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Abstract In the current review, we discuss limitations and
recent advances in animal models of diabetic nephropathy
(DN). As in human disease, genetic factors may determine
disease severity with the murine FVB and DBA/2J strains
being more susceptible to DN than C57BL/6J mice. On the
black and tan, brachyuric (BTBR) background, leptin defi-
cient (ob/ob) mice develop many of the pathological features
of human DN. Hypertension synergises with hyperglycemia
to promote nephropathy in rodents. Moderately hypertensive
endothelial nitric oxide synthase (eNOS ") deficient diabetic
mice develop hyaline arteriosclerosis and nodular
glomerulosclerosis and induction of renin-dependent hyper-
tension in diabetic CyplalmRen2 rats mimics moderately se-
vere human DN. In addition, diabetic eNOS™~~ mice and
CyplalmRen2 rats recapitulate many of the molecular path-
ways activated in the human diabetic kidney. However, no
model exhibits all the features of human DN; therefore, re-
searchers should consider biochemical, pathological, and
transcriptomic data in selecting the most appropriate model
to study their molecules and pathways of interest.
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Introduction

Although there are tentative signs that the incidence of end-
stage kidney disease due to diabetes is stabilizing, diabetic
nephropathy (DN) remains the most common cause of end-
stage renal disease in the western world [1]. Improvements in
the management of hyperglycemia and hypertension have re-
duced the proportion of patients with diabetes reaching end-
stage kidney disease [2]; however, additional therapies are
required to target those with progressive renal disease. Unfor-
tunately, the results of recent clinical trials in DN have been
largely disappointing [3-5], and no new therapies that specif-
ically target progression of nephropathy have been success-
fully translated into clinical practice in recent years [6].

Role of Animal Models in Diabetic Nephropathy

One of the roadblocks in developing novel therapies for DN
has been the lack of reliable preclinical models. For many
diseases, rodent models have been useful in dissecting the
pathogenesis of disease and for testing novel therapies. In-
deed, the availability of genetically modified animals facili-
tates mechanistic studies that cannot be performed in humans.
For example, by introducing genetic modifications, specific
cell types can be fluorescently tagged to track the fate of the
cells over time or to facilitate isolation of cells from whole
organs, and this may enhance our knowledge of disease path-
ogenesis. In addition, targeted knockout or overexpression of
genes can incisively determine the role of specific molecules
in disease and whether such agents represent novel therapeutic

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11892-015-0706-2&domain=pdf

18 Page2 of 9

Curr Diab Rep (2016) 16: 18

candidates. However, the utility of animal models in DN re-
search has been constrained by the fact that most models fail
to recapitulate important functional, structural, and molecular
pathological features of advanced human diabetic kidney dis-
ease [7, 8]. This may account for the fact that many therapies
which have been found to be of benefit in preclinical models
have not proved effective in clinical trials.

In order to rationalize the development of novel preclinical
models of DN, the nephropathy subcommittee of the Diabetic
Complications Consortium (DiaComp) has published criteria
that can be used to validate animal models of DN [9]. These
are based on the clinical and pathological features of human
DN and include the following: (i) a decline in renal function of
more than 50 % over the lifespan of the animal; (ii) a greater
than 10-fold increase in albuminuria; and (iii) key pathologic
features of human disease including advanced mesangial matrix
expansion (+/—nodules), thickening of the glomerular basement
membrane, arteriolar hyalinosis, and tubulointerstitial fibrosis.
Unfortunately, no currently available model meets all of these
criteria [7].

Animal Models of Diabetes

A number of animal models of both type 1 diabetes and type 2
diabetes are widely available to researchers (Table 1). Type 1
diabetes may be induced in rodents by administration of
streptozotocin, which is toxic to (3-cells, resulting in absolute
insulin deficiency. Streptozotocin may have toxic effects on
other organs including the kidney, although these may be
minimized by administering smaller doses over five consecu-
tive days. Genetic models of type 1 diabetes are also available,
including Akita [10] and OVE26 [11] mice, in which muta-
tions in the insulin and calmodulin genes, respectively, result
in toxic accumulation of a defective protein specifically in
pancreatic [3-cells.

Models of type 2 diabetes typically utilize genetically
obese rodents, which are either leptin deficient (e.g., ob/ob
mice [12]) or have inactivating mutations in the leptin receptor
(e.g., db/db mice [13], Zucker rats [14]). These animals ex-
hibit hyperphagy, obesity, and insulin resistance and develop
relative insulin deficiency and hyperglycemia in the first
8 weeks of life. The degree of hyperglycemia is dependent
on the nature of the mutation and on the background strain
of'the animal. Typically, hyperglycemia is less severe in ob/ob
mice and in leptin receptor-deficient mice on the C57BL/6]
background, whereas db/db mice on the C57BLKS back-
ground develop fulminant diabetes and require exogenous in-
sulin administration in order to maintain well-being beyond
24 weeks of age. Administration of a high-fat diet is useful for
investigating mechanisms of insulin resistance; however, the
animals rarely become overtly hyperglycemic. Furthermore,
the high-fat diet per se may promote renal injury, and the
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animals do not exhibit classical features of human DN. An
alternative nonobese model of type 2 diabetes employs
MKR mice in which the insulin receptor is dysfunctional spe-
cifically in skeletal muscle, resulting in insulin resistance,
marked hyperglycemia, and hyperlipidemia [15].

Choice of Rodent Species and Strain

Mice breed rapidly, are relatively cheap to house, and have
long been amenable to genetic manipulation, and hence, they
are the most widely used species in preclinical research; how-
ever, they tend to be resistant to the development of DN. In
patients with diabetes, multiple genetic factors influence the
risk of developing nephropathy [16], some of which are now
being elucidated by genome-wide association studies [17].
Similarly in mice, the susceptibility to nephropathy is influ-
enced by the particular strain of mouse employed [7, 9]. The
C57BL/6J mouse is the most common strain used in preclin-
ical research, and hence, many genetic modifications are per-
formed on this background. Unfortunately, this strain is rela-
tively resistant to the development of DN [18¢]; therefore, a
lengthy and expensive breeding program may be required to
backcross genetic mutations onto a more susceptible strain
such FVB and DBA/2J mice. For example, when the leptin
receptor mutation found in db/db mice is crossed to the FVB
background, the resultant mice are more susceptible to ne-
phropathy than equally obese and hyperglycemic C57BL/6J
mice [19]. In addition, OVE26 mice on the FVB background
exhibit nodular glomerulosclerosis and a greater than 10-fold
increase in albuminuria by 6 months of age [20]. Diabetic
DBA/2J mice develop more marked albuminuria than
C57BL/6]J mice, and additionally, they exhibit some patholog-
ical features of human disease, such as nodular
glomerulosclerosis and arteriolar hyalinosis [18¢].

More recently, it has been shown that the relatively uncom-
mon black and tan, brachyuric (BTBR) mouse may be a po-
tentially useful strain for modeling DN. BTBR mice are nat-
urally insulin-resistant, and when the ob/ob mutation is placed
on this strain, the mice exhibit sustained hyperglycemia from
an early age, in contrast to ob/ob mice on the C57BL/6J back-
ground. Furthermore, ob/ob BTBR mice develop some path-
ological features of human DN including arteriolar hyalinosis,
mesangial expansion, mesangiolysis, focal nodular
glomerulosclerosis, and a reduction in podocyte number
[21e¢]. Unfortunately, ob/ob BTBR mice are difficult to breed
and they have high mortality rates beyond 24 weeks of age,
which limits their use in modeling more advanced
nephropathy.

In all of these strains of mice, the increase in albuminuria is
equivalent to modestly elevated levels in humans (typically
~10-fold) and they do not develop a progressive decline in
renal function. Furthermore, they exhibit at most mild
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Table 1 Summary of commonly

utilized animal models of diabetic Genetic modification and strain Description Ref.
kidney disease with brief
description Models of diabetes
DBA/2J mice T1DM, STZ injection induces diabetes on a strain [18]
susceptible for nephropathy
Ove26 on FVB mice T1DM, mutation in the calmodulin gene results in toxic [11, 20, 43]
accumulation of defective proteins in beta-cells
(nephropathy can be further exacerbated by
uninephrectomy)
Akita (Ins2+/C96Y) on T1DM, mutation in the insulin gene results in misfolding [10]
C57BL6 mice and toxic accumulation of insulin
db/db mice (C57BLKS/FVB)  T2DM, inactivating mutation in the leptin receptor leading ~ [19]
to hyperphagia and obesity
ob/ob on BTBR mice T2DM, leptin deficiency on a black and tan, brachyuric [21ee]
strain that is naturally insulin resistant
MKR on FVB mice T2DM, dysfunctional insulin-like growth factor-1 [15]
receptor (IGF-1R) in the skeletal muscle results in
nonobese insulin resistance. Nephropathy may be
exacerbated by uninephrectomy or high-fat diet
fa/fa on Zucker rat T2DM, hyperphagic and obese, due to missense mutation [14]
in the gene coding the leptin receptor
OLETF rat T2DM, hyperphagia and obese, in part due to a [25]
spontaneous mutation in cholecystokinin receptor-1
Goto Kakizaki rat T2DM, polygenic, nonobese model with deficient insulin [46]
production and insulin resistance. Nephropathy may be
exacerbated by diet-induced hypertension
Specific genetic modifications to accelerate nephropathy
ApoE "~ on C57BL6 mice T1DM, STZ-induced diabetes combined with [56]
hyperlipidemia due to lack of apolipoprotein E
eNOS™ on C57BL6 or Vascular dysfunction and hypertension induced by eNOS [52, 53]
db/db mice deficiency accelerate renal injury in either STZ-induced
diabetes (T1DM) or when backcrossed to db/db mice
(T2DM)
TTRhRen on FVB mice T1DM, hypertension induced by human renin [48]
overproduction combined with diabetes induced
by STZ injection or OVE26 mutation
CyplalmRen2 on Fisher rat T1DM, severe hypertension induced by renin [47]

overproduction synergises with STZ-induced diabetes

Refer to the text for a detailed description and characterization of the models

STZ streptozotocin, MKR MCK-KR-hIGF-IR mice, OLETF rat Otsuka Long-Evans Tokushima Fatty rat,
TTRhRen transgenic mice expressing active human renin in the liver

tubulointerstitial fibrosis, which is important as this is the best
pathological determinant of progressive DN in humans [22].
Prior to the advent of genetic modification of mice in the
1980s, the rat was the most commonly studied model organ-
ism as there are a number of advantages in using rats rather
than mice to model disease [23]. Their greater size facilitates
repeated blood sampling, monitoring of renal physiology, and
access to sufficient renal tissue for analysis. Furthermore, rats
are more susceptible than mice to many cardiovascular dis-
eases including hypertension, and for many traits, the genetics
and pathophysiology in rats has proven more relevant to hu-
man disease. Models of type | diabetes (streptozotocin-
induced) and type 2 diabetes (Zucker, Goto Kakizaki [24],
and Otsuka Long-Evans Tokushima Fatty (OLETF [25]) rats
have been employed; however, these models typically do not
develop features of advanced human DN. Recent advances

have enabled targeted gene knockout in rats [26]; however,
it will be several years before the high-throughput murine
gene knockout programs can be recapitulated in rats and in
the interim researchers will have to incur the additional cost of
generating custom-made transgenic rodents.

Large animal species, such as pigs and dogs, have also been
utilized to model DN. Following induction of type 1 diabetes
by administration of alloxan, dogs develop glomerular lesions
within 2 years [27] and this process may be accelerated by
performing uninephrectomy [28]. Similarly, pigs have been
used to model the early glomerular lesions of human DN
and test therapeutic agents [29]. However, in these large ani-
mal models, there is no evidence of more advanced features of
human DN, such as tubulointerstitial fibrosis or a decline in
renal function. As the large animal models have few major
advantages compared with rodent models, given the greater
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husbandry costs and prolonged study duration, it is likely that
rodents will remain the preeminent species in preclinical DN
research.

Model organisms such as Drosophila and zebrafish afford
several advantages over rodents such as high fecundity, short
lifespan, low breeding costs, ease of genetic manipulation, and
relative ease of in vivo imaging of deep tissues. For these
reasons, they have long been used to study fundamental pro-
cesses such as development, apoptosis, and regeneration.
Zebrafish can be rendered diabetic by repeated doses of
streptozotocin [30] and have been used to study diabetes com-
plications [3 1]. Drosophila possess nephrocytes, which exhib-
it features of both podocytes including slit diaphragms [32¢¢],
and proximal tubular cells including cubilin-mediated trans-
port [33]. Administration of a high sucrose diet to Drosophila
promotes nephrocyte dysfunction and induces changes in
gene expression that mimic human DN [34]. However, the
primitive renal cells in both zebrafish and Drosophila are
clearly functionally very different to humans, and therefore,
these models are most likely to be used in genetic or drug
screens and the results will need replicated in mammalian
preclinical models.

Role of Hemodynamic Factors

The importance of hemodynamic factors in the pathogenesis
of DN has long been recognized [35]. Patients with advanced
DN invariably have hypertension and tight control of blood
pressure is at least as important as glycemic control in slowing
disease progression [36]. Hypertension may not simply be a
consequence of nephropathy but may promote the develop-
ment of kidney disease in diabetic patients. Subtle abnormal-
ities in blood pressure, such as loss of nocturnal dipping, pre-
cede the onset of albuminuria [37] and inheritance of genetic
variants that confer risk of hypertension promotes nephropa-
thy in patients with diabetes [38]. In fact, hypertension may be
an absolute requirement for progression of DN, as illustrated
by two remarkable case reports. In both cases, the patients had
long-standing diabetes and coexisting unilateral renal artery
stenosis; they exhibited no evidence of nephropathy in the
kidney downstream of the arterial stenosis, despite severe
nephropathy in the contralateral kidney [39, 40].

Researchers have attempted to replicate these hemodynam-
ic factors in rodent models in a number of ways. In seminal
studies in the 1980s, a high protein diet was found to increase
glomerular pressure and injury in diabetic rats [41], and the
role of ACE inhibitors in slowing progression of DN was first
proposed [42]. It is worth noting that these studies focusing on
hemodynamic factors are among the few to have been suc-
cessfully translated into clinical practice. An alternative meth-
od of applying hemodynamic stress that can be readily applied
in most rodent models of DN is uninephrectomy. For example,
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unilateral nephrectomy in diabetic OVE26 mice accelerates
many features of DN including albuminuria, inflammatory
cell infiltration, fibrosis, and changes in gene expression
[43]. However, caution should be applied to the results from
these studies as the abnormal glomerular hemodynamics in-
duced by uninephrectomy may not be representative of the
pathophysiology of human DN.

It has been consistently demonstrated in rodent models that
the combination of diabetes and genetic hypertension results
in more severe albuminuria, glomerulosclerosis, and
tubulointerstitial fibrosis than diabetes alone [44—46, 47¢].
Given the importance of the renin-angiotensin-aldosterone
system (RAAS) in human DN, several researchers have
employed transgenic rodents in which the RAAS is
overactivated to induce hypertension and accelerated DN.
TTRhRen mice develop renin-dependent hypertension
through constitutive expression of the human pro-renin
c¢DNA, and when these mice are back-crossed to OVE26
mice, they develop significant albuminuria, mesangial expan-
sion, tubulointerstitial fibrosis, and a decline in renal function
by 20 weeks [48]. Similar results have been observed in dia-
betic mRen?2 rats, which constitutively express murine renin
cDNA [45]; however, this model is confounded by the devel-
opment of malignant-phase hypertension [49]. This problem
may be overcome by using CyplalmRen2 rats in which the
murine mRen2 cDNA is under the control of the Cyplal
promoter so that the timing and severity of hypertension
may be controlled by adjusting the concentration of indole-
3-carbinol in the diet [47¢]. Concurrent induction of
hyperglycaemia and renin-dependent hypertension in
CyplalmRen2 rats results in a 500-fold increase in albumin-
uria and moderate glomerulosclerosis and tubulointerstitial
fibrosis, all features of moderately advanced human DN.
However, none of these models exhibit all of the classical
features of DN such as arteriolar hyalinosis.

Monogenic Manipulations to Accelerate
Nephropathy

To accelerate the development of nephropathy, researchers
have employed mice in which specific genes have been
targeted for knockout based on the known pathophysiology
of human DN. For example, functional deficiency of endothe-
lial nitric oxide synthase (eNOS) has been observed in patients
with DN [50], and eNOS knockout (eNOS ") mice exhibit
two of the key pathogenic mechanisms implicated in human
DN: endothelial dysfunction and hypertension [51]. Induction
of diabetes in eNOS™'~ mice by administration of
streptozotocin [52] or by crossing to leptin-receptor deficient
db/db mice [53] reproduces many features typical of human
DN including the following: early onset albuminuria, de-
creased GFR, arteriolar hyalinosis, mesangial expansion,
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mesangiolysis, and nodular glomerulosclerosis. Importantly,
these features are observed even in the nephropathy-resistant
C57BL6/J strain [52]. However, only minimal
tubulointerstitial fibrosis is observed in eNOS ™~ diabetic mice
[52, 53].

Hypertriglyceridemia is common in patients with diabetes
and is associated with the development of nephropathy [54].
Apolipoprotein E (ApoE) is implicated in clearance of triglyc-
erides from the serum and ApoE deficient (ApoE ') mice
develop marked hyperlipidemia and are widely used as a mod-
el of atherosclerosis [55]. Induction of diabetes with
streptozotocin results in more severe renal injury in ApoE
mice than wild-type controls, and this may in part due to
hyperlipidemia, but also to accumulation of advanced
glycation end-products (AGEs) [56]. The importance of
AGEs in promoting nephropathy has also been demonstrated
in mice that overexpress the receptor for advanced glycation
end-products (RAGE) specifically in endothelial cells. When
these mice were crossed with genetically diabetic mice, the
RAGE-overexpressing mice develop more severe albumin-
uria and glomerulosclerosis compared with wild-type counter-
parts but do not develop tubulointerstitial disease or renal
failure [57]. While therapies that target AGE were successful
in these models, they have not as yet translated into clinical
practice. These studies may provide a salutary lesson: when a
novel therapy is tested in animals which have been genetically
modified to promote overactivity of the target pathway, the
therapy is very likely to be effective; however, this is not
informative of the likely benefit in human disease.

Use of Transcriptomic Profiling to Compare
Pathways Activated in Human and Experimental
DN

Our understanding of the molecular pathways activated in the
kidneys of patients with DN have been aided by technological
advances including the ability to separate the glomerular and
tubulointerstitial compartments by laser capture microscopy,
isolate RNA from archived formalin-fixed, paraffin-
embedded tissue, and systematically assess gene expression
using microarrays or RNA sequencing [58]. Much of this
information has been made freely available to the nephrology
community through Web-based interfaces such as
Nephromine (www.nephromine.org). In parallel, advances in
proteomics have enabled identification of specific peptides
that are excreted in altered amounts in patients with DN [59]
or a global urinary peptidomic signature that is characteristic
of DN [60]. Researchers are now employing similar
transcriptomic and peptidomic techniques to determine
which animal models best replicate the molecular
pathophysiology of human disease [8, 61°°, 62].

The glomerular transcriptome in three murine models
of DN (streptozotocin-induced diabetes on the DBA/2
background, db/db mice, and eNOS™~ db/db mice) has
been systematically compared with that from humans
with type 2 diabetes and biopsy-proven early DN
[61ee]. The transcriptomic changes in the murine models
typically resembled the pattern observed in patients with
microalbuminuria rather than overt nephropathy. The hu-
man DN transcriptome was more similar to eNOS ™~ db/
db mice than the other animal models tested, supporting
biochemical and pathological data that suggest that the
eNOS™" mouse may be a more representative model of
human disease [52, 53]. For many pathways that are
differentially expressed in the glomerulus in human
DN, a similar pattern of expression was observed in a
just one of murine models, implying that choice of mod-
el will depend on the specific pathway a researcher
wishes to study.

In the CyplalmRen2 rat model up to 50 % of differen-
tially expressed genes in the tubulointerstitium in human
DN were also dysregulated in the renal cortex of hypergly-
cemic and hypertensive rats [47¢]. Importantly, the major-
ity of the changes in gene expression were in the same
direction in the rats as in humans, in contrast to the discor-
dant patterns that emerged when the renal transcriptome in
murine models was compared with that from patients with
overt proteinuria.

A major implication of the results from these -omic
studies is that researchers must consider a number of issues
in selecting the best animal model for their investigation
(Fig. 1). Firstly, they must be clear regarding the relevant
stage of human DN that they wish to replicate, with stan-
dard murine models reflecting the pathophysiology of ear-
ly, but not late DN. Additional relevant injurious stimuli,
such as hypertension, may be required to model progres-
sive disease. Secondly, they may employ transcriptomic
data to select the model which best recapitulates the acti-
vation status of their specific therapeutic target pathway.
More rational selection of the most appropriate animal
model may render research more efficient and improve
the likelihood that the results will translate into clinical
practice.

Modeling Regression of DN

It is now recognized that DN does not always progress
inexorably toward end-stage kidney disease, but that re-
gression may also occur. Albuminuria may regress in up
to 50 % of patients, particularly in those with optimal
blood glucose and blood pressure control [63]. More re-
markably, regression of established glomerulosclerosis and
tubulointerstitial fibrosis has been observed in patients
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Fig. 1 Schemata for discovery of novel therapeutic agents. /, High-
throughput, nonbiased “-omic” approaches have identified hundreds of
molecules that are associated with the development of human diabetic
nephropathy. 2, Whether these molecules could be targeted to slow
progression of nephropathy may be determined using the most
appropriate animal model for the specific research question. 3,

with moderately advanced DN who achieve sustained
normoglycaemia after receiving a pancreas transplant
[64, 65]. However, the pathways that promote regression
remain poorly understood, in part because serial biopsies
are rarely performed in patients who are responding to
treatment.

To identify the pathways that promote regression, a number
of rodent models have been employed. In BTBR ob/ob mice,
administration of recombinant leptin for 8 weeks to reverse
the genetic leptin deficiency promoted weight loss and im-
proved glycemia control. This was accompanied by regression
of albuminuria and glomerulosclerosis; however, there was no
change in the severity of tubulointerstitial fibrosis [66e¢]. Im-
portantly, leptin therapy, but not ACE inhibition, restored the
mean number of podocytes in each glomerulus, implying that
therapies other than renin-angiotensin system blockade are
likely to be required to promote nephron regeneration in
patients with DN.

In the CyplalmRen2 rat, after 28 weeks of
hyperglycaemia and hypertension, a reduction in albuminuria
was observed following optimization of glycemic control by
implanting insulin pellets subcutaneously and normalizing
blood pressure through removal of indole-3-carbinol from
the diet [67]. After 8 weeks of tight glycemic and blood pres-
sure control, the expression of genes encoding extracellular
matrix components reverted toward control levels, suggesting
that tight control was sufficient to switch off new scar
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Genetically modified rodents may offer mechanistic insight and suggest
whether development of a therapy is warranted. 4, Pharmaceutical agents
may be tested for efficacy and potential side effects. 5, Therapies that are
successful in robust animal studies may be taken forward into clinical
trials. 6, Samples and data from these trials may be “biobanked” to
provide further mechanistic insight toward refining therapies

production. However, there was no change in the severity of
glomerulosclerosis or tubulointerstitial fibrosis, implying that
addition therapies may be required to accelerate degradation
of established scar.

Conclusion

In summary, animal models have been of limited utility in
understanding the pathogenesis of DN, in part because no
model exhibits all of the key features of human disease.
Targeting additional genes for knockout either in isolation or
in combination with known nephropathy susceptibility genes
such as eNOS may refine existing models, although it is im-
portant to acknowledge that complete loss of gene expression
is rarely observed in human disease. When reporting the phe-
notype of novel models, in addition to describing the function-
al and pathological findings, the transcriptomic changes in the
kidney should be assessed for relevance to human disease.
Going forward, it is likely that researchers will use
transcriptomic data freely available on platforms such as
Nephromine to select the animal model that best recapitulates
the activation status of their pathway of interest in human
disease. By rationalizing the selection of the most appropriate
animal model for any given therapy, we may improve the
likelihood that encouraging preclinical findings are success-
fully translated into clinical practice.
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