pixel intensities of an image patch. The 

SMC is subsequently trained and evaluated using the approach discussed in Section 

IV-H2 (1).

J. SSAE+SMC versus CNN+SMC

The aim of this experiment was to compare SSAE and CNN for the problem of nuclei 

detection. The implementation of CNN is based on the CAFFE framework [40]. We used 

one convolutional layer, one pooling layer, one full connection layer, and an output layer. 

For the convolutional and pooling layers, 25 feature maps of fixed 11 × 11 convolutional 

kernel and 8 × 8 pooling kernel were used, the feature map having been obtained as a result 

of applying a convolutional or max-pooling operation across an image. In the output layer, 

225 neurons are fully connected with output/classifier.

For simplicity, the training and detection procedures of SMC, AE+SMC, STAE+SMC, SAE

+SMC, and TSAE+SMC in Table III are omitted since they are almost identical to the 

strategies used for SSAE+SMC, shown in Figure 3. For CNN training,readers can refer to 

the CAFFE framework [40]. The detection procedure is the same as illustrated in Figure 3. 

For each of six models, sliding window detectors are first employed to select image patches 

before feeding to the models. Then high-level features are extracted via the models and these 

features are then subsequently input to SMC. Finally, the trained SMC (1) classifies each 

image patch as either having or not having a nucleus present.

K. Evaluating the effect of window size

The aim of this experiment was to analyze the effect of window size on the detection 

accuracy of SSAE+SMC framework. The classification accuracy of SSAE+SMC is 

computed by averaging the F-measure value across all 500 images as the size of the sliding 

window changes.

L. Evaluating the effectiveness of the step size for sliding window operator

The aim of this experiment was to analyze the effect of step size as the window slides across 

the images on the detection accuracy of SSAE+SMC framework. The classification 

accuracy of SSAE+SMC is computed by averaging the F-measure across all 500 images as 

the step size of the sliding window changes.
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M. Performance Evaluation

The quantitative performance of SSAE+SMC and different models shown in Table IV are 

analyzed by using the metrics in Equations (2)–(6), respectively. The performance of 

automatic nuclei detection is quantified in terms of Precision, Recall or True Positive Rate 

(TPR), False Positive Rate (FPR), F-measure, and Average Precision (AveP).

Here True Positive (TP) is defined as the number of nuclei correctly identified as such by 

the model. In the paper, the correct detection of nuclear patches (true positives) was 

identified as those instances in which the distance between the center of the detected nuclear 

window and the closest annotated pathologist identified nucleus was less than or equal to 17 

pixels. FP and FN refer to false positive and false negative errors, respectively. Other 

measures such as Precision, Recall, F-measure, FPR are defined in Equations (2)-(5). In (6), 

Average Precision (AveP) involves computing the average value of p(r) over interval 

between r = 0 and r = 1 and the precision p(r) is a function of recall r. Therefore, AveP 

shows the average area under Precision-Recall curve (see Figure 7(a)).

We also draw the precision-recall curves and Receiver Operating Characteristic (ROC) 

curves to assess the performance of nuclear detection provided by different models.

V. Experimental Results and Discussion

A. Qualitative results

The visualization of learned high-level features in the first and the second hidden layers 

from training patches with SSAE are shown in Figures 5(a) and 5(b), respectively. These 

features show that the SSAE model enables the uncovering of nuclear and non-nuclear 

structures from training patches.

Qualitative detection results of SSAE+SMC for a whole-slide breast histopathological image 

(Figure 5(a)) is shown in Figure 5(b). The detection results of EM, BRT, CD, SMC, AE

+SMC, STAE+SMC, SAE+SMC, CNN+SMC, and SSAE+SMC models on a magnified 

region of interest (ROI) are illustrated in Figures 6(b)-(j), respectively. In these images, the 

green, yellow, and red dots represent the nuclei that had been correctly detected (true 

positive detection), the non-nuclei that had been wrongly detected as the nuclei (false 

positive detection), and the nuclei that were missed with respect to the manually ascertained 

ground truth delineations, respectively. The SSAE+SMC model was found to outperform the 

other 8 models with respect to the ground truth (see Figure 6(a)). These results appear to 

suggest that SSAE+SMC works well in learning useful high-level features for better 

representation of nuclear structures.

(2)

(3)
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(4)

(5)

(6)

B. Quantitative results

Figure 7(a) shows the precision-recall curves corresponding to nuclear detection accuracy 

with respect to the EM, BRT, CD, SMC, AE+SMC, STAE+SMC, SAE+SMC, TSAE

+SMC, CNN+SMC, and SSAE+SMC models across 500 images, respectively. Each point 

on the X-axis and Y-axis represents the precision and recall in Equations (2) and (3), 

respectively. Each model is quantitatively evaluated using AveP, as shown in Table IV. The 

results appear to suggest that SSAE+SMC achieves the highest AveP. Each of the ROC and 

Precision-Recall curves (Figures 7 (a), (b) respectively) were generated by sequentially 

plotting the confidence scores (in descending order) associated with the various nuclear 

detection methods considered in this work. Precision-recall and ROC curves were generated 

for each detection method considered across 500 images. High precision or True Positive 

Rate corresponds to a method with a more accurate nuclear detection result. For the nuclear 

detection problem, we only had information pertaining to the total number of manually 

identified nuclear patches (or positive patches). However information on the total number of 

patches without nuclei (or negative patches) was not available. Therefore, to compute False 

PositiveRate (FPR), we estimated the total number of negative patches with sliding window 

scheme across the randomly chosen ROIs on each of the 500 images. The window slides 

across each ROI image row by row from upper left corner to the lower right (the step size 

was fixed at 6 pixels). The number of negative patches is the sum of all the patches across 

the 500 images excluding well-centered and annotated patches as well as those instances in 

which the distance between the center of the patch window and the closest annotated 

pathologist identified nucleus was less than or equal to 17 pixels. Also, for Figure 7 (b), 

since the total number of False Positive detections is always smaller than the estimate of the 

total number of negative patches, the FPR can never reach 1. The trajectory of the ROC 

curves is therefore only plotted for a false positive fraction of 0.4. The ROC curve (see 

Figure 7 (b)) shows that SSAE+SMC results in superior detection performance compared to 

other models. Moreover, Figures 7 (a) and Table IV show that SSAE+SMC tend to 

outperform SAE+SMC and TSAE+SMC in terms of AVeP. While the results appear to 

suggest the importance of a “deeper” architecture compared to a “shallow” architecture in 

representing high-level features from pixel intensities, the relatively poor performance of the 

three layered SAE+SMC model as compared to the SSAE+SMC model suggests that 

increasing the number of layers may result in overfitting. Dropout is a popular approach 

employed for avoiding overfitting problems associated with deep networks. The dropout 

approach was originally proposed in [41], [42]. The Autoencoder model with dropout is also 
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called “Denoising Autoencoder (DAE)”. The name “Denoising” is meant to reflect the idea 

of DAE. DAE is a simple variant of the basic autoencoder (AE). It is trained to reconstruct 

clean “repaired” input data from a corrupted version of DAE. The idea is to add some noise, 

such as additive Gaussian noise, to the input data in the input layer. Recently, the authors in 

[43] employed “drop-out” to add noise to the hidden layer. We tried to implement “drop-

out” in our work. But the “drop-out” implementation did not yield any gains on performance 

in our experiments. Therefore, we decided to exclude it from the paper. The estimated 

confidence intervals of Precision, Recall, and F-measure in a confidence level of 95% with 

the bootstrapping method for different methods are shown in Figures 7 (c), (d), and (e), 

respectively. The means of Precision, Recall, and F-measure of SSAE+SMC and 

comparative models are shown in Table IV. As expected, SSAE yields the highest F-

measure of 84.49%.

C. Sensitivity Analysis

Figure 7(f) shows the sensitivity of window size (X-axis) on the detection accuracy (Y-axis) 

of SSAE+SMC model. The curves in Figure 7(f) show that the SSAE+SMC achieves the 

best F-measure value when the window size is around 34 pixels. As a result, we chose a 

window size of 34 pixels for all subsequent experiments. Figures 7(g) and 7(h) show the 

execution time and F-measure of the SSAE+SMC model as a function of step size. They 

show the effect of step size on the computational efficiency and detection accuracy of the 

SSAE+SMC model. The figures show that both execution time and F-measure value 

significantly decrease as the step size increases.

As expected, the SSAE achieves better performance in detecting nuclei as compared to 

hand-craft feature based methods. This also appears to be related to the ability of the SSAE 

model to better capture higher level structural information, yielding better discriminability 

of nuclei versus non-nuclei.

D. Computational Consideration

All the experiments were carried out on a PC (Intel Core(TM) 3.4 GHz processor with 16 

GB of RAM) and a Quadro 2000 NVIDIA Graphics Processor Unit. The software 

implementation was performed using MATLAB 2014a. The training set included 14421 

nuclei and 28032 non-nuclei patches. The size of each patch was 34 × 34 pixels. We 

compared the computational efficiency of SSAE+SMC against 9 other state of the art 

strategies. The execution time for each of these models is shown in Table V. In terms of 

training time, the four autoencoder based models, and the CNN model, need longer training 

times while EM, CD, and BRT did not require a training phase. Also, the deeper the 

architecture (more layers), the longer the training time required. However, once the 

autoencoder models were trained, the models were actually more efficient compared to the 

EM, CD, and BRT models in terms of run time execution.

VI. Concluding Remarks

In this paper, a Stacked Sparse Autoencoder framework is presented for automated nuclei 

detection on breast cancer histopathology. The Stacked Sparse Autoencoder model can 
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capture high-level feature representations of pixel intensity in an unsupervised manner. 

These high-level features enable the classifier to work very efficiently for detecting multiple 

nuclei from a large cohort of histopathological images. To show the effectiveness of the 

proposed framework, we compared “deep” structure (Stacked Sparse Autoencoder and 

Stacked Autoencoder) over “shallow” structure (Sparse Autoencoder and general 

Autoencoder) in representing high-level features from pixel intensities. The efficiency of 

sparsity constraint on hidden layers is also shown. We further compared Stacked Sparse 

Autoencoder plus Softmax Classifier with Expectation-Maximization, Blue Ratio 

Thresholding, Color Convolution, Convolutional Neural Network based nuclei detection 

method, which are some of the popular nuclei detection models. Moreover, we qualitatively 

evaluate the sensitivity of parameters of sliding window for both computational efficiency 

and detection accuracy. Both qualitative and quantitative evaluation results show that 

Stacked Sparse Autoencoder plus Softmax Classifier outperforms a number of different state 

of the art methods in terms of the nuclear detection accuracy. Finally, the presented nuclei 

detection framework can provide accurate seed points or vertices for developing cell-by-cell 

graph features that can enable characterization of cellular topology features on tumor 

histology [2]. In future work, we will integrate the Stacked Sparse Autoencoder framework 

with cell-graph based feature extraction methods to better characterize breast 

histopathological images.
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APPENDIX

Brief Review of Sparse Autoencoder

Sparse Autoencoder (SAE) is an unsupervised feature learning algorithm which aims to 

learn a high-level structured representation of nuclei or non-nuclei patches. The architecture 

of SAE for high-level feature learning of nuclei structures is shown in Figure 1. In general, 

the input layer of the SAE consists of an encoder which transforms input image patch x into 

the corresponding representation h, and the hidden layer h can be seen as a new feature 

representation of the input image patch. The output layer is effectively a decoder which is 

trained to reconstruct an approximation x̂ of the input image patch from the hidden 

representation h. Basically, the purpose of training an autoencoder is to find optimal 

parameters by minimizing the discrepancy between input x and its reconstruction x̂. By 

applying the back-propagation algorithm, the autoencoder tries to decrease the discrepancy 

between input and reconstruction as much as possible by learning an encoder and decoder 

networks (See Figure 1), which yields a set of weights W and biases b.
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The cost function of an Sparse Autoencoder (SAE) comprises three terms as follows [39]:

(7)

The first term is an average sum-of-squares error term which describes the discrepancy 

between input x(k) and reconstruction x̂(k) over the entire data. In the second term, n is the 

number of units in hidden layer, and the index j is summing over the hidden units in the 

network. KL(ρ‖ρĵ) is the Kullback-Leibler (KL) divergence between ρ̂
j, the average 

activation (averaged over the training set) of hidden unit j, and desired activations ρ. The 

third term is a weight decay term which tends to decrease the magnitude of the weight, and 

helps prevent overfitting. Here

(8)

where nl is the number of layers and sl is the number of neurons in layer l.  represents the 

connection between ith neuron in layer l − 1 and jth neuron in layer l.
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Fig. 1. 
Illustration of the architecture of basic Autoencoder (AE) with “encoder” and “decoder” 

networks for high-level feature learning of nuclei structures. The “encoder” network 

represents dx × τ input pixel intensities corresponding to an image patch via a lower s1 

dimensional feature. Then the “decoder” network reconstructs the pixel intensities within the 

image patch via the s1 dimensional feature.
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Fig. 2. 
Illustration of Stacked Sparse Autoencoder (SSAE) plus Softmax Classifier (SMC) for 

identifying presence or absence of nuclei in individual image patches.
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Fig. 3. 
Illustration of SSAE+SMC for nuclei detection on breast histopathology. With a sliding 

window scheme, the randomly selected image patches from the histopathologic images are 

fed into a trained SSAE+SMC model for detecting presence or absence of nuclei. If a 

nucleus is found to be present, a green dot is then placed in the center of that corresponding 

image patch.
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Fig. 4. 
The visualization of learned high-level features of input pixel intensities with three layers 

SAE. (a) shows the learned feature representation in the first hidden layer (with 400(20 × 

20) units). The learned high-level feature representation in the second hidden layer (with 

225 (15 × 15) units) and third hidden layer (with 100 (10 × 10) units) is shown in (b) and 

(c), respectively. As expected, (a) shows detailed boundary features of nuclei and other 

tissue while (b) and (c) show high-level features of nuclei. Also, the overfitting problem is 

presented in (c) when learning high-level features of nuclei in the third layer.
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Fig. 5. 
The nuclei detection results (b) of SSAE+SMC for a large breast histopathological image (a) 

from a whole-slide image of a patient. The green, yellow, and red dots represent the true 

positive (TP), false positive (FP), and false negative (FN) with respective to groundtruth, 

respectively.
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Fig. 6. 
The nuclear detection results of EM (b), BRT(c), CD(d), SMC (e), AE+SMC (f), SAE+SMC 

(g), STAE+SMC (h), CNN+SMC (i), and SSAE+SMC (j) models for a 400 × 400 patch 

selected from the black square region in Figure 5 (a). The ground truth of manually detected 

nuclei are shown as green dots in (a). (b), (c), (d), (e), (f), (g), (h), and (i). The green, yellow, 

and red dots in these images represent the TP, FP, and FN with respective to ground truth, 

respectively.
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Fig. 7. 
The precision-recall curves (a) and ROC curves (b) on the detection accuracies of SSAE

+SMC compared to EM, BRT, CD, SMC, AE+SMC, STAE+SMC, TSAE+SMC, and CNN

+SMC; The estimated confidence intervals of Precision (c), Recall (d), and F-measure (e) 

with bootstrapping method for different methods; (f) The F-measure value on the nuclei 

detection accuracies of SSAE+SMC with variable window size; The effectiveness of SSAE

+SMC model with different step size on the execution time (g) and F-measure value (h).
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Table I

The categorization of different nuclei detection approaches

Categorize Nuclei Detection Approaches

Hand-crafted feature based

color-based

blue ratio [7], [8]

unsupervised color clustering [9]

local thresholding [10]

local adaptive thresholding [11]

color deconvolution [12],

singular value decomposition (SVD) [13],

adaptive thresholding & morphological operation [14]

gaussian mixture model & EM [15]

LoG filter [16], distance-constrained LoG filter [17]

iterative voting [18]

single path voting & mean-shift [19]

iterative kernel voting [20]

multi-scale distance map-based voting [21]

region-based voting [22]

edge-based adaptive H-minima transform [23]

watershed [24], [25]

multi-scale morphological close & adaptive thresholds [26]

gradient & morphological operation [27]

circular Hough transform [28]

contextual information based Region-growing and markov random field [29]

spectral graph [30]

graph mining [31]

texture-based diffused gradient vector field [32], [33]

Deep Learning based Convolutional autoencoder neural network [34]

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 26

Table II

Enumeration of the symbols used in the paper

Symbol Description Symbol Description

EM Expectation-Maximum Algorithm BRT Blue Ratio Thresholding

SMC Softmax Classifier CD Color Deconvolution

SAE+SMC Single layer Sparse Autoencoder 
plus Softmax Classifier

AE+SMC Single layer Autoencoder plus 
Softmax Classifier

TSAE+SMC Three layer Sparse Autoencoder 
plus Softmax Classifier

STAE+SMC Stacked Autoencoder plus 
Softmax Classifier

CNN Convolutional Neural Network BC Breast Cancer

ER+ estrogen receptor-positive LN- lymph node-negative

k,N,dx ,dh,l, nl,sl, ω, τ positive integers k the kth patch

N number of entire training patches l lth layer (l ∈ {0, 1, 2, … , nl})

X = (x(1),x(2), … ,x(N))T set of entire training patches Y = (y(1),y(2), 
… , y(N))T

label set of training patches

x(k) vector of intensity for kth patch y(k) the label of kth patch

nl number of layers sl number of neurons in layer l

ω number of rows (columns) of 
input image patches

τ number of channels of input 
patches input layer of network

0th layer

dx number of pixels (or input units) 
in training image patch (or input 
layer)

number of hidden units in lth layer 
ith element of vector hl(k) at layer 
l

feature vector at layer l or kth patch or the ith unit in the lth 

softmax classifier function

θ parameter set hidden layer for kth patch

x̂ reconstruction (decoder) of input 
x

xˇ the encode of x

dθ̂(·) decoder with parameter θ̂ eθˇ(·) encoder with parameter θˇ

W(l) weight matrix of lth layer bh (bx) bias of hidden (input) layer

connection between ith neuron in 
layer l – 1 and jth neuron in layer l

image patch k being a dx 

dimensional vector of real 
numbers

LSAE (θ) cost function of SAE J(W(3)) cost function of softmax classifier

‖·‖2 L2 norm KL(·‖·) Kullback-Leibler (KL) divergence
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Table III

Models considered in this work for comparison with the SSAE+SMC model

Acronyms Description

EM Expectation-Maximum Algorithm

BRT Blue Ratio Thresholding

CD Color Deconvolution

SMC Softmax Classifier

AE+SMC Single layer Autoencoder plus Softmax Classifier

SAE+SMC Single layer Sparse Autoencoder plus Softmax Classifier

STAE+SMC Stacked Autoencoder plus Softmax Classifier

TSAE+SMC Three layer Sparse Autoencoder plus Softmax Classifier

CNN+SMC Convolutional Neural Network plus Softmax Classifier
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Table IV

The mean associated with Precision, Recall, and F-measure and Average Precision (AveP) with boots trapping 

method for EM, BRT, CD, SMC, AE+SMC, STAE+SMC, TSAE+SMC, TSAE+SMC, CNN+SMC, and 

SSAE+SMC for nuclei detection in over 500 breast histopathology images

Model Precision (%) Recall (%) F-measure (%) AveP (%)

EM 66.38 78.73 70.84 54.78

BRT 84.40 61.87 71.04 49.25

CD 77.75 75.80 75.61 59.48

SMC 78.05 78.39 79.56 68.29

AE+SMC 83.51 77.40 79.85 68.09

SAE+SMC 84.52 77.93 80.68 70.51

STAE+SMC 83.71 82.98 83.12 78.29

TSAE+SMC 88.35 77.15 82.26 73.48

CNN+SMC 88.28 77.60 82.01 73.65

SSAE+SMC 88.84 82.85 84.49 78.83
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Table V

The execution time of EM, BRT, CD, SMC, AE+SMC, STAE+SMC, SAE+SMC, TSAE+SMC, CNN+SMC, 

and SSAE+SMC models on the training set and the corresponding run time when evaluated on a test image of 

dimensions 2200 × 2200 pixels

Model Training Time Detection Time (in seconds)

EM – 820

BRT – 310

CD – 132

SMC 50 min 34

AE+SMC 1.24 hour 45

SAE+SMC 1.36 hour 45

STAE+SMC 2.11 hour 45

TSAE+SMC 3.64 hour 45

CNN+SMC 4.53 hour 122

SSAE+SMC 2.15 hour 45
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