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1.  Introduction 
 
      Measured X-ray powder diffraction line profiles are affected by the geometry of the diffractometer, the 
shape of the X-ray emission spectrum and the physical characteristics of the sample as shown 
diagrammatically in Fig. 1. Certain aberrations embodied in the geometric instrument profile are highly 
asymmetric and will displace the observed position of profile maxima; therefore, these maxima are not 
indicative of the true lattice spacing. Furthermore, the level and direction of the displacement can vary 
dramatically as a function of diffraction angle. High-accuracy determination of the crystallite lattice 
spacing from measured line profiles requires accounting for such effects in the model for line profile shape. 
The Fundamental Parameters Approach (FPA) for the description of X-ray line profiles is a convolution-
based line profile modeling method that describes the measured line profiles as the convolution of peak 
profiles representing the emission spectrum with a number of aberration functions, each representing a 
certain aspect of the instrument configuration or sample microstructure that affects the measured peak 
position and/or shape. The parameters of FPA models are entirely interpretable in terms of the physical 
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Fig. 1. Generation of a line profile via convolutions in the FPA. 
 
 
characteristics of the underlying experimental set-up. Non-physical parameters obtained in an FPA analysis 
can be used as a “feedback loop” in discerning difficulties with regards to the experimental setup [1]. 
      The FPA is the primary means by which X-ray line profiles are analyzed in the development of 
National Institute of Standards and Technology (NIST) Standard Reference Materials (SRMs) for powder 
diffraction. The SI traceability of the lattice parameter measurement is established through the 
characterization of the Cu Kα emission spectrum as provided by Hölzer [2]. The FPA models used for 
powder diffraction patterns were developed initially by Wilson [3], and in essentially modern form by 
Cheary and Coelho [4-6]. Later additions included new models and corrections [7, 8]. One of the first 
publicly available codes to offer the FPA capability was Xfit, followed by Koalariet [9, 10]. Shortly after 
these two public domain codes ceased to be supported, the commercial product, Bruker Topas [11]1, was 
released, continuing with the same FPA formalism that had been established with the previous codes. With 
the use of Topas for SRM certification, commencing with SRMs 660a [12] and 640c [13], numerous self-
consistency studies were performed that indicated the FPA models within Topas were operating in 
accordance to expectations [8]. However, Topas is a proprietary code; a quantitative means to verify that its 
operation was in adherence with published FPA models was the development of an independent code 
written directly from the examination of said FPA models. 
      In this work, we present a robust set of numerical methods by which computations required for the FPA 
can be carried out. An implementation of the algorithms that are described, written in the Python [14] 
programming language, the NIST Fundamental Parameters Approach Python code (FPAPC), is provided as 
supplementary material2. We make no attempt to repeat any of the theory or background presented in [4, 5, 
8]; the focus is on clear and efficient implementation and verification. We introduce one new FPA model, 
for the defocusing across the face of a silicon-strip position-sensitive detector (Si PSD) in Sec. 2.5.7. All of 
the convolutions are carried out via multiplication in Fourier space, per the convolution theorem (see 
Appendix A, Sec. 5). As such, the emission spectrum and all of the aberrations are directly computed in 
Fourier space. The exceptions are the axial divergence and the flat-specimen models; these are computed in 
real space and then transformed into Fourier space. However, this approach leads to the periodicity implicit 

                                                 
1 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the U.S. government, nor is it intended to 
imply that the materials or equipment identified are necessarily the best available for the purpose. 
2 The Fundamental Parameters Approach Python Code (FPAPC) is provided by NIST as a public service. The FPAPC is provided for 
research purposes only and is not to be used for commercial purposes. Use of the FPAPC is subject to the terms and conditions which 
accompany the FPAPC itself. 
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in Fourier methods that distorts the function calculations at the boundaries; we therefore describe in Sec. 
2.6 a method to correct said periodicity errors. The organization and combination of parameters in this 
work, especially with respect to line shape and crystal size, is entirely for computational expediency, and 
does not reflect any physical relationship between these quantities. 
 
 
2.  Components of the Fundamental Parameters Model 
 
2.1  Definitions and Notation 
 
Ls   the length of the sample in the axial direction (perpendicular to the diffraction plane)  
Lx   the length of the X-ray source in the axial direction  
Lr   the length of the receiver slit in the axial direction  
R   the radius of the diffractometer, with the assumption of a symmetrical system  
2θ   the detector angle (twice the diffraction angle)  
Ω   the specimen angle  
β   the angle of a ray of X-rays off the equatorial plane (in the axial direction)  
W   the full width, in 2θ space, of the window over which a peak is being computed  
2θ0   the center of the computation window  
N2θ   the number of bins in the computation window  

[ ]iε    the ith element of array ε , with [0]ε  being the first element  
[ ]iε −
    the ith element from the end of array ε , so [ 1]ε −

  is the last element  
[ : ]i jε    the elements of an array ε  with indices between i and j−1 (inclusive), so it has length j−i  

xε +    an operation between an array and a scalar operates element-by-element on the array with the scalar  
xε +     an operation between two arrays is done element-by-element  

( )f ε    a function applied to an array is an array of the same length with the function applied to each 
            element 
#   in pseudo-code sections, everything after this on a line is a comment  
 

scaling   we will present all equations below in a manner that is mostly compatible with the usage 
established by Topas. Lorentzian widths and Gaussian widths are expressed as the full-width at 
half-maximum (FWHM) of the peak shape. However, all lengths are uniformly scaled; any 
consistent unit of length can be used, but all lengths must be the same units. The reference code 
we provide takes all angles in degrees, and converts them internally to radians. 

 
2.2  Initialization of Parameters 
 
      To start a calculation, we assume that the result will be a peak shape, uniformly gridded in 2θ space, 
centered at 2θ0, with N2θ points (which will typically be even and either a power of two or, for modern Fast 
Fourier Transforms (FFT) packages, products of powers of 2, 3, 5, and 7, typically), and with full width W. 
To match the standard of typical Fourier transform package implementations, using a common convention 
for transforms of purely real data sets, we will carry only the coefficients corresponding to non-negative 
angular frequencies. We will assume the length of the ω  array is 2 /2 1N θ + , in which the highest frequency 
cosine component is put at the end, rather than folded back into the zero-frequency bin as is the result of 
full, complex FFTs. The ω  array is initialized, then, to 
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2[ ] =j j
W
πω  

 
where W is in radians. 
 
2.3  Source Spectrum and Crystal Size 
 
      We handle the convolutions due to the emission spectrum and due to the crystal size parameters first, 
and together, because it is numerically efficient to do so. We initialize the Fourier transform buffer F  that 
will be multiplied with all the other convolutions with the sum of the transforms of the emission spectrum 
broadened by the peak size. These two are kept together because they each have Lorentzian and Gaussian 
components that are easily combined. It is important to note that these crystallite size contributions have 
nothing to do with the actual emission spectrum; the grouping is purely historical and convenient. 
      For an emission spectrum which is a set of nλ  lines, indexed by k, each with Lorentzian FWHM lk, 
Gaussian FWHM gk, intensity Ik, and wavelength kλ , and a Gaussian crystal size component SG and a 
Lorentzian crystal size component SL, and a reference wavelength 0λ  which is typically that of the 
strongest line in the spectrum, we define: 
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Then the transform buffer F  is initialized via: 
 

      
=1
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      Care must be exercised with respect to the sign on the complex term in the exponential. Some Fourier 
transform packages define this differently. It is suggested that if a code is written, the order of the lines in 
the spectrum be verified. If the spectrum is backwards in the diffraction pattern, this sign should be 
switched. 
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2.4  Axial Divergence 
 
      The axial divergence model of Cheary and Coelho [5] (referred to as the “full” axial divergence model 
in Topas) is effective for the computation of this complicated function for a wide variety of situations. 
However, it is very intricate, involving many tests for various boundary conditions, and if implemented 
without attention to numerical issues can be computationally expensive. We present an implementation that 
is functionally equivalent, but has many of the boundary conditions clarified, and which is less subject to 
numerical issues than a literal implementation would be. In particular, we handle the 1/ x  divergences so 
that the function can be evaluated more coarsely without loss of smoothness. 
      For the purposes of a practical implementation of this model, we need to be able to calculate 2 ( , )I β ε  
per Sec. 4.2 of [5] and then, ultimately, the full intensity profile including the effects of Soller slits via 
integration of their equation 27. The remainder of this section will present this in detail, concentrating on a 
clean algorithmic implementation, with all theoretical details being referred back to [5, 8]. 
      The first step of the calculation is to set up some parameters that will be needed (with locations in [5] 
where appropriate): 
 

  1 = (after eq. 15)
2

s xL L
R

β
−

      (3) 
 

  2 = (after eq. 15, correcting error in original)
2

s xL L
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+

   (4) 
 

  
2

0 = tan 2 (after eq. 26)
2
βeq        (5) 
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cot 2= (a constant we will need)
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Then, following eqs. 15a, b, c, d of [5], we compute the parameters 0Z +  and 0Z −  conditionally on β : 
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Then, from eqs. 18a, b of [5] (with corrections to 18b), 
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but noting the following reordering if 2 > 90θ  : the ε +  values get swapped with the corresponding ε −  
values, i.e. 1 1ε ε+ −

  and 2 2ε ε+ −
 . 

      The problem is then divided into two major domains, each with three minor ones. This is most easily 
done following Table 1 of [5]. This has been amended to include omitted reflections for formulas when 
2 > 90θ  . We present this in two formats: a pseudocode block in algorithm 1, and Table 1. 
 
 
Algorithm 1 Selection of computation boundaries and β ranges 
        if 0 0>rL Z Z+ −− : # wide receiver slit 

            if 0 2
rLZ + ≤  and 0 2

rLZ − ≥ − : 

                # parabola apexes entirely within slit 
                1 2 1 2= 1; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε+ + − −  

            else if 0 0>  and <
2 2

r rL LZ Z+ − 
 
 

 or 0 0>  and <
2 2

r rL LZ Z+ − − − 
 

: 

                # one apex outside of slit 
                2 1 1 2= 2; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε+ + − −  
            else: 
                # both apexes outside of slit 
                2 1 1 2= 3; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε+ + − −  
        else: # narrow receiver slit 

            if 0 0 and 
2 2

r rL LZ Z+ −≥ ≤ − : 

                # parabola apexes hanging off both ends of slit 
                1 2 1 2= 1; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε− + + −  

            else if 0 0>  and < <
2 2 2

r r rL L LZ Z+ − − 
 

 or 0 0< <  and <
2 2 2

r r rL L LZ Z+ − − − 
 

: 

                # one apex of beam within slit 
                2 1 1 2= 2; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε+ − + −  
            else: 
                2 1 1 2= 3; = ; = ; = ; =a b c drr ε ε ε ε ε ε ε ε+ − + −  
 
 
2.4.1  Computing Components of Axial Divergence Shape for Fixed β 
 
      Using the parameters from algorithm 1 or Table 1, we need to set up the equations from Table 1 of [5] 
for F1, F2, F3, and F4. These will be used exactly as defined in the original work, with rβ  defining the β  
range to select the equations. 
      However, this is the component of the computation where the most critical numerical issues must be 
addressed. First, we assume that the angle offset ε  is defined on a uniform grid centered at 0 and running 
from w−  to w where w is the half-width of a window on which the axial divergence function in being 
computed. It will be treated as an array ε  and stored as an array of n elements. All of the F functions 
compute pieces of a function 0 0/ | |y k ε ε+ − . This computation may well include the endpoint where 

0=ε ε ,where this function diverges. Also, due to the discrete binning of ε , it may include a point at which 
the argument (without the absolute value) is in fact negative, but should be truncated to 0. Further, due to 
the discrete binning, the sum of all of the sampled values of the function may not add up to the integral of 
the function over the bounds, resulting in inaccuracies in the total X-ray peak intensity, especially in the 
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              Table 1. Selection of computation boundaries and β ranges 
 

         Condition 1                         and                                                             Condition 2 
\rβ ε↓ →  aε  bε  cε  dε  

        0 0>rL Z Z+ −−                                                                                   0 0 and 
2 2

r rL LZ Z+ −≤ ≥ −  

1 1ε
+

 2ε
+

 1ε
−

 2ε
−

 

0 0 0 0>  and <  or >  and <
2 2 2 2

r r r rL L L LZ Z Z Z+ − + −   − −   
   

 

2 2ε
+

 1ε
+

 1ε
−

 2ε
−

 
                                                                                                                  any other range of 0Z  

3 2ε
+

 1ε
+

 1ε
−

 2ε
−

 

        0 0<rL Z Z+ −−                                                                                 0 0 and 
2 2

r rL LZ Z+ −≥ ≤ −  

1 1ε
−

 2ε
+

 1ε
+

 2ε
−

 

0 0 0 0>  and < <  or < <  and <
2 2 2 2 2 2

r r r r r rL L L L L LZ Z Z Z+ − + −   − − −   
   

 

2 2ε
+

 1ε
−

 1ε
+

 2ε
−

 
                                                                                                                  any other range of 0Z  

3 2ε
+

 1ε
−

 1ε
+

 2ε
−

 
 
 
case of sampling on a relatively coarse grid for computational speed. Finally, again due to discrete 
sampling, the first moment (centroid) of the distribution may not be exactly correct. This is particularly 
critical, since shifts in this result in inaccuracy of peak positions. Such shifts can be reduced by using finer 
computational grids, but this approach is very inefficient. Therefore, we adjust the result so that, in all 
cases, it has the exact centroid one would expect in the continuum limit. 
      All of these issues can be addressed with a single ‘helper’ function F0 which will be used to construct 
F1,2,3,4 in a unified manner. This is presented in the next section. 
 
2.4.2  Helper Function F0 
 
      This function will take as formal arguments 

• ε , the grid of angle offsets on which the results are computed 
• buffer accum



 with the same number of elements as ε


, and each bin will correspond to the line 
profile at the corresponding angle offset  

• 0ε , the position of the singularity  
• innere , the boundary closest to 0ε   
• outere , the boundary further from 0ε   
• k , the scale factor  
• 0y , the offset from zero  

The helper function will sum values of the 0 0/ | |y k ε ε+ −  into accum


 bins corresponding to ε  between 

innere  and outere , and assure all the numerical issues are dealt with. It correctly integrates up to the 
singularity, and also assures that the area and centroid of the returned function are accurate, in spite of the 
sampling of a continuous function onto a discrete grid. It will return the bin indices corresponding to the 
lowest bin and (highest bin)+1 it actually modified, so that other parts of the computation can work 
efficiently only on the non-zero parts of accum



. Because of the intricacy of this function, and the need to 
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describe it algorithmically, the details of it are in the Python implementation of the FPA provided as 
ancillary materials with this paper. The function ’axial_helper’ in the python code is the implementation of 
F0. 
 
2.4.3  Computing Complete Axial Divergence for Fixed β 
 
      With the assistance of the function in 2.4.2, the bookkeeping in Table 1 of [5] is straightforward to 
implement. The procedure for doing this is shown as pseudo-code in 2.4.4. When this process is complete, 
one has in hand the arrays representing the functions 2I +  and 2I −  for a given β  and 02θ . 
 
2.4.4  Carrying Out Table 1 Computation for I2 
 
      We define the various functions needed for Table 1 in terms of the helper F0. Note that F0 modifies the 
dst
d

 argument in place, and returns the lower and upper bounds of the part of the array which is modified. 
 
            ( )1 out in 0 0 in out 0 0 0( , , , , ) 2 2 , , , , , | | | |,0a b b aF dst F dstε ε ε ε θ θ ε ε ε ε ε ε ε≡ − − − −

d d d

 

       ( )2 out in 0 0 in out 0 0( , , , ) 2 2 , , , , , | |, 1a aF dst F dstε ε ε θ θ ε ε ε ε ε≡ − + − −
d d d

 

       ( )3 out in 0 0 in out 0 0( , , , ) 2 2 , , , , , | |, 1a aF dst F dstε ε ε θ θ ε ε ε ε ε≡ − + − +
d d d

 

       ( )4 out in 0 0 in out 0 0( , , , ) 2 2 , , , , , | |, 1a aF dst F dstε ε ε θ θ ε ε ε ε ε≡ − − − +
d d d

   (9) 

 
or, equivalently: 
 
      ( )1 out in 0 in 0 out 0 0 0 0 0( , , , , ) 2 , , 2 , 2 , 2 , | | | |,0a b b aF dst F dstε ε ε ε θ ε θ ε θ ε θ ε ε ε ε≡ + + + − − −

d d d

 

 ( )2 out in 0 in 0 out 0 0 0 0( , , , ) 2 , , 2 , 2 , 2 , | |, 1a aF dst F dstε ε ε θ ε θ ε θ ε θ ε ε≡ + + + + − −
d d d

 

 ( )3 out in 0 in 0 out 0 0 0 0( , , , ) 2 , , 2 , 2 , 2 , | |, 1a aF dst F dstε ε ε θ ε θ ε θ ε θ ε ε≡ + + + + − +
d d d

 

 ( )4 out in 0 in 0 out 0 0 0 0( , , , ) 2 , , 2 , 2 , 2 , | |, 1a aF dst F dstε ε ε θ ε θ ε θ ε θ ε ε≡ + + + − − +
d d d

.  (10) 

 
Then, we create arrays for 2I +  and 2I −  which will be the accumulators as defined in caption of Table 1 of 
[5]. Also, we create an empty list which will accumulate index bounds. The semantics of this list will be 
that the + = operator concatenates the elements returned by the function onto the end. The algorithm is 
shown in algorithm 2. 
 
2.4.5  Computing I3 by Integrating I2 
 
      The previous two sections have presented the most complex part of the computation of the axial 
divergence peak shape. This section presents an implementation of Sec. 5 of [5], the computation of 

3 ( , )I ε β  and the integral of it over all allowed β to get the total line shape. First, we create functions 
representing the transmission of Soller slits of angular full-width βmax for the incident Soller slit and angular 
full-width maxγ  for the receiving Soller slit. These are from equation 24a, b of [5], slightly rewritten: 
 
    max( ) = max(0,1 | 2 / |)iS β β β−     (11) 
 
    max( ) = max(0,1 | 2 / |)dS γ γ γ− .    (12) 
 
Algorithm 3 shows how to carry out the integral over β. 
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Algorithm 2 Computation of I2 
        2I +



=array of zeros of same length as ε  

        2I −


=array of zeros of same length as ε  
        indices=[] # empty list 
        if rβ  is 1: 
 

             indices+= 1F ( 2I +


, aε , 0ε , aε , bε ) 

             indices+= 2F ( 2I +


, bε , aε , bε ) 

             indices+= 1F ( 2I −


, cε , 0ε , cε , dε ) 

             indices+= 2F ( 2I −


, dε , cε , dε ) 
 
        else if rβ  is 2: 
 

             indices+= 2F ( 2I +


, aε , 0ε , aε ) 

             indices+= 3F ( 2I −


, bε , 0ε , aε ) 

             indices+= 1F ( 2I −


, cε , bε , cε , dε ) 

             indices+= 2F ( 2I −


, dε , cε , dε ) 
 
        else if rβ  is 3: 
 

             indices+= 4F ( 2I −


, bε , aε , aε ) 

             indices+= 1F ( 2I −


, cε , bε , cε , dε ) 

             indices+= 2F ( 2I −


, dε , cε , dε ) 
 
        = min( )idxmin indices  
        = max( )idxmax indices  
        returns 2I + , 2I − , idxmin , and idxmax  
 
 
2.4.6  Applying the Axial Divergence Convolution 
 
      To apply this convolution, which has been generated in real space, it must be transformed to Fourier 
space: 
 
             ( )3( ) = real_fftg Iω

gg

 .     (13) 

 
      Because of the way the peak is centered, this transform has an alternating sign of 1−  across its values. 
All odd-numbered bins of ( )g ω  will be multiplied by −1. Then, F  will be multiplied by ( )g ω . 
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Algorithm 3 Integration over β to get I3 
        3I



=array of zeros of same length as ε  
        lim 2 max= min( , /2)β β β  # 2β  from equation 4 
        # nsteps  is the number of integration steps.  
        # values of 5-20 are usually sufficient.  
        for j  between 0 and nsteps :  # code below from equation 26a, b of [5] 
 
             lim= /j nstepsβ β ×  
             2I + , 2I − , 0i , 1i  computed according to section 2.4.4 
             0 = / | cos 2 |γ β θ  

             0 0 1= [ : ]d i iε ε ε−
dd

 # ε  is the 02 2θ θ−


 grid, 0ε  from equation 5 

             ( )0= 2 tan 2d dε ε θ×
d d

 

             [0] = max(0, [0])d dε ε
d d

  

             [ 1] = max(0, [ 1])d dε ε− −
d d

 # see note on array indexing in 2.1 

             =d dγ ε
γγdγγd

 

             0= dγ γ γ+ +
γγd

γγd

 

             0= dγ γ γ− −
γγd

γγd

 
             if j  is 0 or j is last step: # trapezoidal rule endpoints 
                 = 1weight  
 
             else: 
 
                 = 2weight  

             ( )3 0 1 3 0 1 2 0 1 2 0 1[ : ] = [ : ] [ : ] ( ) [ : ] ( ) [ ]d d iI i i I i i I i i S I i i S S weightgg  β+ + − −+ × + × × ×
ggdggdggdggd  

ggdggd

 
 

        2
3 3 0= 2 | tan 2 |I I R θ×
 

 

        return 3I


 which is the full axial divergence function 

 
2.5  Instrumental Effects (Other than Axial Divergence) 
 
2.5.1  Sample Offset and Zero Angle 
 
      The correction for the sample surface not lying in the equatorial plane of the diffractometer can be 
combined with the shift due to the zero angle error. If the sample is offset by 0z , and the zero angle offset 
is 2 zθ , the correction is 
 

          0 cos
= 2 2z z

z
R

θ
δ θ− +      (14) 

 
and the convolver is: 
 
           ( )( ) = exp zg iω ωδ−

δδ       (15) 
 

and F  is multiplied by ( )g ω . 
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2.5.2  Source Width and Tube Tails 
 
      The correction for the broad shoulders on the spatial distribution of emission for fine-focus X-ray tubes 
can be computed according to [7] and Sec. 4.1 of [8]. Define mw  as the width of the central peak, lw  as the 
distance to the low-angle side of the shoulder, hw  as the distance to the high-angle side, and tI  as the 
intensity of the tails, then, 
 

     = r l
t

w w
R

ε
−

 

     = m
m

w
R

ε  

     = r l
t

w w
R

δ
+

 

     = r l
t t

m

w w
A I

w
+

     (16) 

 
and the convolution is 
 

    ( )( ) = sinc sinc exp
2 2
m t

t tg A i
e ω e ω

ω ωδ
pp

   + −   
   

δδ

δδ     (17) 

 
and F  will be multiplied by this ( )g ω . 
 
2.5.3  Receiver Slit Equatorial Height 
 
      A receiver slit of full height rh  creates a rectangular convolution of angular full width /rh R  (where R is 
the diffractometer radius). From 42, the Fourier space representation is: 
 

             ( ) = sinc
2

rhg
R
ω

ω
π





     (18) 

 
which will be multiplied into F . 
 
2.5.4  Flat Specimen/Equatorial Divergence Slit Size 
 
From eqs. 9 and 10 of [8], the correction for the flat specimen error is 
 

               
2

0= cot
2M
αε θ      (19) 

 
where α  is the equatorial divergence angle of the X-ray beam. Then, the convolution function is 
 

           ( ) 1=  where < < 0
2FS M

M

J eee 
ee

−
−

   (20) 

 
This is of the same form as 0F , used in the axial divergence calculation (see Sec. 2.4.2), so we will use that 
function. Note that this is a computation in real space. This is shown in algorithm 4. 
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Algorithm 4 Computing the flat-specimen error 
        FSJ



=array of zeros of same length as 2θ


 grid 
        0F ( 
 

              0ε = 02θ , accum


= FSJ


, innere = 02θ , outere = Mε− , 

              ε = 2θ


, k =1/(2 )Mε , 0y =0 
 
         ) 
        ( )g ω = ( )real_fft FSJ



 # transform real-space function to Fourier 

 
 
Because of the way the peak is centered, this transform has an alternating sign of 1−  across its values. All 
odd-numbered bins of ( )g ω  will be multiplied by −1. Then, F  will be multiplied by ( )g ω . 
 
2.5.5  Specimen Transparency 
 
      From equation 12 of [8], with a correction to δ , the convolution due to the finite interaction depth in 
the target is: 
 

     ( ) min
min

exp
=  where < < 0

1 exp
Jm

e
δeee 
eδ
δ

 − 
 

 

     0
min

2 cos
=

T
R

θ
ε

−
 

     0sin 2
=

2 R
θ

δ
µ

       (21) 

 
where µ  is the absorption coefficient of the sample, measured in units consistent with R, so if R is in mm, 
µ  would be in mm−1, and T is the sample thickness in the same units as R. From 48, the Fourier transform 
of this expression is: 
 

         ( )
( )( )( )

( )
min1 exp 1/1=

1/

i
g

i

e ω δ
ω

δ ω δ

− +

+

δ

δ

δ

.    (22) 

 
Then, F  will be multiplied by ( )g ω . 
 
2.5.6  Defocusing ( θΩ ≠ ) 
 
      If the specimen angle Ω  is offset from θ , a defocusing correction appears, per equation 15 of [8]. It is 
a rectangular convolution of angular full width 
 

    ( )sin 2
= 1

sinDR

θ
δ α

−Ω 
− 

Ω 
    (23) 
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where α  is the equatorial divergence angle. For small θ −Ω , this also reduces to: 
 
       ( )2 2 cotDRδ α θ θ≈ − − Ω .    (24) 
 
From 42, the Fourier space representation is: 
 

           ( ) = sinc
2
DRg δ ω

ω
π

δ

δ

     (25) 

 
which will be multiplied into F . 
 
2.5.7  Silicon Position Sensitive Detector (Si PSD) 
 
      A Si PSD, which has a finite window width, suffers defocusing due to two effects. The first is the effect 
discussed above, due to the sample angle Ω  being different from the diffraction angle θ , resulting in a 
violation of the expected parafocusing optics. The second effect is due to the flat face of the detector itself; 
active pixels are not located on the radius defined by the diffractometer configuration. Unlike corrections 
for older PSDs [15], which include parallax due to the long absorption length in a gas-filled detector, we 
assume the detector is planar and has no effective depth. 
      The exact expression for a ray starting at the source at an angle α  from the center ray, being diffracted 
by an angle 2θ , and striking the detector face which is centered at 2θ ε+ , is a ray which intersects the 
detector face at a position y : 
 

  1 cos(2 ) 2sin( )sin( 2 ) cos( )=
2 sin( )cos( )

y R α ε α α θ ε
α α ε

−Ω− − −Ω+ − −Ω
−

−Ω −
.  (26) 

 
This can be expanded as a series in ε  and α , which is: 
 

       2 3 2sin(2 ) 1 sin(2 )= 1 1 O( ) O( )
sin 2 sin

y R R θ θε α ε ε α −Ω −Ω    − + − + − + +    Ω Ω    
.  (27) 

 
      The first term is just the expected offset of the peak on the detector face, and is not an aberration. The 
second term contains two components, the first of which is exactly that of 23. The second component 
depends on 2ε . In the limit that θ →Ω , it reduces to simply 2/2ε . Thus, 
 

        ( ) 2

psd

sin 2
1

sin 2
y
R

θ εd α α
−Ω 

≡ ≈ − + 
Ω 

    (28) 

 
or, using the simplification of 24, 
 

       
2

psd 2 cot
2
εd αε θ α≈ − + .    (29) 

 
      Now, we need to consider the relative magnitudes of these two terms. For a detector which is 1 cm in 
length, and 20 cm from the sample, = 0.05ε , so 2 = 0.0025ε , and the quadratic is much smaller than the 
linear one for almost all θ . At high angles, where cotθ  suppresses the first term, the aberration is still 
typically very small, since α  may be of order 1° and 2/2 = 0.00125°αε  which is a very small contribution 
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to the width for a high-angle peak. We present below an exact solution to the case in which the 2ε  is 
ignored. In the case it is needed, the integral below needs to be carried out numerically. 
      If the detector window being analyzed extends from distance 1y  to distance 2y  above the centerline, 
and is centered so that 0 =θ Ω , 
 

            
/2

psd

/1

( ) = sinc 2
2

y R

y R

g d
d ω

ω θ
p

′∫
d

d     (30) 

 
where psdd  comes from 29. Note that the defocusing correction of Sec. 2.5.6 is symmetrical in 2θ , so it is 
only necessary to integrate over one side of the detector. 
      The integral can be carried out analytically using the approximation of 24, resulting in an expression 
involving the sine integral function Si( )x , where 
 

     
0

sinSi( ) =
x ux du

u∫      (31) 

 

   
( )( )/2

0

/1

2 cot
( ) = sinc 2

2

y R

y R

g d
α θ θ ω

ω θ
π

′
′∫

d

d  

   2 0 1 0

0

cot cot2( ) = Si Si
cot 2 2

y y
g

R R
α θ ω α θ ω

ω
α θ ω

 − 
 

 





.   (32) 

 
      Note that evaluation of this function involves a 0/0 where = 0ω . However, the limit can easily be 
taken analytically. The zero bin of ( )g ω  should be set to 2 1( )/y y R− , which is just the angular length of 
the exposed detector face. Also note that the subtracted term in 32 vanishes if 1 = 0y . 
      For a symmetrical detector, 1 = 0y . However, some data analyses may split the data from the detector 
into a pattern using the central pixels of the detector to get a high-resolution result, and then use the 
remaining pixels to create another pattern which has lower angular resolution, but takes advantage of the 
counting statistics available over the full detector aperture. In this case, the ‘central’ pattern would use 

1 = 0y  and 2 = hry W  where hrW  is the half-height of the region to be sampled for high-resolution data. The 
‘outer’ pattern would use 1 = hry W  and 2 = dety W  where detW  is the half-height of the full detector aperture. 
Such a split would permit nearly optimal use of the characteristics of the PSD, with high resolution and 
high active area. 
      The form of 32 gives direct guidance as to where the cutoff hrW  should be made. For small arguments, 

( )2 3 2 2Si( )/ /18 = 1 /18ax a x a x x a x≈ − − . Thus, if 1 = 0y , 
 

           ( )
2

2 02 cot11
18 2

yyg
R R

α θ ω
ω

  ≈ −     
.    (33) 

 
If the second term is small, the convolver does not roll off at high frequencies. By examining the other 
terms in the Fourier transform F  one can find a frequency maxω  at which other terms dominate and have 
rolled off most of the response. Then, if 
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0

6 2
cothr

max

RW
a θ ω

     (34) 

 
the Si PSD will not significantly broaden the overall response of the system as a result of this window 
selection. A more advanced approach would be to adjust this window width as a function of position in 
2θ , so that as the peaks are dispersion-broadened at high angle, one would automatically use a wider 
window to collect more counts with no loss of resolution. 
      As with all the other corrections, F  will be multiplied by the resulting ( )g ω . 
 
Aside on real-space solution  If one is working in real space, rather than Fourier space, the integral of a 
top-hat function over widths DRδ  of 24 can be carried out analytically to get the convolution function. As 
before, assuming the window extends from 1y  to 2,y , the result is: 
 

        

1 0

1 0 2 0
0

2 0

2 0

cot
0                 | |<                

cot cot| |(2 2 ) ( ) = log <| |<
cot

cot
0                 | |>                

y
R

y yRf f
y R R

y
R

α θ
ε

α θ α θεθ θ ε ε
α θ

α θ
ε




− ≡ −





.  (35) 

 
This expression includes a weak singularity at = 0ε  (if 1 = 0y , which is the most likely case), which can 

be handled in much the same manner as the 1/ x  singularity which was handled by the helper function in 
Sec. 2.4.2. Instead of integrating 1/ 2x x→ , one integrates the log to get 
 

   
2 0 2 00

log = 1 log
cot cot

R Rd
y y

ε ε εε ε
α θ α θ

 ′
′− − 

 
∫ .   (36) 

 
This can then have the forward difference computed, as in Sec. 2.4.2, to get the appropriate singularity-free 
binned function. A full code example is not provided, since it is essentially identical to the helper code. 
 
2.6  Conversion of Transform Results to 2θ Space 
 
      In the previous sections, we have enumerated many convolutions that get accumulated multiplicatively 
into F . Any other aberrations which are to be included can be done so in a similar manner. When 
everything is included, one needs to un-transform F  into real space to get 0(2 2 )F θ θ−



, the nearly-final 
aberration function. We have been assuming the user has a Fourier transform library which provides a pair 
of properly-matched transform functions. ( )xreal_fft

  takes a real array x  of length N and transforms 
it into the positive ω  components of the Fourier transform, a complex array of length /2 1N + . We apply 
its inverse, to get 
 
      ( )0(2 2 ) =F Fθ θ− inverse_real_fft



    (37) 
 
which takes /2 1N +  complex numbers and converts them back to N real elements. 
      The one drawback to working in Fourier space is that all functions have built-in an implied periodicity 
of the length over which they are sampled. For many functions, this is not an issue, since they go quickly to 
zero near their boundaries, and so no wrap-around occurs. Unfortunately for the situation here, the 
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aberration functions have extremely long Lorentzian tails, due to the contributions from the hk from 1. 
These tails always wrap around, which results in their inaccurate computation unless one spends much 
extra computational effort by computing the function over a very large interval in 2θ  space. 
      This problem has been addressed previously in a paper on the computation of Voigt functions by 
Fourier transform methods [16]. In short, the periodicity is equivalent to having computed the transform of 
an infinitely repeating comb of the line shape. Since the long tail is almost perfectly Lorentzian, one can 
subtract the infinite sum of Lorentzians from the computed aberration, which corrects the tail. This can be 
done in closed form. From equation 7 of [16], the sum is: 
 

           ( ) ( ) ( )2 2

2sinh 12 =
2 2 22cosh cos

πα
αε θ µ
ππ θ µ θ µ απα

 ∆− −     − − + ∆ −
 ∆ ∆
 







  (38) 

 
where ∆  is the full width of the 2θ  window, µ  is the computed centroid of the peak, and α  is the half-
width of the widest component of the Lorentzian. This function is normalized to unit area. Then, the 
corrected shape is: 
 
       ( ) ( ) ( )0 02 2 = 2 2 2cF F Aθ θ θ θ ε θ µ− − − −

  

   (39) 

 
where A is the area of ( )2F θ



. This makes a very good correction of the tails, assuming that the peak is not 

so asymmetrical that it has quite different amplitudes at the boundaries of the 2θ  window. An example of 
the correction is shown in Fig. 2. 
 

 
 
Fig. 2. Correction due to periodic Fourier transform, shown at low angle where the peak is very asymmetrical, and at mid-angle where 
it is nearly symmetrical. Note that for the left-hand case, the 2θ window is barely wide enough, so the peak tails are still very 
asymmetrical. 
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3.  Numerical Comparisons 
 
      The data in Secs. 3.1 and 3.2 are provided to allow one to compare implementations of the NIST 
FPAPC to the results from Topas. Section 3.3, with comparisons to data, is provided as general validation 
of the FPA for some important test cases. While the FPAPC is not a Rietveld code, in that it does not utilize 
a full structural mode, it can utilize space group symmetry (of various SRM materials) to constrain peak 
positions to a single lattice parameter, equivalent to a Pawley fit. 
 
3.1  Simplified Source Spectrum, Variable Soller Slits 
 
      This section presents numerical and graphical comparisons of the output of FPAPC with that of Topas. 
The setup we are comparing is that of a diffractometer with the parameters shown in Table 2, using the 
point detector with the “full” model for axial divergence. These examples have the source spectrum 
artificially restricted, to make the effect of axial divergence and Soller slits more evident. 
 

    Table 2. Topas model parameters 
 

Parameter Value Parameter Value 
Zero error −0.026° Displacement −0.011 mm 

Rp, Rs 217.5 mm Rec. slit width 75 µm 
Fil. length 15 mm Samp. length 15 mm 

Rec. slit length 5 Sample absorption 137.4 cm−1 
CSL 3134 nm CSG 379 nm 

Lattice spacing 4.15695 Å   
Source Spectrum 

intensity (la) wavelength (Å) (lo) Lor. width (mÅ) (lh) Gauss. width (mÅ) (lg) 
1 1.540591 0 0.4323 

 
 
      We compute synthetic peak patterns for material with the characteristics of SRM 660c LaB6. Each data 
set is computed with different Soller slit settings, ranging from 2.5° full-width to 10.6° full-width. Tables 3, 
4 and 5 show the detailed errors, and Figs. 3, 4, and 5 show the peak shapes for the 2.5°, 5.3°, and 10.6° 
cases, respectively. 
 
Column Descriptions 
 
(h,k,l)   the reflection for this peak 
tp top   the angle of the highest point in the peak from Topas 
py top   same for the python implementation of this algorithm 
Δ1   (tp top)-(py top) 
tp ζ   the distance between the centroid and the top, a measure of asymmetry 
py ζ   same for the python implementation of this algorithm 
Δ2   (tp ζ)-(py ζ) 
tp IB   integral breadth of the peak from Topas 
py IB   same for the python implementation of this algorithm 
% err   fractional error in the IB 
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Table 3. 2.5° full width Soller slits 
 

(h,k,l) tp top (°) py top (°) Δ1 (m°) tp ζ (m°) py ζ (m°) Δ2 (m°) tp IB (m°) py IB (m°) % err 
(0, 0, 1) 21.3224 21.3226 -0.12 -4.9 -5.1 0.23 47 46 0.78 
(0, 1, 1) 30.3499 30.3500 -0.12 -2.3 -2.4 0.18 43 44 -0.42 
(1, 1, 1) 37.4072 37.4074 -0.17 -1.3 -1.5 0.14 44 43 0.44 
(0, 0, 2) 43.4723 43.4723 -0.01 -1.0 -1.0 0.01 42 44 -1.49 
(0, 1, 2) 48.9233 48.9237 -0.32 -0.6 -0.8 0.18 45 45 0.07 
(1, 1, 2) 53.9551 53.9551 0.03 -0.7 -0.6 -0.12 45 45 -0.01 
(0, 2, 2) 63.1849 63.1850 -0.08 -0.5 -0.4 -0.12 47 48 -1.02 
(0, 0, 3) 67.5141 67.5143 -0.29 -0.2 -0.3 0.13 49 49 -0.07 
(0, 1, 3) 71.7118 71.7122 -0.34 0.1 -0.2 0.31 51 51 0.20 
(1, 1, 3) 75.8111 75.8110 0.16 -0.5 -0.2 -0.34 52 52 0.01 
(2, 2, 2) 79.8366 79.8369 -0.28 -0.1 -0.3 0.20 53 54 -1.33 
(0, 2, 3) 83.8126 83.8125 0.07 -0.2 -0.1 -0.07 55 57 -0.97 
(1, 2, 3) 87.7589 87.7590 -0.05 -0.2 -0.2 0.02 58 59 -0.83 
(0, 0, 4) 95.6387 95.6387 -0.07 0.1 -0.1 0.17 62 64 -1.11 
(0, 1, 4) 99.6100 99.6099 0.09 0.1 -0.1 0.12 66 67 -0.71 
(1, 1, 4) 103.6287 103.6289 -0.18 0.1 0.0 0.09 70 70 -0.10 
(1, 3, 3) 107.7175 107.7175 0.05 -0.1 -0.1 -0.01 73 74 -1.01 
(0, 2, 4) 111.9019 111.9020 -0.07 -0.0 -0.0 -0.03 79 79 0.13 
(1, 2, 4) 116.2138 116.2136 0.20 -0.2 0.1 -0.26 82 84 -0.92 
(2, 3, 3) 120.6918 120.6919 -0.05 0.1 0.1 -0.03 89 90 -0.92 
(2, 2, 4) 130.3790 130.3791 -0.10 0.1 0.0 0.10 106 108 -0.96 
(0, 0, 5) 135.7712 135.7715 -0.28 0.2 -0.0 0.19 121 121 0.16 
(1, 3, 4) 141.7472 141.7474 -0.15 0.3 0.2 0.12 140 140 0.14 
(3, 3, 3) 148.6525 148.6527 -0.23 0.2 0.1 0.11 168 171 -0.99 

 
 
 

 
 

Fig. 3. Line shapes with 2.5° Soller slits. Red, dotted curve is Topas. Black curve is this work. 
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Table 4. 5.3° full width Soller slits 
 

(h,k,l) tp top (°) py top (°) Δ1 (m°) tp ζ (m°) py ζ (m°) Δ2 (m°) tp IB (m°) py IB (m°) % err 
(0, 0, 1) 21.3179 21.3175 0.41 -38.8 -39.9 1.04 79 81 -1.02 
(0, 1, 1) 30.3451 30.3448 0.24 -23.8 -24.6 0.72 69 71 -1.69 
(1, 1, 1) 37.4020 37.4022 -0.20 -17.1 -18.1 1.01 65 66 -0.18 
(0, 0, 2) 43.4674 43.4671 0.27 -13.5 -13.9 0.37 62 63 -0.94 
(0, 1, 2) 48.9182 48.9184 -0.19 -10.6 -11.2 0.63 62 62 -0.15 
(1, 1, 2) 53.9500 53.9501 -0.14 -8.9 -9.3 0.40 61 61 -0.24 
(0, 2, 2) 63.1801 63.1802 -0.03 -6.3 -6.4 0.16 59 61 -1.13 
(0, 0, 3) 67.5098 67.5097 0.14 -5.4 -5.4 -0.02 61 61 -0.13 
(0, 1, 3) 71.7077 71.7079 -0.21 -4.4 -4.6 0.24 61 62 -0.32 
(1, 1, 3) 75.8064 75.8066 -0.19 -3.5 -3.8 0.31 62 62 -0.38 
(2, 2, 2) 79.8324 79.8325 -0.13 -2.8 -3.0 0.26 63 64 -1.08 
(0, 2, 3) 83.8090 83.8088 0.13 -2.7 -2.5 -0.19 63 65 -1.74 
(1, 2, 3) 87.7552 87.7552 0.03 -1.9 -2.0 0.09 64 67 -1.57 
(0, 0, 4) 95.6358 95.6355 0.23 -1.2 -1.3 0.06 69 70 -1.10 
(0, 1, 4) 99.6073 99.6070 0.36 -0.9 -0.9 -0.01 71 73 -1.18 
(1, 1, 4) 103.6264 103.6264 0.01 -0.5 -0.7 0.13 75 76 -0.30 
(1, 3, 3) 107.7156 107.7153 0.24 -0.5 -0.5 0.03 77 79 -1.09 
(0, 2, 4) 111.9004 111.9002 0.23 -0.1 -0.2 0.02 83 83 -0.03 
(1, 2, 4) 116.2127 116.2125 0.20 -0.1 -0.0 -0.06 87 88 -0.82 
(2, 3, 3) 120.6916 120.6915 0.08 0.1 0.1 -0.03 92 94 -1.23 
(2, 2, 4) 130.3804 130.3801 0.25 0.2 0.4 -0.24 110 112 -0.96 
(0, 0, 5) 135.7737 135.7731 0.57 0.2 0.5 -0.27 125 125 0.09 
(1, 3, 4) 141.7508 141.7504 0.38 0.6 0.8 -0.18 144 144 -0.01 
(3, 3, 3) 148.6577 148.6577 -0.05 0.9 0.8 0.11 173 176 -0.88 

 
 
 

 
 

Fig. 4. Line shapes with 5.3° Soller slits. Red, dotted curve is Topas. Black curve is this work. 
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Table 5. 10.6° full width Soller slits 
 

(h,k,l) tp top (°) py top (°) Δ1 (m°) tp ζ (m°) py ζ (m°) Δ2 (m°) tp IB (m°) py IB (m°) % err 
(0, 0, 1) 21.3160 21.3157 0.25 -88.4 -89.9 1.57 114 118 -1.76 
(0, 1, 1) 30.3429 30.3423 0.59 -57.2 -58.2 0.93 96 101 -2.72 
(1, 1, 1) 37.3998 37.3998 0.09 -43.3 -44.2 0.89 90 92 -0.73 
(0, 0, 2) 43.4640 43.4638 0.21 -34.1 -34.9 0.73 84 88 -2.51 
(0, 1, 2) 48.9154 48.9150 0.40 -28.7 -29.0 0.27 82 85 -1.43 
(1, 1, 2) 53.9465 53.9465 0.07 -24.0 -24.6 0.60 80 82 -1.29 
(0, 2, 2) 63.1762 63.1763 -0.08 -17.6 -18.0 0.44 76 78 -1.76 
(0, 0, 3) 67.5059 67.5057 0.17 -15.4 -15.6 0.20 76 78 -0.81 
(0, 1, 3) 71.7038 71.7038 -0.02 -13.2 -13.6 0.32 76 77 -0.58 
(1, 1, 3) 75.8026 75.8028 -0.22 -11.4 -11.7 0.31 77 77 0.31 
(2, 2, 2) 79.8290 79.8287 0.23 -10.2 -10.1 -0.05 74 77 -1.65 
(0, 2, 3) 83.8049 83.8050 -0.09 -8.6 -8.8 0.14 75 78 -1.83 
(1, 2, 3) 87.7512 87.7516 -0.44 -7.1 -7.4 0.31 76 78 -1.17 
(0, 0, 4) 95.6317 95.6312 0.52 -5.0 -5.1 0.18 78 81 -1.47 
(0, 1, 4) 99.6038 99.6030 0.74 -4.5 -4.2 -0.21 80 82 -1.36 
(1, 1, 4) 103.6229 103.6222 0.70 -3.5 -3.4 -0.18 83 84 -0.40 
(1, 3, 3) 107.7121 107.7115 0.65 -2.9 -2.6 -0.28 84 86 -1.23 
(0, 2, 4) 111.8971 111.8966 0.44 -2.1 -2.0 -0.09 90 90 -0.01 
(1, 2, 4) 116.2095 116.2091 0.39 -1.5 -1.5 -0.05 92 94 -0.96 
(2, 3, 3) 120.6887 120.6882 0.49 -1.0 -0.8 -0.21 97 99 -1.21 
(2, 2, 4) 130.3782 130.3779 0.32 -0.1 -0.0 -0.10 113 115 -0.90 
(0, 0, 5) 135.7720 135.7715 0.49 0.1 0.5 -0.31 128 128 0.04 
(1, 3, 4) 141.7499 141.7497 0.12 0.8 0.7 0.12 147 147 0.02 
(3, 3, 3) 148.6580 148.6579 0.07 1.1 1.0 0.11 175 179 -0.87 

 
 
 

 
 

Fig. 5. Line shapes with 10.6° Soller slits. Red, dotted curve is Topas. Black curve is this work. 
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3.2  Realistic Source Spectrum and Parameters 
 
      We now compute a sample with a more realistic, full spectrum as determined from fits to data from the 
NIST Johansson incident beam monochromator, as described in [1]. All parameters shown in Table 6 were 
fit by Topas and FPAPC. Table 7 shows the detailed errors, and Fig. 6 shows the peak shapes. 
 
 

    Table 6. Topas full Rietveld model parameters 
 

Parameter Value Parameter Value 
Zero Error −0.0268° Displacement −0.016 mm 

Rp, Rs 217.5 mm Rec. slit width 75 µm 
Fil. Length 8 mm Samp. Length 15 mm 

Rec. slit length 12 Sample Absorption 126.8 cm−1 
CSL 3027 nm CSG 488 nm 

Lattice spacing 4.156925692 Å Equat. Diverg. 1.096° 
Source Spectrum 

intensity (la) wavelength (Å) (lo) Lor. width (mÅ) (lh) Gauss. width (mÅ) (lg) 
1 1.540591 0 0.4323 

0.7504 1.540591 0 1.6718 
0.0418 1.540591 0 3.9651 
0.1861 1.541064 0 0.4565 

 
 
 

 
 

Fig. 6. Line shapes with full Rietveld. Red, dotted curve is Topas. Black curve is this work. 
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Table 7. Comparison of pattern with full Rietveld fit from Topas 
 

(h,k,l) tp top (°) py top (°) Δ1 (m°) tp ζ (m°) py ζ (m°) Δ2 (m°) tp IB (m°) py IB (m°) % err 
(0, 0, 1) 21.3078 21.3085 -0.72 -8.0 -8.1 0.03 78 76 1.22 
(0, 1, 1) 30.3409 30.3410 -0.14 -4.5 -4.2 -0.27 61 62 -0.48 
(1, 1, 1) 37.4001 37.4006 -0.53 -2.7 -2.9 0.17 62 59 1.75 
(0, 0, 2) 43.4665 43.4671 -0.57 -2.0 -2.2 0.22 59 60 -0.17 
(0, 1, 2) 48.9187 48.9191 -0.33 -1.8 -1.9 0.03 62 61 0.74 
(1, 1, 2) 53.9511 53.9513 -0.16 -1.8 -1.6 -0.14 63 62 0.67 
(0, 2, 2) 63.1822 63.1820 0.15 -1.7 -1.4 -0.30 66 67 -0.31 
(0, 0, 3) 67.5121 67.5121 0.00 -1.6 -1.3 -0.32 70 69 0.64 
(0, 1, 3) 71.7100 71.7105 -0.43 -1.2 -1.2 -0.05 73 72 0.40 
(1, 1, 3) 75.8092 75.8094 -0.16 -1.3 -1.1 -0.24 76 75 0.69 
(2, 2, 2) 79.8353 79.8355 -0.21 -1.2 -0.9 -0.26 78 78 -0.05 
(0, 2, 3) 83.8110 83.8116 -0.57 -0.6 -0.7 0.13 81 81 -0.30 
(1, 2, 3) 87.7580 87.7581 -0.05 -0.9 -0.6 -0.29 84 85 -0.57 
(0, 0, 4) 95.6384 95.6382 0.24 -0.6 -0.2 -0.44 92 93 -0.47 
(0, 1, 4) 99.6099 99.6096 0.32 -0.4 0.1 -0.50 97 98 -0.20 
(1, 1, 4) 103.6283 103.6286 -0.24 0.4 0.4 0.01 105 103 0.66 
(1, 3, 3) 107.7175 107.7176 -0.17 0.4 0.7 -0.29 108 109 -0.46 
(0, 2, 4) 111.9024 111.9021 0.26 0.5 1.0 -0.50 117 116 0.48 
(1, 2, 4) 116.2141 116.2143 -0.16 0.9 1.2 -0.27 123 124 -0.33 
(2, 3, 3) 120.6926 120.6929 -0.34 1.5 1.6 -0.08 131 133 -0.76 
(2, 2, 4) 130.3809 130.3808 0.12 2.2 2.6 -0.43 157 160 -0.70 
(0, 0, 5) 135.7736 135.7739 -0.29 3.0 3.1 -0.18 177 179 -0.82 
(1, 3, 4) 141.7506 141.7510 -0.34 3.7 3.9 -0.24 205 208 -0.78 
(3, 3, 3) 148.6569 148.6572 -0.27 5.0 5.3 -0.29 255 254 0.20 

 
 
3.3  Comparison to Measurements 
 
      The most critical metric for comparison of the two programs is that of refined lattice parameter. SRMs 
640e [17] and 660c [18] were certified in March, 2015 using data from the instrument described in [1]. The 
certification procedure involved the collection of twenty high-quality (24 hour scans) data sets for each of 
the two SRMs. These were analyzed independently using Topas with a Pawley analysis. With the NIST 
FPAPC, the twenty data sets were analyzed with a single, global refinement: specimen specific parameters, 
such as specimen displacement, were refined independently while instrument specific parameters, common 
across all data sets, were refined as single parameters. In Fig. 7 we show a typical fit to the data. Close 
correspondence between the instrument specific parameters obtained from Topas and those from FPAPC 
was observed. Additional testing indicated the residual error terms were not increased significantly by the 
variation of the instrument specific terms within the “window” of refined values obtained with the two 
codes. Instrument parameters, common to all data sets were then fixed at values that largely constituted the 
average values obtained with the two codes. This being done, the average of the lattice parameters values 
obtained from the average of the 20 independent Topas analyses, for both SRMs 640e and 660c, agreed 
with the corresponding global FPAPC values to within 2 fm. 
      Testing of the FPA model itself can be performed with an analysis of the variation in lattice parameter 
with reflection position in 2θ as reported previously [19]. This is a very sensitive test of the success of the 
FPA model as all the reflections in a pattern should give the same lattice parameter. Lattice parameter is the 
only property that is absolutely conserved across the entire pattern while profile asymmetry can vary 
dramatically in both degree and direction with 2θ. Again we used SRMs 640e and 660c for this purpose. In 
Fig. 7 we show the comparison of the peak positions from a globally refined lattice parameter, determined 
with FPAPC, with peak positions when refined independently. For a wide range of angles, from roughly 
40° to 140° in 2θ, the corrections provided by the FPA are very good. There is, however, a clear, systematic 
tendency at low and high angles, where the peaks are most asymmetric, for the result to be biased. This is 
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not understood, and is a matter of intense focus by the authors at this time. It is worth noting that the 
information of highest quality about the lattice parameter of the material comes from the peaks in the 
50°–120° 2θ range, where contribution of aberrations are minimal and the angle is high enough that the 
contribution of a small angular error to the lattice parameter is minimized. 
 

 
 

(a) Example fit of SRM660c data using FPAPC, with residuals (offset vertically for clarity). 
 

 
 
(b) Comparison of peak positions for an unconstrained fit vs. a Pawley fit wherein all peak positions correspond to a single lattice 
parameter. 
 

Fig. 7. Example fit, and peak position errors for SRMs 640e and 660c. 
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      SRM 1979 is being certified for the measurement of crystallite size from an analysis of profile 
broadening. It was prepared by decomposing zinc oxalate in a large-scale, NIST-built vacuum furnace 
using a heating schedule derived from the procedures outlined in [20, 21]. The ZnO was then annealed in 
air to obtain two powders, one with an approximate crystallite size of 15 nm and a second one of 60 nm. In 
Fig. 8, we show a result of applying FPAPC code, extended to carry out the Scardi and Leoni model for 
log-normal crystallite size distributions [22] and the stacking fault density model of Warren [23]. This 
demonstrates that the algorithms described above can be extended to include complex models for material 
microstructure, many of which have natural representations in Fourier space. The breadth of the peaks in 
diffraction patterns from these ZnO materials varies widely due to the both crystallite size and the hkl 
specific stacking-faults. 
 

 
 

Fig. 8. Full-pattern FPAPC fit to patterns from SRM1979-type ZnO 15 nm and 60 nm particles. 
 
 
4.  Discussion 
 
      The Fundamental Parameters Approach to X-ray powder diffraction line profile analysis has played a 
central role in NIST powder diffraction SRM development since its inception with the aforementioned 
work of Cheary, Coelho and Cline (and collaborators on various SRM projects). We have demonstrated 
that the refined lattice parameter values obtained with our independently written NIST FPAPC and those of 
the commercial code Topas, that NIST has used since the year 2000 for SRM certification, agree to within 
2 fm. This observation would confirm that both the NIST FPAPC and Topas are preforming in accordance 
to published FPA models. This conclusion is further supported by the data presented in Secs. 3.1 and 3.2 
that illustrate that the form of the FPA profiles from the two programs are essentially identical. The 
equivalence of results between the NIST open implementation of FPA models and those from Topas 
enhances the transparency of the analyses performed in the certification of NIST SRMs for powder 
diffraction. 
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5.  Appendix A. Convolutions in Fourier Space 
 
      A computational technique, such as the FPA, which depends heavily on convolutions often can be 
represented very efficiently in Fourier space via the Convolution Theorem. That is, if a convolution is 
written as: 
 

    ( ) ( ) ( ) ( )f x g x f x x g x dx
∞

−∞

′ ′ ′⊗ ≡ −∫     (40) 

 
and if we use f  to represent the Fourier transform of f , then 
 
       =f g f g⊗ 

      (41) 
 
which is to say that a convolution reduces to multiplication of Fourier transforms. If one is working with 
functions on a discrete grid, computing the convolution directly from 40 may be an efficient technique if 
the number of non-zero elements in g is much less than the number of elements of f. The time to carry out a 
convolution directly scales as nfng where the n are the length of the sets. However, using FFT only costs a 
time proportional to n log n, so if log n is of the order of the length of ng or less, it may be advantageous to 
work in Fourier space. Since it is often the case that log gn n , and the penalty in the other case is fairly 
minimal, we choose to do all our convolution work in Fourier space. As such, we will derive analytic forms 
for the Fourier transform of most of the functions we need, and avoid transforming real-space functions 
into Fourier space to carry out the convolutions. This is not a major factor in the present paper. We 
compute the Axial Divergence function in real space, because it is much more easily represented there than 
in Fourier space, and then take the FFT of it to perform the convolution. All the other convolutions could 
be equivalently computed and carried out in real space. 
      Some important cases of analytic forms of transforms we use are presented in this section. 
 
5.1  Top-Hat Function 
 
      If ( ) = 1/f x w  for /2 < < /2w x w−  (a unit-area top hat), then 
 

    ( )sin /2
( ) = sinc

/2 2
w wf

w
w ww

w π
 ≡  
 

     (42) 

 
where the sinc function is defined as (in some implementations) 
 

             
sinsincx = x

x
π

π
. 

 
One should check if using sinc since another standard omits the π . It is useful to use instead of directly 
computing the ratio, since the ratio produces a 0/0 at the origin, and the sinc function correctly takes the 
limit. 
 
5.2  Gaussian Function 
 
      If ( )f x  is the unit-area Gaussian as follows: 
 

        
2

2

1( ) = exp
22
xf x
σpσ

 
− 
 

    (43) 
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then its Fourier transform is: 
 

            
2 2

( ) = exp
2

xf σω
 
− 
 

 .    (44) 

 
Also worth noting is that in X-ray diffraction, a Gaussian is often specified by its FWHM. σ is related to the 
FWHM s as 
 

                 
2

2 =
8log 2

ss .     (45) 

 
5.3  Lorentzian Function 
 
      If ( )f x  is the unit-area Lorentzian with FWHM Γ , as follows: 
 

     
( )22

1( ) =
2 /2

f x
xπ

Γ 
 
  + Γ

     (46) 

 
then its Fourier transform is: 
 
      ( )( ) = exp | /2 |f ω ω− Γ .     (47) 
 
5.4  One-Sided Exponential Tail 
 
      If ( ) = exp( )f x xδ δ  for 0 < < 0x x  (with 0 < 0)x  and zero elsewhere, then the Fourier transform of the 
function is 
 

             
( )( )01 exp 1/1( ) =
1/

x i
f

i
ω δ

ω
δ ω δ

− +

+
 .    (48) 

 
Note that we present this in not-quite-normalized form. If 0x → −∞ , it has unit area. We will use this in the 
case of finite sample thickness, in which case it should not be normalized to unit area, but just as shown 
here. 
 
5.5  Translation of a Function 
 
      The Fourier transform of ( )f x a+  for any f  is: 
 
      ( )( ) = ( )expf x a f i aω ω+ − .    (49) 
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6.  Appendix B. Mapping of Important Variables from Sample Python Code to 
     Paper, and Other Code Notes 
 
Code available at http://dx.doi.org/10.6028/jres.120.014.c 
 
6.1  Names 
 
Python name   name in paper and explanation 
axial_helper   F0( ) 
_fxbuf   no name in paper, a scratch buffer saved for memory efficiency 
searchsorted( )   a function which takes an ordered array and a list of values, and returns the bin index from 

             the array for the number exactly matching each of the values, or returns the index of the 
             bin to the right if the value falls between to bins. 

 
6.2  Python Array Indexing 
 
      The most complex part of an efficient implementation of the FPA is the assignment of data to specific 
bins in a discretized representation of a computed diffraction profile. This is the reason for the complexity 
of F0. Because every computer language has its own conventions for how to index an array, and this is 
central to this work, we include here short notes about the Python language array indexing, to assist in 
translation to other languages. Thus, Python arrays: 

• are indexed in a zero-based manner; x[0] is the first element of an array  
• permit negative indexing to index from the last element; x[-1] is the last element of an array  
• can have a sub-array taken from them by indexing x[1:5]; this means the four elements of the 

array x[1], x[2], x[3], and x[4]. The length of a slice is the difference between the ending and 
starting indices. This is a feature of python indexing which can cause confusion, but is quite 
handy. This rule also implies that x[1:-1] indexes everything except the first and last elements of 
the array.  

• can have every second (e.g.) element, starting from 1 and ending before 9, indexed as x[1:9:2]; 
this extracts x[1], x[3], x[5], and x[7]. Note that x[9] is excluded since the upper end is never 
included. Thus, to negate all the odd-numbered elements of an array, x[1::2]*=-1. Note that empty 
index slots mean all possible, so this includes (potentially) the last element of the array. This is 
used extensively to re-phase Fourier transforms so that the zero position of the inverse transform is 
in the center of an array, rather than at the left edge, with negative positions wrapped to the right 
edge.  

 
6.3  General Notes 
 
      The code, as provided in the supplementary material, is quite a bit more complex than a stripped-down 
reference implementation normally would be. This is due to the fact this version includes quite a bit of 
capability related to caching results which are likely to be re-used in the process of least-squares fitting of 
peaks. It is advised that the reader wishing to understand the underlying theory pay primary attention to the 
contents of the “conv_xxx” functions, which contain the machinery used to generate the convolutions, and 
to the various functions beginning with “axial_” which handle the real-space parts of the axial divergence 
integral. 
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