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Abstract: Adult stem cells occur in human endometrium. Menstrual-blood derived stem cells (MenSCs) are mesen-
chymal stem cells that can be obtained in a non-invasive manner. Due to their rapid proliferation rate, low immuno-
genicity, and low tumorigenicity, MenSCs are used extensively in tissue engineering. They can be induced into mul-
tiple cell lineages under certain conditions. MenSCs contribute to tissue repair via several different mechanisms, 
highlighting their great promise in clinical applications. Endometrial stem cells may also be used to shed light on 
the pathogenesis of endometriosis and endometrial carcinoma. This review will cover recent progress in this field.
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Introduction

Adult stem cells, also referred to as tissue-spe-
cific stem cells, have the ability to self-renew. 
They proliferate by asymmetric cell division, 
eventually differentiating into specific cell lin-
eages. The ability of stem cells to produce other 
cell lineages is called potency. Adult stem cells 
play important roles in tissue repair and 
reconstruction.

Adult stem cells were first isolated from the 
endometrium in 2004 [1]. It had long been 
speculated that endometrial stem cells existed, 
based on several properties of the human 
endometrium. For instance, the human endo-
metrium, an extremely dynamic tissue, under-
goes approximately 400 cycles of periodic pro-
liferation, differentiation, and shedding [2]. In 
addition, the endometrium can grow up to 7 
mm in one week [3]. Finally, in the clinical set-
ting, it was demonstrated that the human endo-
metrium could regenerate, even following suc-
cessful resection [4]. 

Characteristics of endometrial stem cells

The human endometrium comprises the func-
tionalis and basalis. The functionalis is shed 

monthly with menstrual blood arising from 
changes in hormones and it is quickly recon-
structed after menstruation. Endometrial stem 
cells were initially thought to be located only in 
the basalis [5]. During the menstrual phase, 
endometrial stem cells migrate to the functio-
nalis in a stromal cell-derived factor-1 (SDF-1)/
CXCR4 axis-dependent manner, contributing to 
the reconstruction of the endometrium. Elshekh 
et al. reached a similar conclusion on the rela-
tionship between SDF-1 and endothelial pro-
genitor cells [6]. The proliferating endometrium 
is thought to recruit endothelial cells to cover 
the new vasculature, and because SDF-1 is 
expressed more highly in the proliferative 
phase, it is an ideal marker to study endothelial 
progenitor cell migration during menstruation. 
Mounting evidence has confirmed that there 
are stem cells in both the functionalis and basa-
lis of the human endometrium [7].

Three kinds of stem cells exist in the human 
endometrium: epithelial stem cells, mesenchy-
mal stem cells, and endothelial stem cells [8]. 
The subpopulation of endometrial stem cells 
that express CD146 and CD140b/PDGFR-β are 
the mesenchymal stem cells. They are mainly 
located near small vessels in the functionalis 
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and basalis [9], consistent with the conclusion 
mentioned above [7]. Endometrial stem cells 
can be obtained non-invasively from menstrual 
blood, and are referred to as menstrual blood-
derived stem cells (MenSCs) [10]. MenSCs 
have an extremely high proliferative ability, and 
can maintain a relatively stable karyotype 
through 40 passages [11]. The doubling time of 
MenSCs is approximately 20 hours, which is 
twice as fast as bone marrow-derived stem 
cells [12]. Differences in telomerase activity 
may partially explain the highly proliferative 
characteristic of MenSCs [13]. Telomerase is a 
transcriptase that allows cells to avoid the 
shortening of their telomeres. Shortening of 
telomeres occurs during cell division and even-
tually leads to cell death. Thus, telomeres are 
important to sustain the integrity of chromo-
somes and the genomic stability of cells. 

Similar to bone marrow-derived stem cells, 
MenSCs express mesenchymal-like surface 
markers, such as CD29, CD44, CD73, CD90, 
and CD105, but not STRO-1. They also express 
embryonic stem cell markers SSEA-4 and 
OCT-4 [12]. In addition, MenSCs express MHC-
I, indicating that they are capable of immuno-
modulation [14]. MenSCs were shown to inhibit 
the mixed lymphocyte reaction (MLR) in a limb 
ischemia animal model [15]. They could reduce 
the production of IFN-γ and TNF-α in a dose-
dependent manner. The low immunogenicity of 
MenSCs might make them attractive for cell 
transplantation therapeutics.

MenSCs can be induced into multiple cell lin-
eages, including cartilage cells [16], osteoblast 
cells [17], adipose cells, smooth muscle cells, 
myocardial cells and hepatocytes. Beating 
myocardial-like cells expressing myocardial 
markers (troponin-1 and α-actinin) have been 
harvested successfully by co-culture of MenSCs 
with fetal mice myocardial cells [18]. Adult stem 
cells naturally reside in “niches”, or certain 
sites in tissues with a special microenviron-
ment; therefore, mimicking a “niche” in vitro 
seems to be crucial to induce cell differentia-
tion [19]. Serum is a common medium for 
inducing cell differentiation in vitro, yet it con-
tains numerous growth factors, some of which 
may interfere with effective differentiation. 
Ikegami et al. compared the differentiation 
potential of endometrial mesenchymal cells 
ECM100 and MenSCs into myocardial cells in 
serum-free medium and serum-containing 
medium [20]. The induction potency increased 

by 36% and 163% in each cell type, respective-
ly, when incubated in serum-free compared 
with serum-containing medium. Compared with 
10% serum-containing medium, the phenotype 
of induced cells in serum-free medium more 
closely resembled that in the physiological 
state. However, determining which growth fac-
tors are necessary to induce different cell types 
is difficult because of the large number of 
growth factors and their complicated interac- 
tions. 

For example, Khanmohammadi M compared 
three different methods for inducing adipose 
cells in both MenSCs and bone marrow-derived 
stem cells [21]. The first two protocols involved 
traditional culture medium, with the second 
protocol including the addition of retinoic acid. 
Neither of these two protocols effectively 
induced MenSCs to differentiate into adipose 
cells. In the third protocol, in which rosigli-
tazone was added, oil red O staining confirmed 
the fat producing ability in the induced cells. 
MenSCs could be an alternative to bone mar-
row-derived stem cells for tissue engineering 
because of their easy accessibility. In addition, 
Kazemnejad et al. determined that human 
platelet derivatives (HPDs), rather than serum, 
could not only promote proliferation of MenSCs, 
but also increase their osteogenic potency [22]. 
Moreover, MenSCs could be induced to gener-
ate induced pluripotent stem cells (iPSCs) [23], 
which were first obtained through ectopic 
expression of four transcription factor genes, 
OCT4, KLF4, SOX2, and c-MYC. The induction 
time of iPSCs is usually about 20 days, while 
MenSCs are capable of inducing iPSCs in just 
12 days with high efficiency [24].

Molecular mechanisms of MenSC-based thera-
peutics

MenSCs contribute to tissue repair and recon-
struction through a variety of mechanisms. 
MenSCs can directly differentiate into several 
different cell types, as previously mentioned. 
Hepatocyte growth factor (HGF), fibroblast 
growth factor-4 (FGF-4), and oncostain M (OSM) 
could induce hepatocyte-like cell differentia-
tion in MenSCs. Mou et al. successfully induced 
MenSCs into functional hepatocyte-like cells 
that expressed hepatocyte surface markers 
ALB, AFP, CK18/19, and CYP1A1/3A4 [25]. 
Functional tests revealed that these cells could 
synthesize urea and store glycogen. They 
repaired a damaged liver effectively in an 
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injured animal model, suggesting their thera-
peutic potential in patients suffering from 
chronic liver diseases. Premature ovarian fail-
ure (POF) is a gynecological disease that 
causes infertility in some women. When trans-
planted into POF mice, MenSCs survived and 
expressed ovarian granulosa cell-specific pro-
teins, leading to a remarkable increase in ovar-
ian weight and hormone secretion [26].

In addition, intravenously injected MenSCs 
improved hyperglycemia significantly in mice 
with type I diabetes [27]. After being injected 
into the mice, most MenSCs migrated to the 
injured pancreas, finally locating near the pan-
creatic duct and islets. Interestingly, although 
the number of β cells increased after the injec-
tion of MenSCs, no differentiation of MenSCs 
was detected. Thus, MenSCs might stimulate 
endogenous pancreatic progenitor cell differen-
tiation in a paracrine manner via the upregula-
tion of neurogenin (ngn3). Likewise, MenSCs 
were able to secrete neuroprotective factors 
such as vascular endothelial growth factor 
(VEGF) and brain-derived neurotrophic factor 
(BDNF) in a mouse model of stroke. These fac-
tors promoted the survival of neurons and miti-
gated behavioral and histological changes. 
However, whether Effects of MenSCs involved 
their direct differentiation into neuronal cells 
was unclear [28].

Finally, as mentioned previously, MenSCs also 
have an immunomodulatory effect. Ulcerative 
colitis is a type of inflammatory bowel disease. 
MenSCs showed an extensive immunomodula-
tory effect when injected into mice with colitis. 
They decreased the infiltration of inflammatory 
cells, including macrophages and NK cells, and 
modulated the number of immune cells. In 
addition, MenSCs mediated the expression of 
multiple cytokines. In the MenSC-treated mice, 
pro-inflammatory cytokines IL-2 and TNF-α 
decreased significantly, while anti-inflammato-
ry factors IL-4 and IL-10 increased dramatically 
[29]. Notably, the immunomodulatory mecha-
nism of MenSCs is not always the same and 
depends on interactions with numerous fac-
tors. Further research is needed to clarify their 
specific effects in different disease states [30].

Endometrial stem cells and endometriosis 

Endometriosis is a condition characterized by 
progressive dysmenorrhea and chronic pelvic 

pain that causes infertility in some women. 
Endometriosis correlates with retrograde men-
struation [31]. The theory of endometrial stem 
cells brought a new perspective to the patho-
genesis of endometriosis [32]. Li et al. isolated 
and identified epithelial stem cells and mesen-
chymal stem cells in ectopic endometrial tissue 
[33]. With the discovery of an endometrial side 
population (ESP), it was speculated that a few 
ESPs might contribute to the initiation of endo-
metriosis [34]. ESPs in the functionalis might 
be engrafted ectopically with retrograde men-
strual blood, from which they could then pro-
mote angiogenesis. This is consistent with 
endometrial stem cells being located mainly 
near vessels in the functionalis and basalis, 
providing support for the role of ESP metasta-
sis via blood vessels [10]. In addition, endome-
trial stem cells are capable of differentiating 
into multiple cell lineages [35]. Song et al. com-
pared stem cell-related genes in patients with 
and without endometriosis. Sex-determining 
region Y-box 2 (SOX2) and Nanog homeobox 
(Nanog) were upregulated at the mRNA level, 
with SOX4 and OCT4 upregulated at the protein 
level [36]. These pluripotency markers might 
help explain the etiology of endometriosis.

IPO13, a member of the importin β superfamily, 
was expressed higher in the ectopic endome-
trium and in endometrial carcinoma. IPO13 co-
located with mesenchymal stem cell marker 
CD90 [37], which further consolidated the rela-
tionship between stem cells and endome- 
triosis.

New vessels are needed for the survival and 
development of the ectopic endometrium [38]. 
Tie2 is a vasculature-endothelium-cell specific 
tyrosine kinase receptor that mediates prolif-
eration and migration of endothelial cells 
whose expression is upregulated in the ectopic 
endometrium [39, 40]. Circulating endothelial 
progenitor cells (EPCs) are modulated by the 
SDF-1/CXCR4 axis, causing the migration of 
EPCs into the ectopic endometrium, where they 
co-express VEGFR2 and CD34. These conclu-
sions may account for the source of angiogen-
esis in ectopic endometrium.

Finally, microRNAs (miRNAs) may also play a 
role in the pathogenesis of endometriosis. 
When miRNA levels in serum were compared 
between patients with and without endometrio-
sis, miRNA-199a-5p expression was downregu-



Endometrial stem cell: clinical application and pathological roles

22042	 Int J Clin Exp Med 2015;8(12):22039-22044

lated in patients with endometriosis [41]. 
Upregulation of miRNA-199a-5p inhibits endo-
metrial stem cell proliferation and angiogene-
sis in the ectopic endometrium by targeting the 
3’ untranslated region of VEGFA. Expression of 
miR-199a-5p reduced damage in an endome-
triosis animal model, suggesting that it might 
represent a novel therapeutic strategy.

Endometrial stem cells and endometrial carci-
noma

Local and whole body signaling pathways tight-
ly regulate the proliferation of adult stem cells. 
The “niche” is important to maintain homeosta-
sis of adult stem cells, and dysfunction of these 
pathways is likely to cause carcinomas [42]. 
Cancer stem cells may originate not only from 
normal adult stem cells with silenced tumor 
suppressor genes, but also from differentiated 
adult stem cells with mutations that activate 
self-renewal pathways [43]. Cancer stem cells 
are found in many different types of carcino-
mas [44]. Hubbard et al. confirmed the exis-
tence of endometrial cancer stem cells [45]. 
CD133 is usually considered a marker for iso-
lating endometrial stem cells. In vitro experi-
ments showed that CD133-positive cells had a 
higher proliferation rate and this proliferation 
activity was monoclonal [46]. SP (side popula-
tion) cells in endometrial carcinoma could pro-
mote metastasis and EMT [47]. Secreted pro-
tein acidic and rich in cysteine (SPARC) is 
upregulated in endometrial carcinoma, which 
leads to higher expression of fibronectin and 
the eventual promotion of EMT [48]. However, 
SPARC plays a dual role in endometrial carci-
noma. While SPARC contributes to the metasta-
sis of endometrial cancer stem cells through 
EMT, its overexpression can inhibit tumor 
growth [49].

Large intergenic non-coding ribonucleic acids-
ROR (Linc-RNA-RoR) is necessary to maintain 
the pluripotency of embryonic stem cells and 
interferes with differentiation mediated by miR-
145 [50]. Linc-RNA-RoR was found in endome-
trial carcinoma. Blockage of miR-145 mediated 
the differentiation of cancer stem cells, which 
could be a reasonable explanation for the can-
ceration of stem cells. Under in vitro experi-
mental conditions, when the concentrations of 
differentiation factors were high, miR-145 was 
transcribed. Under such circumstances, how-
ever, linc-RNA-RoR promoted the differentia-

tion of stem cells [51]. This interaction provides 
guidance for targeting therapeutics of endome-
trial carcinoma in the clinic.

In conclusion, it is well established that endo-
metrial stem cells have extensive applications 
in tissue repair and engineering. Moreover, 
endometrial stem cells have helped to reveal 
the pathogenesis of endometriosis and endo-
metrial carcinoma. Endometrial stem cells have 
the potential to become a powerful tool for both 
clinical diagnosis and therapeutics. Preliminary 
results from endometrial stem cell use in ani-
mal models of different diseases suggested a 
future for endometrial stem cell-based applica-
tions in the clinical setting. Further research is 
needed to advance the development of endo-
metrial stem cells for clinical use.
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