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Abstract

The development of new treatments for substance use disorders requires identification of 

targetable molecular mechanisms. Pathology in glutamatergic neurotransmission system in brain 

reward circuitry has been implicated in relapse to multiple classes of drugs. Glutamate transporter 

1 (GLT-1) crucially regulates glutamatergic signaling by removing excess glutamate from the 

extrasynaptic space. The purpose of this review is to highlight the effects of addictive drug use on 

GLT-1 and glutamate uptake, and using GLT-1 as a target in addiction pharmacotherapy. Cocaine, 

opioids, ethanol, nicotine, amphetamines, and cannabinoids each affect GLT-1 expression and 

glutamate uptake, and restoring GLT-1 expression with N-acetylcysteine or ceftriaxone shows 

promise in correcting pre-clinical and clinical manifestations of drug addiction.
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Introduction

Use of addictive substances represents one of the largest public health burdens to our society 

(1). Although some replacement medications have been developed treating substance use 

disorders (2), the long-term prognosis for abstinence in drug-dependent individuals remains 

poor (3). An understanding of the fundamental neurobiology underlying substance use 

disorders promises to unveil new treatments for addiction that target the underlying disease 

neuropathology.

One of the most heavily studied neurobiological mechanisms underlying substance use 

disorders is glutamate neurotransmission and the brain circuits utilizing glutamate, in 

particular glutamatergic synapses in the corticostriatal system (4). The neurotransmitter 

glutamate interacts with metabotropic receptors (5, 6), N-methyl-D-aspartate (NMDA) 

receptors (7), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors (8), each of which has been implicated in animal models of substance use 
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disorders. Yet human clinical trials aimed at modulation of these various molecular partners 

of glutamate for treatment of substance use disorders have shown mixed results at best (9–

11). One alternative strategy to targeting glutamate receptors is to pharmacologically 

modulate the proteins responsible for maintaining homeostatic glutamate concentrations at 

the synapse (12). Multiple classes of addictive drugs disrupt glutamate homeostasis, 

resulting in excessive release of glutamate, which is thought to trigger relapse to drug 

seeking (13, 14). Glutamate transporter 1 (GLT-1; also referred to as excitatory amino acid 

transporter, EAAT2) is responsible for the majority of glutamate uptake in brain areas 

implicated in addiction (15), and is thus critically involved in addiction related glutamate 

homeostasis.

The purpose of this review is to highlight literature demonstrating the effects of drugs of 

abuse to reduce GLT-1, and to describe the largely ameliorating effects of restoring GLT-1 

on substance use disorders in pre-clinical and clinical research. We discuss the literature 

relevant to each general class of addictive drug and studies that have been conducted with 

compounds that restore the function of GLT-1. In particular, two compounds have been 

studied extensively in this regard, N-acetylcysteine (NAC) and ceftriaxone.

N-acetylcysteine was developed as mucolytic agent for treating cystic fibrosis, and is also 

used to treat acetaminophen poisoning (16), where it acts as a procystine drug to increase 

glutathione synthesis and help offset the potentially lethal redox imbalance created by 

acetaminophen (17). Ceftriaxone is a third generation cephalosporin antibiotic with a beta 

lactam core. However, it has been identified as a potent upregulator of GLT-1 with 

protective effects in mouse models of amyotrophic lateral sclerosis (ALS) (18), and is now 

in clinical trials for ALS (19). Several other beta lactam containing drugs were also shown 

to increase GLT-1 transcription via nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-kB) (20).

Cocaine

The regulation of GLT-1 in the nucleus accumbens, dorsal striatum, and prefrontal cortex 

has been examined in nine pre-clinical studies as outlined in table 1(21–29). In contrast to 

measurements in the core subcompartment of the nucleus accumbens (NAcore), these 

studies have demonstrated no changes in GLT-1 expression in prefrontal cortex (PFC) or 

dorsal striatum; although, GLT-1 activity is decreased in dorsal striatum after experimenter-

administered cocaine. The majority of these studies have employed cocaine self-

administration. Typically, cocaine delivery is paired with cues, for example a simultaneous 

presentation of a light and a tone, and these cues are capable of reinstating drug seeking (an 

animal model of relapse) after an extended period (1 week to 90 days) of drug 

unavailability. Drug seeking can also be reinstated by re-exposure to the context previously 

paired with drug or an experimenter-delivered priming injection of cocaine.

All but one of 6 studies employing cocaine self-administration showed that GLT-1 protein 

and/or sodium-dependent glutamate uptake was reduced in NAcore. One of these studies 

extensively characterized the effects of self-administered cocaine on GLT-1 by varying the 

length of cocaine access (2 hours vs. 6 hours) and withdrawal (2 days vs. 45 days) on GLT-1 
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protein levels in the NAcore and neighboring accumbens subcompartment NAshell. This 

study found that the NAcore exhibits a more profound cocaine-induced loss of GLT-1 

protein and a stronger correlation between GLT-1 downregulation and length of cocaine 

access and withdrawal. GLT-1 downregulation becomes increasingly pronounced with 

longer periods of abstinence from cocaine. Interestingly, the more profound the loss of 

GLT-1, the more profound its restoration by ceftriaxone (24), suggesting a homeostatic 

restoration of GLT-1. The possibility of homeostatic normalization (i.e. restoring GLT-1 to 

physiological levels, and not further increasing past physiological levels) is supported by the 

fact that neither ceftriaxone nor NAC raise levels of GLT-1 in NAcore in control animals 

(21).

In total there are 12 studies (21–24, 26–33) characterizing the normalization of GLT-1 in 

cocaine treated animals by systemic or intra-accumbens NAC, ceftriaxone, or the 

methylxanthine, propentofylline (reviewed in table 2). All studies examining the 

reinstatement of cocaine seeking discovered that these therapies prevent reinstatement by 

context, cue, or cocaine injection, with the exception that cocaine reinstatement after two 

days of withdrawal is not prevented by ceftriaxone (24). Prevention of reinstatement 

depends on upregulating GLT-1 in NAcore and not NAshell (24). Selective inhibition of the 

restoration of GLT-1 in NAcore by local microinjection of GLT-1 antisense prevented NAC 

from inhibiting reinstated cocaine seeking (23). This knock-down study also revealed that 

another target for NAC, the cystine-glutamate exchanger, was not a factor in cue-induced 

reinstatement. Thus, the relapse prevention conferred by NAC was not impaired by 

antisense knockdown of cystine glutamate exchanger in NAcore. This study conclusively 

demonstrated that GLT-1, not cystine-glutamate exchange is the primary target for chronic 

NAC in ameliorating reinstated cocaine seeking. As an important translational step in 

evaluating NAC, daily injections of NAC for two weeks during extinction training produced 

an enduring reduction in reinstated cocaine seeking even 2–3 weeks after the last NAC 

injection (32, 33). NAC also blocked the locomotor sensitization to repeated experimenter 

administered injections of cocaine, and prevented the escalation of cocaine seeking in 

animals with extended access (6 hour daily sessions instead of 2 hour daily sessions) (30). In 

contrast to escalated cocaine self-administration, a number of studies found that neither 

NAC nor ceftriaxone decreased the maintenance level of cocaine intake during short access 

cocaine self-administration (28, 30, 31).

These pre-clinical data are largely consistent with the results of a recent double-blind 

placebo controlled trial of NAC for treating cocaine dependence (34). In this trial, NAC 

showed no difference from placebo in self-reported cocaine use or cocaine positive urines. 

However, an exploratory analysis of 13 patients that were abstinent at the start of the trial 

showed a significant prolongation of time to relapse. Thus, both pre-clinical and clinical 

evidence suggests that NAC may not be an effective medication for cocaine cessation, but 

rather is an effective treatment for relapse prevention in cocaine abstinent individuals. The 

capacity of NAC to protect against relapse without inhibiting active use is consistent with 

the aforementioned preclinical studies showing that NAC inhibits reinstated cocaine 

seeking, but not cocaine self-administration. The possibility that NAC may selectively block 

the motivation to seek drug (craving) rather than the rewarding properties of cocaine is 

further indicated by two small double-blind crossover trials in cocaine dependent individuals 
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showing NAC reduced the desire to use cocaine initiated by either cocaine-associated cues 

(35) or an IV infusion of cocaine (31). Additional clinical trials are reviewed in table 3 (36, 

37)

One final preclinical study determined that the self-administration of either cocaine or 

sucrose produced equivalent reductions of GLT-1 in NAcore (29). This raises the possibility 

that self-administration of a reinforcer, whether drug related or not, can decrease the levels 

of GLT-1 in the NAcore. However, in this study there was no yoked-saline control group for 

comparison, so it is unknown if the levels of GLT-1 were reduced by sucrose or cocaine, or 

if both treatments were ineffective relative to a proper control group.

Opioids

The one study employing heroin self-administration showed marked decreases in GLT-1 

protein and glutamate uptake in NAcore (38). Research on the relationship between GLT-1 

and opioids using experimenter-administered morphine are more mixed. Noncontingent 

morphine administration decreases GLT-1 protein levels in the dorsal horn of the spinal cord 

(39), cerebellum, cortex (40), thalamus and striatum (41). Withdrawal from morphine, in 

contrast, increases GLT-1 protein in striatum (41) and in hippocampus (40). Surprisingly, 

the increased hippocampal levels of GLT-1 are localized strictly to synaptic terminals of 

neurons despite the fact that GLT-1 (normally restricted to astrocytes) was virtually absent 

from these terminals in control animals.

Pharmacologically manipulating GLT-1 affects the motivational (i.e. reinstatement) and 

somatic (e.g. tolerance and withdrawal) effects of opioid use, with the former arising from 

on GLT-1 upregulation in nucleus accumbens (38, 42), and the latter depending on GLT-1 

upregulation in locus coeruleus (43). NAC restores glutamate uptake after heroin self-

administration, and thereby prevents glutamate overflow and reinstated heroin seeking (38). 

The protection against heroin reinstatement endures up to 40 days after discontinuing daily 

NAC (44). Conditioned place preference, a model in which an animal chooses to spend time 

in an environment previously paired with experimenter-administered drug, is prevented by 

MS-153 (45) (a GLT-1 “agonist”) and promoted by TBOA (46) (a glutamate uptake 

antagonist).

GLT-1 manipulation also decreases morphine tolerance and withdrawal (reviewed in table 

2) (47–49). Interestingly, this effect partly depends on GLT-1 expression in the dorsal horn 

of the spinal cord (39). Amitriptyline prevents morphine tolerance (defined as loss of the 

anti-nociceptive property of acute morphine) and this is associated with a reversal of the 

spinal glutamate overflow induced by an acute morphine injection in chronically morphine 

treated animals. Both effects of amitriptyline depend on upregulating GLT-1, which in turn 

depends on NFkB signaling, indicating that amitryptiline and ceftriaxone (20) may share a 

common mechanism in upregulating GLT-1.

To date, no clinical studies have investigated GLT-1 manipulation as a treatment for opioid 

use disorders in humans.
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Ethanol

While noncontingent administration of ethanol reduces glutamate uptake (without affecting 

GLT-1 levels) in the nucleus accumbens (50), the evidence from ethanol self-administration 

animal models shows mixed effects on GLT-1 mediated glutamate uptake. One study, 

comparing alcohol preferring cAA rats with and without 20 months of ethanol consumption 

under a two-bottle choice paradigm, demonstrated decreased glutamate uptake in cortex 

(51). Another study, comparing Sprague-Dawley rats consuming dextrose or 6–7.5% ethanol 

in their diet for two weeks found no change in protein expression levels or uptake in 

hippocampus, cortex, or hypothalamus (52). A third study, in which P (alcohol preferring) 

rats had free access to two concentrations of ethanol or water for five weeks showed 

decreased GLT-1 protein in nucleus accumbens but not PFC (53). In contrast to these mixed 

results on GLT-1 protein, a number of studies (reviewed in table 2) demonstrate that 

following ethanol self-administration, treatment with ceftriaxone to increase GLT-1 and 

glutamate transport in the accumbens, PFC and/or amygdala reduces ethanol use or 

reinstated ethanol seeking (53–56). The decrease in ethanol self-administration produced by 

increasing GLT-1 protein is contrary to cocaine and opioids where restoration of GLT-1 did 

not affect the rates of self-administration.

No clinical trials have specifically investigated the effect of NAC or other compounds that 

increase GLT-1 synthesis for treatment of alcohol dependence. However, one group 

conducted a post-hoc analysis of patients with bipolar disorder whose depressive symptoms 

were successfully treated with NAC (57) but found no decrease in alcohol drinking (58). 

Other trials have investigated the effects of NAC on liver disease associated with alcohol 

consumption (59, 60), and post-hoc analyses of these data sets would be interesting in light 

of the pre-clinical effects of NAC in decreasing ethanol self-administration.

Nicotine

Three studies have examined the effects of nicotine on GLT-1 protein levels. Nicotine self-

administration decreases GLT-1 in NAcore (61, 62) but experimenter administered nicotine 

does not (62). In addition, self-administered nicotine reduces GLT-1 only in the accumbens, 

and does not affect GLT-1 in PFC, amygdala, or ventral tegmental area (VTA) (62). 

Interestingly, GLT-1 protein is upregulated in cerebellum both by pre-natal and post-natal 

exposure to nicotine (63). Ceftriaxone administration in pre-clinical models prevents 

tolerance (64) and withdrawal (65) symptoms from experimenter-administered nicotine. 

Ceftriaxone also prevents reinstatement, but not the acquisition or extinction of conditioned 

place preference (65). NAC decreases nicotine self-administration, and was also found to 

transiently decrease food self-administration in one study (66).

A number of clinical trials have examined the effects of NAC on human cigarette 

consumption. A small, short term double blind trial demonstrated no reduction in self-

reported craving, and a mild reduction in self-reported withdrawal symptoms. However, this 

group found a strong reduction in self-reported rewarding effects of the first cigarette 

smoked after an abstinent period (67), which is consistent with pre-clinical data showing 

decreases in self-administration due to NAC. Another study revealed a reduction in the 
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number of cigarettes smoked after 4 weeks of NAC treatment, without affecting estimates of 

nicotine craving or withdrawal (62). Clinical trials failed to show decreased use of incidental 

nicotine in cannabis dependent adolescents (68), patients with bipolar disorder (58), and 

smokers being evaluated for the effects of NAC on mutagenic markers (69) (although this 

group was specifically instructed not to modulate their smoking habits during the trial). In 

contrast, NAC showed transient benefits for nicotine dependence over placebo in patients 

with comorbid pathological gambling (70). A promising new avenue of research is a 

combination therapy of varenicline and NAC, which has shown tolerability in an open-label 

trial (71).

Amphetamine/methamphetamine

No self-administration studies have examined the link between amphetamine use disorder 

and GLT-1. However, three studies have examined effects of experimenter-administered 

amphetamine on GLT-1. One study found increased GLT-1 protein in dorsal striatum (72), 

while another showed only a non-significant trend in this direction (73). Interestingly, 

amphetamine appears to reverse GLT-1 transport of glutamate in cerebral cortex (74). 

Experimenter administered amphetamine increased glutamate levels and this effect was 

blocked by administration of dihydrokainate (DHK) or l-trans-2,4-pyrrolidine dicarboxylate 

(PDC) (GLT-1 inhibitors that normally increase extracellular glutamate). Amphetamine has 

established roles in reversing other neurotransmitter transporters, such as the dopamine 

transporter (DAT) and the vesicular monoamine transporter (VMAT) (75), although the 

authors propose a non-specific effect on glutamate uptake transporters due to hypoxia 

secondary to amphetamine-induced vasoconstriction. Ceftriaxone prevents locomotor 

sensitization following repeated amphetamine treatment (76), and blocks reinstatement but 

not the acquisition of conditioned place preference (77). However, GLT-1 activation by 

MS-153 (45), or GLT-1 viral overexpression in NAshell (42) are both capable of preventing 

the acquisition of conditioned place preference to amphetamine.

One clinical trial investigated the use of NAC in combination with naltrexone for 

methamphetamine use disorders, with negative results (78). It is difficult to interpret this 

finding in light of the complete lack of pre-clinical studies examining a link between self-

administered amphetamine/methamphetamine and GLT-1.

Cannabinoids

One study determined that WIN (a cannabinoid CB1 receptor agonist) or delta-9-THC 

administered to pregnant dams resulted in offspring with increased cerebral GLT-1 protein 

and glutamate uptake (79). An additional study determined that ceftriaxone diminishes some 

aspects of cannabinoid tolerance (80).

Despite the scarcity of pre-clinical research on the link between GLT-1 and cannabinoids, 

clinical trials of NAC for cannabis use disorders are extensive and highly promising. NAC is 

well tolerated and may appears to decrease craving for cannabis (81), although one open-

label trial found negative results (82). Interestingly, despite a lack of self-reported decreases 

in days of use, an 8-week, 116 subject double blind RCT examining the effect of NAC in 

cannabis dependent adolescents demonstrated a large effect for decreasing cannabis positive 
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urines in NAC vs. placebo (83), leading to the initiation of a multi-site phase 3 trial for 

treatment of cannabis dependent adults (84). This is the clearest example of efficacy yet 

demonstrated for a GLT-1 modulating therapy in substance use disorders.

Other disorders of compulsive behavior

In addition to the effects on substance abuse listed above, NAC has demonstrated efficacy 

for treatment of pathological gambling (70, 85), and demonstrated a large effect size for 

treatment of trichotillomania (86). Compulsivity has been suggested as a late phase 

development in substance use disorders (87). Substance use disorders, unlike 

trichotillomania and other disorders of the obsessive-compulsive spectrum (88), involve a 

distinct rewarding, pleasurable quality. NAC, which reduces craving but not rewarding 

properties (31) may be less effective at curbing substance use disorders than it is at curbing 

compulsive disorders that are more strictly negatively reinforcing. However, the role of 

GLT-1 in modulating the negative and positively reinforcing properties of compulsive, 

pathological behaviors remains an open question that will require further clinical and 

laboratory trials with humans.

Unanswered Questions

What are the relationships between drug use model and GLT-1 effects?

We have discussed various models of drug use which vary by drug class and administration 

paradigm (e.g. experimenter administered vs. self-administered). The relationship of drug 

use model to GLT-1 effects appear to depend partly on both of these factors. While most of 

the studies employing a self-administration paradigm demonstrate decreases in GLT-1 

expression, those employing experimenter-administered drug show no changes in protein 

levels for nicotine, ethanol, or cocaine, and either no change or increased protein levels in 

the case of amphetamine/methamphetamine. However, experimenter administered drug can 

modulate GLT-1 function in the absence of protein level changes. This modulation takes the 

form of a decrease in the case of ethanol and cocaine, and a reversal of function in the case 

of amphetamine. In contrast, experimenter administered opiates consistently downregulate 

GLT-1 protein. This finding may be partly explained by a study demonstrating that 

astrocytes cultured in the presence of delta opioid receptor agonists or the absence of 

glutamate have reduced GLT-1 expression(89). Thus, opiates may directly downregulate 

GLT-1 protein via delta opioid signaling, while other drugs may depend on drug-induced 

changes in extracellular glutamate in NAcore.

Is GLT-1 modulation a necessary mechanism for all effective substance use disorder 
treatments?

As outlined above, restoring GLT-1 function ameliorates drug use in animal models and 

clinical trials. Here we ask the question whether restoring GLT-1 may be an off-target action 

of other treatments for substance use disorders, and thus constitute a general mechanism 

whereby treatments can reduce drug dependence. Recently, levodopa was found to reverse 

long-access induced escalation of cocaine intake in a subset of rats (90) with decreased 

dopamine signaling, and demonstrated positive results in a subset of cocaine dependent 

patients hypothesized to have decreased dopamine synthesis (91). Interestingly, levodopa 
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treatment of rats with a lesion of the dopamine system produced increases of GLT-1 mRNA 

in the striatum, while no effects on GLT-1 resulted from levodopa in unlesioned rats (92). 

This suggests that GLT-1 upregulation may underlie levodopa’s ability to treat cocaine use 

disorders selectively in humans and rats with diminished dopamine signaling. Also along 

these lines, subanesthetic ketamine administration signals via mammalian target of 

rapamycin (mTOR) activation (93) and mTOR activation is necessary for the epidermal 

growth factor (EGF) and insulin mediated upregulation of GLT-1 in cultured astrocytes (94). 

Subanesthetic ketamine treatment has recently shown preliminary positive effects in a small 

double-blind cross-over trial, in which cocaine dependent patients reported decreased 

craving (95). This suggests that sub-anesthetic ketamine may exert anti-craving effects 

through mTOR-mediated upregulation of GLT-1 in accumbens core astrocytes. 

Interestingly, a short course of experimenter administered ketamine injections led to 

decreased GLT-1 expression in hippocampus that persisted for up to six months (96). 

However, opposite changes in GLT-1 protein levels have been reported in hippocampus 

versus NAcore following opioid administration (38, 40). Therefore, a decrease in 

hippocampal GLT-1 following ketamine does not necessarily preclude an increase in 

NAcore GLT-1.

What important differences are there among GLT-1 upregulating therapies?

Included in this review are pre-clinical studies using a host of drugs to upregulate GLT-1 as 

a therapy for substance use disorders. Most of these studies used NAC or ceftriaxone, but 

GPI-1046, amitryptiline, and propentofylline also upregulated GLT-1. Clavulanic acid, a 

beta lactam-containing drug (which likely upregulates GLT-1) also prevents several 

morphine dependent behaviors (97). Several additional drugs exist which are capable of 

upregulating GLT-1 (98, 99). The variety of drugs available for upregulating GLT-1 may be 

advantageous, as multiple treatment options with different side effect profiles can be offered 

to patients based on their particular desires or concerns. These drugs may also differ in their 

efficacy due to mechanism for regulating GLT-1 or bioavailability to the brain. For example, 

although both propentofylline and NAC are capable of preventing relapse to substance use 

disorders in pre-clinical models, the relapse prevention ability of NAC persists for a long 

time after discontinuation of NAC (44), whereas relapse prevention by propentofylline is 

gone by six days after discontinuating daily propentofylline (27). The necessity of GLT-1 

upregulation for the therapeutic effects of NAC does not preclude the possibility of NAC 

having other complementary mechanisms, such as normalizing redox imbalances associated 

with drug abuse (100).

A second, related question regards the mechanism underlying GLT-1 upregulation by these 

various therapies. Ceftriaxone’s mechanism of GLT-1 upregulation is dependent on NFkB-

induced increased transcription (20), and there is evidence that amitryptiline shares this 

mechanism (39). In contrast, NAC decreases NFkB signaling in multiple cell lines (101, 

102), and the mechanism responsible for NAC-induced GLT-1 upregulation remains 

undetermined. GLT-1 can be therapeutically upregulated at the level of translation (98) 

rather than transcription, although the relative effects of GLT-1 upregulation via these two 

pathways have not been determined in pre-clinical substance use disorder models.
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What side effects may be expected from upregulating GLT-1?

GLT-1 is an important modulator of the glutamatergic system. Glutamate, as a highly 

abundant neurotransmitter, plays a role in almost every brain function, raising concerns 

about off-target effects might occur from restoring or upregulating GLT-1. Surprisingly little 

research has investigated this obvious question. GLT-1 upregulation may slightly delay 

motor skill re-learning after stroke (103), and may or may not interfere with cognitive 

functions such as object recognition (104) and spatial navigation (105). GLT-1 upregulation 

effectively treats substance use disorders via restoration of normal GLT-1 levels in areas 

such as nucleus accumbens where GLT-1 has been decreased by exposure to drugs of abuse. 

But GLT-1 upregulation by these therapies may result in supra-normal expression levels in 

brain areas without substance-induced GLT-1 downregulation. In addition to non-specific 

effects on the glutamate system, all therapies that decrease drug seeking in animal models 

are potentially concerning for their effects on non-pathological motivated behaviors (e.g. 

food seeking) and other dopamine related functions (e.g. locomotion). Only one study 

reviewed here demonstrated that NAC transiently decreased food consumption (66). As the 

acute effects of NAC depend partly on indirect stimulation of pre-synaptic mGluR2/3 

receptors (106), and stimulation of these receptors decreases motivation to consume food 

(107), it is likely that these transient effects were not due to GLT-1 upregulation. In 

addition, multiple studies reviewed here found no effects of GLT-1 manipulation on 

locomotion (27, 30).

Conclusion

Despite several remaining questions concerning mechanisms of GLT-1 regulation and 

therapeutic efficacy, the majority of pre-clinical and clinical research reviewed here suggests 

that GLT-1 upregulation is a promising strategy for treating substance use disorders and 

other disorders characterized in part by compulsive behavior. As the translational gap 

between initial discovery (108) and phase 3 clinical trials (84) is closed, therapies targeting 

GLT-1 upregulation may offer new solutions to some of our most crippling public health 

problems.

ABBREVIATIONS

GLT1 glutamate transporter 1 aka EAAT2 (excitatory amino acid transporter 2)

NAC N-acetylcysteine

NAcore nucleus accumbens core

NAshell nucleus accumbens shell

PFC prefrontal cortex

VTA ventral tegmental area

CPP conditioned place preference

CPA conditioned place aversion

PDC l-trans-pyrrolidine-2,4- dicarboxylic acid high affinity glutamate transporter inhibitor

DHK dihydrokainic acid GLT-1 inhibitor
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GPI-1046 a neuroimmunophilin which upregulates GLT1

ND not done
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TABLE 1

EFFECTS OF DRUGS OF ABUSE ON GLT-1 AND GLUTAMATE UPTAKE

Citation Drug of abuse Drug administration route Changes in GLT-1 expression Changes in glutamate 
uptake

(74) Amphetamine Experimenter administration ND (not done)

Reversal of function - 
increased glutamate in 
dialysate following 
amphetamine injection, can 
be blocked by administering 
GLT-1 blockers

(73)

Amphetamine Experimenter administration

No change in protein levels in 
VTA, substantia nigra, nucleus 
accumbens, PFC, or dorsal striatum 
(although this showed a trend)

ND

(79)
Cannabinoid receptor 
CB1 agonist (WIN)

Experimenter administration to 
pregnant dams

Increased protein levels but not 
mRNA levels in PFC of offspring

Increased in PFC of 
offspring

(21) Cocaine Self administration Decreased protein in nucleus 
accumbens

Decreased in nucleus 
accumbens

(23) Cocaine Self administration Decreased protein in NAcore ND (sodium independent 
only)

(24) Cocaine Self administration

Decreased protein in NAcore 
correlates strongly with length of 
access and length of withdrawal, 
decreased protein in NAshell 
correlates weakly with both 
measures

ND

(22) Cocaine Self administration ND Decreased in NAcore

(25)
Cocaine Self administration

Decreases are greater in NAcore 
than NAshell in long-access 
animals

ND

(26) Cocaine Experimenter administration No change in dorsal striatum Decreased in dorsal striatum

(29) Cocaine Self administration No change in accumbens relative to 
food trained animals ND

(27) Cocaine Self administration Decreased protein in NAcore but 
not dorsomedial PFC ND

(28) Cocaine Self administration Decreased protein in NAcore ND

(53) Ethanol Self administration Decreased in accumbens but not 
PFC ND

(52) Ethanol Self administration No change in hippocampus, 
hypothalamus, or cortex

No change in hippocampus, 
cortex, or hypothalamus

(51) Ethanol Self administration ND Decreased in cerebral cortex

(50) Ethanol Experimenter administration No change in protein in NAcore Decreased glutamate uptake 
in NAcore

(38) Heroin Self administration Decreased protein in NAcore Decreased in NAcore

(96)
Ketamine Experimenter administration

Decreased protein in hippocampus 
persists for up to 6 months after 12 
days of administration ND

(72)
Methamphetamine Experimenter administration

Increased protein in dorsal striatum, 
no changes in cortex, thalamus, 
hippocampus, amygadala

ND

(40)

Morphine Experimenter administration 
(assessed during withdrawal)

Increased protein in hippocampus 
(specifically in neuron terminals); 
no change in mRNA; no changes in 
astrocytes

Decreased in cerebellum 
and cortex, increased in 
hippocampus
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Citation Drug of abuse Drug administration route Changes in GLT-1 expression Changes in glutamate 
uptake

(39) Morphine Experimenter administration Decreased protein in dorsal horn of 
spinal cord ND

(41)

Morphine, naloxone Experimenter administration

Decreased protein levels in 
thalamus and striatum following 
morphine, abundant increase in 
protein levels in striatum after 
naloxone administration to 
dependent animals

ND

(62) Nicotine Self administration and 
experimenter administration

Decreased protein in NAcore for 
self-administration group but not 
experimenter-administration group; 
no changes in VTA, PFC, or 
amygdala

ND

(61) Nicotine Self administration Decreased protein in NAcore ND

(63)

Nicotine

Experimenter administration to 
pregnant dams and w/or w/o 
additional administration to 
offspring

Increased protein in cerebellum, 
higher increases in offspring who 
receive additional nicotine ND
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TABLE 2

EFFECTS OF GLT-1 MANIPULATION ON PRE-CLINICAL MODELS OF SUBSTANCE USE 

DISORDERS

Reference Drug of abuse GLT-1 pharmacotherapy Effects on drug abuse behavior Role of GLT-1

(76) Amphetamine Ceftriaxone
prevents locomotor sensitization of 
amphetamine ND

(80) Cannabinoids Ceftriaxone prevents some aspects of tolerance ND

(21)

Cocaine Ceftriaxone, NAC
prevents cue- and cocaine-induced 
reinstatement; no locomotor effects

restores protein 
levels in 
NAcore, no 
effects on 
protein levels in 
PFC, no effects 
in naïve rats

(30) Cocaine NAC

prevents escalation in long access 
model, prevents behavioral 
sensitization, prevents cocaine-
induced reinstatement ND

(31) Cocaine NAC

decreases cocaine-induced 
reinstatement but not cocaine self-
administration ND

(32) Cocaine NAC

prevents cocaine, context, or cue-
induced reinstatement after 
abstinence or extinction, up to two 
weeks after discontinuation of NAC ND

(23)

Cocaine
NAC, RNA anti-sense 
morpholinos against GLT1

NAC prevents cue-induced 
reinstatement

restores protein 
levels in 
NAcore; NAC 
in combination 
with GLT1 
knockdown 
increases cue-
induced 
reinstatement to 
levels beyond 
vehicle

(29) Cocaine Ceftriaxone

prevents cue-induced reinstatement 
but not reinstatement to food 
seeking

increased 
protein levels in 
accumbens and 
PFC

(24) Cocaine

Ceftriaxone, DHK or 
TBOA (GLT-1 
antagonists)

prevents reinstatement after 
extended withdrawal but not short 
term withdrawal

restores protein 
levels 
proportionally 
to their cocaine-
induced 
decrease in 
NAcore and 
NAshell; 
behavioral 
effect depends 
on GLT-1 
activity in 
NAcore but not 
NAshell

(22) Cocaine Ceftriaxone
no effects on drug seeking during 
extinction

restores uptake 
in accumbens

(33) Cocaine NAC

prevents cocaine and cue induced 
reinstatement of cocaine seeking, 
effect persists for two weeks after 
discontinuation of NAC ND
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Reference Drug of abuse GLT-1 pharmacotherapy Effects on drug abuse behavior Role of GLT-1

(26) Cocaine Ceftriaxone ND
No change in 
dorsal striatum

(27) Cocaine

Propentofylline, 
morpholinos against 
GLT-1 in NAcore

Transiently prevents cue and 
cocaine primed reinstatement

Restores GLT-1 
in NAcore; 
knockdown of 
GLT1 in 
NAcore 
abolishes 
reinstatement-
prevention 
effects

(28) Cocaine Ceftriaxone

enduring prevention of cocaine 
reinstatement, no effects on self-
admin; prevents locomotor 
sensitization

restores protein 
in accumbens

(55) Ethanol Ceftriaxone decreased ethanol drinking

increased 
protein in PFC, 
accumbens, and 
amygdala

(54) Ethanol Ceftriaxone

prevents reinstatement to ethanol 
without affecting reinstatement for 
sucrose

increased 
protein levels in 
accumbens and 
PFC

(56) Ethanol Ceftriaxone decreased ethanol drinking

increased 
protein levels in 
accumbens and 
PFC

(53) Ethanol GPI-1046 decreased ethanol drinking

increase protein 
levels in PFC 
and restores 
protein levels in 
accumbens

(38) Heroin

Ceftriaxone, morpholinos 
against GLT-1 in 
accumbens core prevents cue-induced reinstatement

restores 
glutamate 
uptake; relapse 
prevention is 
abolished by 
GLT-1 
knockdown in 
NAcore

(44) Heroin NAC

decreases drug seeking during 
extinction and prevents 
reinstatement, an effect persisting 
up to 40 days after disconinuation 
of NAC ND

(77) Methamphetamine Ceftriaxone

prevents reinstatement of 
methamphetamine CPP but not 
acquisition

Increased 
mRNA in PFC 
but not 
accumbens

(45) Methamphetamine, cocaine, morphine MS-153 (GLT1 “agonist”)

prevents CPP for all classes of 
drugs without affecting their acute 
locomotor effects ND

(42) Methamphetamine, morphine Viral over-expression

Blocks acquisition of 
methamphetamine and morphine 
CPP without affecting withdrawal 
symptoms

Increased 
protein levels in 
NAshell

(39) Morphine Amitryptyline

Prevents tolerance to anti-
nociceptive effects of acute 
morphine

Restores/
overexpresses 
protein in dorsal 
horn of spinal 
cord, prevents 
glutamate 
overflow due to 
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Reference Drug of abuse GLT-1 pharmacotherapy Effects on drug abuse behavior Role of GLT-1

acute morphine 
administration 
in morphine 
exposed 
animals

(47) Morphine Ceftriaxone

prevents naloxone induced 
withdrawal symptoms in morphine 
dependent rats ND

(49) Morphine Ceftriaxone, DHK
prevents morphine tolerance to anti-
nociceptive effects

morphine 
tolerance 
prevention 
requires GLT-1 
(is blocked by 
DHK)

(48) Morphine Ceftriaxone, TBOA
prevents morphine induced 
hyperthermia

Effect depends 
on glutmate 
uptake (blocked 
by TBOA)

(43) Morphine Viral over-expression

prevents naloxone induced 
withdrawal symptoms in morphine 
dependent rats

Increases 
glutamate 
uptake and 
protein levels

(46) Morphine, naloxone TBOA
facilitates naloxone-induced CPA 
and morphine CPP ND

(65) Nicotine Ceftriaxone

prevents reinstatement of CPP but 
not acquisition or extinction; 
decreases nicotine withdrawal ND

(66) Nicotine NAC

decreases self-administration of 
nicotine, transiently decreases self-
administration of food ND

(64) Nicotine Ceftriaxone
decreases tolerance to nicotine’s 
anti-nociceptive effects ND
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