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Tellurium as a high-performance elemental
thermoelectric
Siqi Lin1, Wen Li1, Zhiwei Chen1, Jiawen Shen1, Binghui Ge2 & Yanzhong Pei1

High-efficiency thermoelectric materials require a high conductivity. It is known that a large

number of degenerate band valleys offers many conducting channels for improving the

conductivity without detrimental effects on the other properties explicitly, and therefore,

increases thermoelectric performance. In addition to the strategy of converging different

bands, many semiconductors provide an inherent band nestification, equally enabling a large

number of effective band valley degeneracy. Here we show as an example that a simple

elemental semiconductor, tellurium, exhibits a high thermoelectric figure of merit of unity, not

only demonstrating the concept but also filling up the high performance gap from 300 to

700 K for elemental thermoelectrics. The concept used here should be applicable in general

for thermoelectrics with similar band features.
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T
hermoelectric devices, which enable a direct conversion
between heat and electricity based on either Seebeck or
Peltier effects, have attracted increasing interest as a

sustainable and emission free solution to the imminent global
energy crisis and environment pollution for a few decades1.
The performance of a thermoelectric material is determined by
the dimensionless figure of merit, zT¼ S2sT/(kEþkL), where
S, s, kE, kL, and T are the Seebeck coefficient, electrical
conductivity, electronic thermal conductivity, lattice thermal
conductivity and absolute temperature, respectively.

Because the electrical properties including S, s and kE couple
with each other strongly, a simple improvement in one of
these three parameters usually leads to a compensation in
the other two, resulting in the difficulty for enhancing zT.
Minimizing the lattice thermal conductivity (kL), the only one
independent material property, has been proven to be effective
through nanostructuring2–6, liquid phonons7,8 and lattice
unharmonicity9,10 in the recent 15 years.

Alternatively, recent band engineering efforts aiming to obtain
a high number of degenerated valleys (Nv) (refs 11–18), a low
carrier inertial mass19 and a weak scattering20,21 has also led to
great success in increasing the figure of merit zT (ref. 22). Taking
the strategy of increasing Nv by converging two different valence
(or conduction) bands in the k-space as an example, which has
been well-demonstrated in p-type PbTe (ref. 15) and other IV–VI
(ref. 23) semiconductors, zT has found to be increased
significantly.

A straightforward understanding on how band convergence
leading to high thermoelectric performance, is the increased
conducting channels for high electrical conductivity, without
affecting the Seebeck coefficient that is determined by the position
of Fermi level and scattering mechanism11. Being slightly
different from the band convergence where two or more band
branches having similar energy but unnecessarily the same
k-space location, nested bands have not only similar energy but
also the same k-space location. In spite of the difference in
k-space location between band convergence and nestification, the
aligned bands in both cases should equally contribute to the
transport of charge carriers, leading to a superior electrical
performance for high thermoelectric efficiency.

Band nestification often occurs in well-known simple semi-
conductors such as group IV elements and III–V compounds,
particularly in p-type conduction, this is mainly due to the
splitting of degenerate bands by spin-orbit interaction24. This
interesting band feature has led these materials to be playing
important roles in the electronic industry for many decades, and
many of these semiconductors have actually been considered as
thermoelectrics since they are known25, although the relative low
atomic mass for the constitute elements and the simple crystal
structure may lead to a high lattice thermal conductivity25–27.

As an important member among the elemental semi-
conductors, trigonal Te with the P3121 space group undergoes
a transition to a topological insulator phase28. However, it
has been much less considered as a thermoelectric material.29–31

Available experimental results are limited to the electrical
properties29–32 and low temperature thermal conductivity
only33,34. Providing its intrinsically nested valence
bands30,32,35,36, which are very similar to those of group IV and
III–V semiconductors, as superior electronic performance can
then be reasonably expected in tellurium. In addition, the
relatively heavy atomic mass and the complexity in crystal
structure in tellurium, as compared with the well-studied
group IV and III–V semiconductors, should lead to a much
lower lattice thermal conductivity27.

Guided by the concept of nested bands for high thermoelectric
performance, this work focuses on the thermoelectric performance

of polycrystalline tellurium, a constitute element commonly
used for producing conventional thermoelectrics including PbTe
and Bi2Te3. The thermoelectric figure of merit, zT, as high as 1.0,
achieved in a material as simple as elemental tellurium,
demonstrating the validity of the concept. The achieved zT
of B1.0 here is actually the highest among the reported
element-based thermoelectrics37 including those are heavily
alloyed, such as SiGe (refs 38,39) and BiSb (refs 40–42).
Furthermore, the obtained high zT fills the gap of elemental
thermoelectrics showing high zT in the temperature range of
300–700 K as shown in Fig. 1, revealing the importance of
tellurium as a thermoelectric material when the application
circumstance strictly disallows precipitation, segregation or
volatilization.

Results
Band structure of tellurium. It was reported35 as early as
in 1950s, followed by a few other researchers in 1970s
(refs 30,32,36,43–45). Very recently, the detailed band structure
has been given by theoretical calculations28,46. Regardless
the different sources, the most important similarity, among
the majority of the literatures, is that the nested valence bands at
the H point in the Brillouin zone30,32,36,43–46 due to the spin-orbit
coupling in tellurium. The four-orbital degenerated valence
band at point H was split into two upper valence bands H4
and H5 and the lower doubly degenerate band H6 (refs 28,46).
Because the energy separation, either calculated36,43,46 (https://
www.materialsproject.org/materials/mp-19/) or measured47,
between the two upper valence bands (H4 and H5) is as small
as 0.1 eV or less, they both contribute to the hole transport
concurrently. On the other hand, the third valence band (H6) has
a much lower energy36,43,46 and therefore is not influential to the
electrical properties in the temperature and doping ranges studied
here. Further due to the spin-orbital coupling, the first valence
band, H4, may exhibit a weak camel’s back in shape along the
H-K direction36,46. However, this work focuses on the transport
properties at temperatures 4300 K, the resulting Fermi
distribution broadening is significantly larger in energy than the
difference between the extremums of the camel’s back H4 band,
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Figure 1 | Survey of zT for elemental thermoelectrics. Temperature-

dependent figure of merit (zT) for p-type ploycrystalline tellurium with

different carrier concentrations shown in a unit of cm� 3 (a). Both low

temperature Bi/Bi–Sb alloys40 and high temperature Si (ref. 37)/Si–Ge

alloys39 are included for comparison. p-type tellurium studied here shows a

highest zT n the temperature range from 300 to 700 K, largely relies on its

inherently nested valence bands (H4 and H5) as shown in b. The overlying

lines in a are included to guide the eye.
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leading to an unobservable effect on the electrical properties.
Therefore, the band structure of Te can be approximated as the
inset of Fig. 1 schematically, without including either the low
energy H6 band or the camel’s back feature for band H4.

It is then clear that the bands H4 and H5 are effectively nested
in tellurium, giving a rise to the conducting channels for holes.
This inherent band feature, and its effect on the thermoelectric
performance is essentially similar with those caused by band
convergence11,22,48, in which the converged bands unnecessarily
have band extremum at the same k-space location. In this
way, the two upper valence bands, with a valley degeneracy of
2 each, accumulate the hole pockets to a total number of
4 approximately, being comparable with 4B6 that obtained in
n-SiGe, Bi2Te3 and n-PbTe thermoelectrics.

Carrier concentration-dependent transport properties. The
transport properties were measured on single phased
polycrystalline tellurium samples, where the trigonal structure
and an average grain size of B100 mm are determined by X-ray
diffraction and transmission electron microscope analyses
(Supplementary Fig. 1). The transport properties in the directions
along and perpendicular to the applied pressure of the hot press,
are found to be nearly isotropic (Supplementary Fig. 2). Indeed,
the experimental thermoelectric figure of merit, zT, of elemental
tellurium is found to be as high as unity, being the highest among
the reported element-based thermoelectrics including those are
heavily alloyed such as SiGe (refs 38,39) and BiSb (refs 40–42).
This further leads to a fill-up to the gap of elemental
thermoelectrics showing high zT in the temperature range
from 300 to 700 K as shown in Fig. 1. The measured zT shows

a good reproducibility (Supplementary Fig. 3) and comparability
(Supplementary Fig. 4) to that measured by a different technique.
The observed discrepancy on zT between the experimental results
and the ab initio calculations46 is largely due to the difference on
estimating the electronic thermal conductivity.

In nested bands on the transport properties, the Hall carrier
concentration dependence is given in Fig. 2. According to the
above discussion on the band structure, a two-band (H4 and H5)
model is used to understand the transport properties.
Furthermore, due to the small band gap in tellurium, the band
may be slightly nonparabolic and therefore needs to take into the
first order of nonparabolicity (Kane band) into account49.
The two Kane band model enables a reasonable prediction
(dashed curves) on the hall carrier concentration-dependent
Seebeck coefficient (Fig. 2a), Hall mobility (Fig. 2b) and power
factor (Fig. 2c). The ab initio calculated46 Seebeck coefficient is
slighter higher, which is presumably due to the fact that this
method does not take into account the reduction of the band gap
with increasing temperature30. As a result, the ab initio
calculated46 power factor is also higher than the measurement
(Supplementary Fig. 5). Similarly, this discrepancy can also be
seen from the temperature-dependent transport properties as
discussed below.

The Kane band model has shown similar success on
understanding the transport properties of n-type PbTe
(refs 19,50,51). It should be noted that the two-band model
takes the band nonparabolicity, temperature-dependent
effective mass and band gap30 into account. This model
assumes a dominant charge carrier scattering by acoustic
phonons, as evidenced in Fig. 2d by the observed temperature
dependence of T� 1.5 on the Hall mobility (mH), because any
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Figure 2 | Transport properties for tellurium. Hall carrier concentration-dependent Seebeck coefficient (a) Hall mobility (b) and power factor (c) at 300 K
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curves in (a–c) show the prediction based on a two-band Kane model with a scattering mechanism by acoustic phonons as evidenced from the
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other scattering mechanisms such as by grain boundaries, polar-
optical phonons, and ionized impurities predict a dependence of
mHBTp with pZ� 0.5. The even faster decrease in the Hall
mobility than the mHBT� 1.5 relationship at temperatures higher
than 500 K, can be understood by the increased effective mass
according to the two-band model.

This model further tells the optimal carrier concentration
(nopt) that allows a maximum power factor to be achieved
(Fig. 3c), and the resulting nopt is found to be in the range of
1–3� 1019 cm� 3, depending the temperature and density of
state effective mass51. The obtained nopt is consistent with the ab
initio calculation46, and is comparable with that of narrow band
gap (Ego0.5 eV) thermoelectric semiconductors such as n-PbTe
(ref. 51) and Bi2Te3 (ref. 52).

Temperature-dependent transport properties. The
temperature-dependent Seebeck coefficient (S) and resistivity (r)
are shown in Fig. 3a and Fig. 3b, respectively. The doping
effectiveness of arsenic can be seen from the significant decrease
in both resistivity and Seebeck coefficient when the doping
concentration increases. The positive sign of the Seebeck
coefficient indicates the p-type conduction, which is consistent
with our Hall coefficient measurements. Majority of the samples
studied here show degenerated semiconducting behaviour,
meaning a continuous increase in both resistivity and Seebeck
coefficient with increasing temperature. The decrease in r and

S at high temperatures can be ascribed to the existence of
minority carriers, which is normally seen in narrow band gap
semiconductors. The existence of minority carriers also lead to
an increase in the high-temperature thermal conductivity,
particularly in lightly doped samples.

The temperature-dependent total thermal conductivity and (k)
its lattice contribution (kL) are shown in Fig. 3c and Fig. 3d,
respectively. It can be seen from Fig. 3c that due to the effective
doping by arsenic, the resulting reduced resistivity (Fig. 3b) leads
to an increased electronic thermal conductivity (kE) and therefore
the total thermal conductivity. The electronic thermal
conductivity can be determined by the Wiedeman–Franz law
(kE¼ LT/r), where the temperature-dependent Lorenz factor (L)
is estimated by the two-Kane-band model. The lattice thermal
conductivity is determined by subtracting the electronic
contribution from the total thermal conductivity via (kL¼
k� kE). The room temperature lattice thermal conductivity
for unintentionally doped tellurium is B1.6 Wm� 1 K� 1,
which is comparable with conventional thermoelectric lead
chalcogenides21,50,53,54 and bismuth/antimony tellurides52,55,
but significantly lower than those of group IV or group III–V
semiconudctors38,56. The low lattice thermal conductivity is
presumably due to the heavy atomic mass and relatively complex
crystal structure27. Importantly, all the heavily doped samples
show a nearly identical temperature dependence, and follow
a nice T� 1 decrease with increasing temperature, indicating a
dominant phonon scattering by Umklapp process. According to
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the Cahill model57, the measured sound velocities (2,287 ms� 1 for
longitudinal and 1,410 ms� 1 for transverse ones, respectively),
enable a determination of minimal lattice thermal conductivity
(kL

min), which is also shown in Fig. 3d. It can be seen that there
should be a reasonably big room for a reduction on kL for an even
higher zT through well-demonstrated strategies in thermoelectrics
such as solid solution38,58 and nanostructuring2–5.

Discussion
In summary, the inherently nested valence bands in tellurium
enable an approximate hole pockets of 4, leading to a reasonably
high power factor. In combination with its acceptably
low thermal conductivity, elemental semiconducting tellurium
surprisingly shows a high figure of merit, zT¼ 1.0, and therefore
nicely fills up the high performance gap from 300 to 700 K for
elemental thermoelectrics. The guiding principle here introduces
a pure electronic effect for discovering high thermoelectric
performance materials, application of other well-demonstrated
independent strategies such as alloying or nanostructruing for
decreasing the lattice thermal conductivity, is expected to lead to
an even higher zT.

Methods
Synthesis. Polycrystalline Te samples were prepared by melting high purity
element (499.99%) at 823 K for 8 h, followed by quenching in cold water and
annealing at 673 K for 3 days. Dopants including phosphorus (P), arsenic (As),
antimony (Sb) and bismuth (Bi) were used to tune the carrier concentration. It is
found that As-doping is the most effective to achieve a high enough carrier
concentration that is needed for realizing the high zT at high temperatures, and is
therefore focused on in this study. The ingot materials were ground into fine
powders and hot pressing59 at 673 K for 20 min under a uniaxial pressure of
90 MPa. The obtained dense pellet samples were a B12 mm in diameter and
1.5 mm in thickness.

Structural characterization. The phase impurity was characterized by X-ray
diffraction (Dandong Haoyuan Instrument Co. LTD). The samples for the
transmission electron microscope observation were prepared by mechanical
polishing, dimpling and ion milling with liquid nitrogen. STEM images were taken
with a JEOL ARM 200 equipped with a probe corrector. The obtained pellet
samples showed a density higher than 98% of the theoretical one, where microvoids
with a size of microns can be occasionally observed.

Transport property measurements. To be less involved in measurement
uncertainties due to the possible hysteresis and the sample dimension
determinations, the electrical transport properties including resistivity, Seebeck
coefficient and Hall coefficient were simultaneously measured on the same pellet
sample during both heating and cooling. The Seebeck coefficient was obtained
from the slope of the thermopower versus temperature gradients of 0–5 K (ref. 60).
The resistivity and Hall coefficient (RH) were measured using the van der Pauw
technique under a reversible magnetic field of 1.5 T. For a comparison, the Seebeck
coefficient and resistivity for two high performance samples were also measured
using a ULVAC ZEM-3 system. The thermal diffusivity (D) was measured through
laser flash method with the Netzsch LFA457 system. The heat capacity (Cp) was
assumed to be the Dulong–Petit limit and to be temperature independent, which is
consistent with the literature result at room temperature61. The thermal
conductivity was calculated via k¼ dCpD, where d is the density measured using
the mass and geometric volume of the pellet. All the transport property
measurements were performed under vacuum in the temperature range of
300–650 K. The sound velocity was measured using an ultrasonic pulse-receiver
(Olympus-NDT) equipped with an oscilloscope (Keysight). The uncertainty for
each measurement of transport property (including S, s and k) is B5%.
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