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Active quantum plasmonics
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Pedro M. Echenique,5 Javier Aizpurua,2* Andrei G. Borisov1*
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through
electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a
variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context,
the development of active control of plasmon excitations is a major fundamental and practical challenge. We
propose a mechanism for fast and active control of the optical response of metallic nanostructures based on
exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow
gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies,
which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of
the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional
structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active
control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics
establishes a new platform for many practical applications in optoelectronics.
INTRODUCTION

The latest advances in nanofabrication techniques allow for systematic
engineering of the plasmonic response of nanostructures, thus offering
the possibility of manipulation of light at subwavelength scales (1) and
its exploitation in numerous applications. Sensors (2), nanoantennas
(3), information transfer (4), single photon generation (5), enhancement
of nonlinear effects (6), photochemistry (7), heat generation, and hot
electron injection (8) constitute a subset of research topics related to
plasmonics that would strongly benefit from the availability of active
mechanisms for controlling the coupling between plasmon excitations
and light. Although at present, the plasmon response is mainly tuned
during the fabrication process via shape or material control or, alter-
natively, by the choice of dielectric environment (9), it is highly desir-
able to develop fast, flexible, and reversible procedures for the control
of this response. Recent experimental developments have suggested
several possibilities for such active control, for instance, using flexible
substrates (10), liquid crystal environments (11), tunable molecular layers
(12), electrically induced thermal heating (13), all-optical modulation
using quantum dot arrays (14), or excitation of free carriers (15). The
latter approach allows for ultrafast modulation at femtosecond (10−15 s)
time scales but requires a pump laser of sufficient power to produce
appreciable effects. In this context, electrical control of the plasmonic
response via an applied bias, as implemented in two-dimensional (2D)
materials (16, 17), appears extremely attractive even though, in that
case, this possibility is limited to the terahertz or mid-infrared regime
as a result of the low doping concentrations that can be achieved elec-
trically. This strategy also encounters a bottleneck when applied to 3D
bulk plasmonic metal nanostructures with high free-electron density,
as so far only electrochemistry-based solutions have been proposed
(18–20).

Here, we demonstrate that active electrical control of the plasmonic
response of 3D metallic nanostructures at optical frequencies is possi-
ble owing to the bias voltage dependence of the electron tunneling
conductance across narrow gaps. Indeed, a number of recent experi-
mental (21–25) and theoretical (26–29) studies on nanoparticle dimers
with subnanometer gaps have demonstrated that electron tunneling
through the potential barrier separating two closely spaced nanopar-
ticles can strongly modify the optical response of the system. When
electron tunneling is present, the capacitive coupling between the nano-
particles is attenuated, and the corresponding plasmonic modes pro-
gressively disappear upon the narrowing of the gap, accompanied by
the emergence of new charge transfer plasmon modes (26, 27). In the
tunneling regime, the conductance across the junction is the key param-
eter which defined the optical properties of the dimer, as also discussed in
the context of optical rectification in plasmonic nanogaps (30, 31).

So far, the tunneling conductance has been modified by changing
the width of the gap (21–24) or by using plasmonic gaps bridged by
self-assembled molecular layers (25). However, as used in scanning
tunneling microscopy (32, 33), the tunneling barrier between the nano-
particles and thus its effective conductance can also be modified by an
applied external bias, as sketched in Fig. 1. This establishes a concept for
active and versatile control of the optical response of a 3D metallic
nanosystem operating at picosecond time scales, where the latter is
determined by the time needed to bias the system.
RESULTS AND DISCUSSION

To demonstrate the proposed bias control of the plasmonic response,
we perform a proof-of-principle calculation for two representative sys-
tems that shownarrowplasmonic gaps: (i) a cylindrical core-shell nano-
matryushka (NM) and (ii) a spherical dimer, as illustrated in the insets
to Fig. 2 (A and B, respectively). The NM with a geometry (R1, R2, R3)
consists of an infinite cylindrical metallic core of radius R1 and a coaxial
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cylindrical metallic shell with internal radius R2 and external radius
R3. The spherical dimer consists of two identical spherical metallic
particles of radius R separated by a narrow gap of width S. Without
loss of generality, we assume a vacuum gap for both systems (the pos-
sibilities offered by the dielectric filling of the gap will be discussed be-
low). These types of systems are canonical structures that have been
widely discussed in the literature. Their plasmonic modes are charac-
terized by the presence of strong localized field enhancements in their
gap, as shown in Fig. 2 (C andD). In the case of the NM, we identify the
gap mode as the bonding hybridized mode (34) w−

− associated with the
low energy absorption resonance in Fig. 2A (red arrow). In the case of
the spherical dimer, the relevant mode is the bonding dipolar plasmon
(26, 27)wd associated with themain absorption peak in Fig. 2B. In these
classical electromagnetic calculations, the quasi-static approximation is
adopted, given the small sizes of the systems. The results presented in
Fig. 2 are obtained for a gap width S = 8 Å, thus avoiding the effect of
tunneling andmaking it possible to clearly identify thew−

− andwdmodes.
However, for narrower gaps, these bonding modes are strongly affected
by electron tunneling; thus, they will set the basis for our active control
concept. Essentially, as we decrease S, the gap resonances broaden in the
optical spectra, and they lose intensity because of resistive losses associ-
ated with the tunneling current (28, 34) and short-circuiting of the in-
duced charge distributions at opposite sides of the gap.

To exploit active quantum control with an applied bias based on
the sensitivity of the gap resonances (w−

− and wd) to electron tunneling,
we reduce the gap size to S ≈ 6 Å where tunneling effects, albeit weak,
are present. This allows control of the plasmon response by a low ex-
ternal bias (within the electron volt range). In the tunneling regime,
the optical response of the systems is obtained from the quantum
mechanical calculations within the time-dependent density functional
theory (TDDFT) (35). In the presence of an external bias, a dc current
flows through the gap, a process that represents a real challenge for
TDDFT calculations (36). We use a strategy where the bias is progres-
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sively applied which drives the system into a transitory steady-state re-
gime needed for the calculation of the absorption spectra. More
details of our approach are given in the Supplementary Materials.
The nanoparticles are described within the jellium model (JM),
which describes the optical absorption spectra of a variety of metallic
systems, including those of core-shell and spherical dimer nanoparti-
cles (26, 27, 34). The advantage of the JM is that a full quantum treat-
ment can be performed for sufficiently large systems so that plasmonic
modes and steady-state currents are fully developed. We consider nano-
particles made of Na metal, which is a prototype system for the JM.
Despite its simplicity, the Na JM robustly captures the main physics
and has demonstrated its predictive power in describing tunneling ef-
fects on silver and gold plasmonic nanoparticles (21–25).

Figure 3A shows the absorption spectra calculated with the TDDFT
for a cylindrical NM, and Fig. 3B shows the absorption spectra for a
spherical dimer. The systems are similar to those used in Fig. 2 but with
the width of the tunneling gap reduced to S = 6.4 Å. The incident plane
wave is polarized perpendicularly to the symmetry axis in the case of
the NM and along the symmetry axis in the case of the spherical dimer.
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Fig. 1. Schematics of the mechanism underlying the proposed bias-
control strategy for active plasmonics. The evolution of the electron

tunneling barrier across a nanoparticle junction is shown for two situations.
(A) The junction width is reduced from S1 to S2. The Fermi levels EF of the
left and right leads are aligned. (B) A bias U is applied to the left lead,
whereas the width of the junction S is kept fixed. The shaded areas repre-
sent the tunneling barrier for the electrons at the Fermi energy before
(gray) and after (red) themodification of the tunneling barrier, by changing
the junctionwidth (A) and the bias (B). The presence of the incident electro-
magnetic field at frequency w induces the modulation of one-electron po-
tentials (vertical arrow on the top left corner of the panels). Horizontal
green and blue arrows show, respectively, the ac current Jw due to the
optical potential and the dc current Jdc due to applied bias U.
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Fig. 2. Optical response of the systems under study. The polarization
of the incident light is illustrated with blue arrows. (A) The absorption

cross section per unit length s/l calculated for a cylindrical core-shell NM
(R1 = 39.2 Å, R2 = 47.7 Å, R3 = 61 Å). The NMgeometry is given by the radius
of the core R1, the internal radius of the shell R2, and the external radius of
the shell R3 [see (C)]. The core-shell gap in this case is S= R2− R1 = 8.5 Å. The
absorption resonances are labeled according to the underlying plasmonic
modes (w−

−, bonding hybridized plasmon; w−
+, resonance with core char-

acter; wc
+, antibonding mode with shell character). (B) The absorption cross

section s for a spherical dimer formed by two spherical nanoparticles with
radius R = 21.7 Å, separated by a gap of width S = 8.5 Å. Absorption reso-
nances correspond to the bonding dipolar mode at wd and a bonding
quadrupolar mode at wq. (C) The near-field distribution calculated for the
w−
− plasmon mode of the NM. (D) The near-field distribution calculated for

the wd plasmonmode of the spherical dimer. Themost bias-sensitive reso-
nances aremarkedwith red arrows. The calculations consider an electronic
density that corresponds to Na metal.
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The calculations have been performed for different values of the bias
U applied either between the core and the shell of the cylindrical NM
or between the nanoparticles forming the dimer, as depicted in the in-
sets to Fig. 3 (A and B). Remarkably, application of the bias produces
significant changes in the absorption spectra. In particular, a consid-
erable decrease in the resonance absorption peak is apparent. Within
the studied bias range 0 < U < 3 eV, we calculate an ≈30% variation of
the maximum of the absorption cross section primarily because of the
broadening of the plasmon resonance. Thus, even a moderate change
in the dc bias results in a significant modulation of the plasmon re-
sponse. It is worth mentioning that the (bias-dependent) coupling of
the collective plasmon modes with single-particle electron-hole excita-
tions, which is behind the plasmon mode decay, leads to the features
in the absorption spectra, as observed in the case of NMs shown in
Fig. 3A (29, 37).

To understand the TDDFT results, let us consider a junction between
two flat metal surfaces separated by a narrow gap of width S. Within a
linear response, the presence of the optical fieldEw at frequencyw induces
a tunneling current at the same frequency. The dissipative component (in
phase with the driving field) of this current density can be expressed (in
atomic units) as (38)

JwðU;VwÞ ¼ Vw=ð2wÞ½JdcðU þ wÞ − JdcðU − wÞ� ð1Þ
Marinica et al. Sci. Adv. 2015;1:e1501095 18 December 2015
whereU is the applied dc bias,Vw≈ SEw is the (small) optical bias across
the junction, and Jdc(U ± w) is the dc current at bias U ± w. For a slow
variation of Jdc with U, we obtain the classical limit

JwðU;VwÞ ¼ SðdJdc=dUÞEw ð2Þ
An increase in the applied bias at a fixed gap width S leads to a lower

tunneling barrier; thus, the conductivity s(U,S) = S(dJdc/dU) becomes
larger, resulting in a larger tunneling current at optical frequency Jw. Sim-
ilar to the cases where the gap width S is reduced (26–29) (at zero bias),
the existence of a larger tunneling current at optical frequency results in
a quenching of the bonding plasmon peak in the absorption spectrum.
This is a consequence of the partial neutralization of the screening
charges at opposite sides of the junction, resulting in increased resistive
losses. For the gap resonance of the spherical dimer (Fig. 3B), the peak
blue shifts with increasingU, consistent with the reduction of the capac-
itive coupling across the gap, which results in a screened bonding dimer
plasmon. The evolution of the absorption spectra of the spherical dimer
with the applied bias is similar to earlier theoretical results obtained by
varying the conductance across the junction (39), which further supports
our interpretation of the results. For a larger gap width S, the tunneling
probability decreases so that a larger applied bias U is needed to induce
the same tunneling current and thus a similardegree of plasmon response
modification (Supplementary Materials).
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Fig. 3. Effects of applied bias on the plasmonic modes of the NM and the spherical dimer. (A and B) TDDFT results for the absorption spectra of a
cylindrical NM (R1 = 41.3 Å, R2 = 47.7 Å, R3 = 61 Å) and a spherical dimer (R = 21.7 Å) with gap width S = 6.4 Å. (C) Absorption cross section per unit length

s/l calculated with QCM for the cylindrical NM with the same geometry as in (A). (D) Time evolution of the dipole induced in the NM of (A) by an incident
pulse of light resonant with the w−

− plasmon mode and polarized perpendicularly to the symmetry axis. The bias is applied at time t = 2 fs. The values of
the applied bias are detailed in the insets.
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To further confirm that the effect of the bias tuning of the plasmon
resonances is mainly due to tunneling, we also calculate the optical re-
sponse of the cylindrical NM using the quantum corrected model (QCM)
(28). The QCM allows for inclusion of quantum tunneling effects within
the framework of classical Maxwell’s equations. To this end, the optical
response of the gap is described by a local effective dielectric function

egðU;SÞ ¼ 1þ i4psgðU;SÞ=w ð3Þ

The bias-dependent conductivity sg(U,S) accounts for the tunneling
current at optical frequencies and finite bias. The advantage of perform-
ing theQCM calculations forNM is that because of the fixed size of the
vacuum gap, the corresponding sg(U,S) in this case can be directly de-
duced from the TDDFT calculations without any parameters. Thus,
the “quantum” relationship between the tunneling current and the field
in the gap is reproduced (Supplementary Materials). The QCM results
shown in Fig. 3C correctly capture all the main spectral trends as a
function of bias variation, as observed when compared with the full
quantum TDDFT calculations (Fig. 3A). This suggests that the bias-
induced variation of the conductivity across the junction is indeed at
the origin of the spectral changes obtained with the TDDFT calcula-
tions. Furthermore, the QCM approach allows calculations for larger
bias values, where the TDDFT would be difficult to implement. The
results for such a large bias are shown with dashed lines in Fig. 3C.
For U ≈ 4 eV, the absorption cross section is decreased by more than
a factor of 2 at the resonance frequency, and the plasmon resonance
is nearly quenched.

The dependence of the absorption spectra on the applied bias re-
flects the modification of the plasmon dynamics in the system. In par-
ticular, the increasing width of the resonance peaks in the absorption
spectra indicates faster damping of the underlying plasmonmodes. We
illustrate this connection between energy (w)–resolved and temporal
properties of the system in Fig. 3D, where we show the time evolution
of the dipole induced in the cylindrical NM by an external electromag-
netic pulse with a duration of 20 fs. The pulse has a Gaussian envelope
and a carrier frequency resonant with the gap plasmon. After the ter-
mination of the pulse (reference time t = 0), the time evolution of the
induced dipole is given by its decaying oscillations at the plasmon fre-
quencyw−

−, as shown in Fig. 3D.We compare the dipole dynamicswhen
no bias is applied (black line) with the situation when the bias between
the core and the shell is suddenly switched “on” at a time t = 2 fs. The
sudden perturbation of the system leads to the weak excitation of the
higher-energy w−

+ resonance with core character and of the wc
+ anti-

bonding mode with shell character. These appear as high-frequency
modulations of themain signal, given by the time evolutionof the dipole
associated with the bonding plasmon w−

−, which is the target of the
sought electrical control. An applied bias results in a faster decay and
dephasing of the plasmon as a result of the increase in electron tunnel-
ing. The larger the applied bias, the stronger the effect is. This result is
the time domain equivalent to the broadening of the absorption peaks
observed in the frequency domain in Fig. 3 (A to C).
SUMMARY AND CONCLUSIONS

In summary, we have proposed a novel strategy for active control of
junction plasmon resonances based on the application of a bias across
the gap. The physical origin of the effect is a bias-induced change in
Marinica et al. Sci. Adv. 2015;1:e1501095 18 December 2015
the electron tunneling barrier, which in turn controls the conductive
coupling between the two nanostructures. The feasibility of the ap-
proach has been demonstrated with proof-of-principle calculations
based on the quantum mechanical TDDFT. Although we here con-
sidered vacuum gaps, filling the plasmonic gap with dielectric materials
such as oxides will also modify the tunneling barrier. This effect may be
useful for practical realizations of the proposed device because it intro-
duces additional tuning modalities. Thus, the lowering of the tunneling
barrier offers the possibility of reaching the sought control for broader
gaps. Further extensions of this concept may include molecular linkers
with conductance windows allowing for on/off switch functionalities.

Quantum active control of plasmons, as demonstrated here, is in-
herently a fast (picosecond) process allowing operation at the time
scales of modern electronics and reversible and progressive tuning
of the plasmon resonances. This opens appealing perspectives for
the development of tunable absorbers for solar energy harvesting, con-
trol of information transfer in plasmonic waveguides, and manipula-
tion of plasmon-exciton couplings. Our concept of electrical control of
light in metallic nanostructures thus provides a new platform for many
practical applications in photonics and optoelectronics.
MATERIALS AND METHODS

The calculations of the linear response of the plasmonic systems presented
here are based on the Kohn-Sham (K-S) scheme of the TDDFT (35),
which allows us to treat the quantum dynamics of the many-electron
system, triggered by an external perturbation such as an optical pulse.
The time-dependent electron density at a given position →r is given by

nð r→; tÞ ¼ Soccjyjð r→; tÞj2

where the sum runs over all occupied (occ) K-S orbitals yj(r
→,t). The time

evolution of K-S orbitals is given by the time-dependent Schrödinger
equation (we use atomic units in this section unless otherwise stated)

→

i
∂yjðr ;tÞ

∂t
¼ T þ Veff ½n�ðr→;tÞ

� �
yj r

→
;t

� � ð4Þ

where T = − ½D is the kinetic energy operator and Veff ½n�ðr→; tÞ is the
effective K-S potential that depends on the electron density. The effec-
tive K-S potential is given by the sum of the Hartree potential VH, the
exchange correlation potential Vxc, and the external potential Vext as

→ → → →

Veff ½n�ðr ; tÞ ¼ VH½n�ðr;tÞ þ Vxc½n�ðr;tÞ þ Vextðr;tÞ ð5Þ

The Hartree potential is calculated within a nonretarded approxima-
tion, which is fully justified in our case when considering the polariza-
tion of the electric field and the small radii of the NMand the spherical
dimer. For the exchange correlation potential, we use the adiabatic lo-
cal density approximation (35, 40–42) with the exchange correlation
kernel of Gunnarsson and Lundqvist (43). The external potential allows
us to simulate the effect of the applied external bias and also represents
the incident electromagnetic “probe” pulse. Once the time-dependent
response of the system to the electromagnetic “probe” pulse is calcu-
lated, the Fourier time-to-frequency transform yields the frequency-
resolved quantities of interest. Thus, the optical absorption cross section
is given by

s wð Þ ¼ 4pw
c

Im a wð Þf g
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where c is the speed of light in vacuum and a(w) is the dipolar polar-
izability of the system.

The metal nanoparticles are treated within the spherical JM approxi-
mation (26, 27, 34) so that the full quantum TDDFT studies can handle
model systems comprising a sufficiently large number of conduction
electrons with well-developed plasmonic modes. The details of the
atomistic structure are neglected within the JM, and the ionic cores
of the atoms are represented by a uniform background charge density

nþ ¼ 4p
3 r3s

� ��1
contained within the volume defined by the jellium

edges (metal surfaces). The Wigner-Seitz radius rs is set equal to 4a0
(Bohr radius a0 = 0.53 Å), corresponding to the Na metal that is a
prototype system for the JM description. The cylindrical NM and the
spherical dimer have a cylindrical symmetry such that we can address
up to 300 conduction electrons per 1-Å length in the former case and
1074 electrons per nanoparticle in the latter case.

The QCM (28) calculations in our study are implemented to sup-
port the interpretation of the TDDFT results. Because the essential phys-
ics contained in the QCM is associated with the presence of tunneling
across the junctions, the comparison of the two approaches (TDDFT
and QCM) for the NM clearly confirms that the bias effect on the plas-
mon resonances is due to tunneling. In the QCM, the metal nanopar-
ticles are described with the use of a Drude dielectric function

e wð Þ ¼ 1� w2
p

wðw þ ihÞ ð6Þ

where the attenuation and the plasma frequency are, respectively, h =
0.218 eV and wp = 5.16 eV. This choice of parameters allows us to ac-
count for electron spill-out effects and plasmon line broadening as a
consequence of the decay of plasmons into electron-hole one-particle
excitations (44). The vacuum gap between the core and the shell of
the cylindrical NM is filled with an effective material characterized by
the dielectric function given by Eq. 3 to capture the effect of the electron
tunneling. The tunneling conductivity across a gap with width S at an
applied dc bias U is obtained from the TDDFT calculations as

sg U;Sð Þ ¼ S
dJdcðU;SÞ

dU
ð7Þ

Here, Jdc(U,S) represents the dc tunneling current density through
the middle of the gap calculated with the TDDFT at the steady-state
regime reached for the biasU between the core and the shell in the case
of aNMgap (for further details, see SupplementaryMaterials). Classical
electromagnetic calculations within the quasi-static approximation,
using the model dielectric function given by Eqs. 6 and 7, reproduce
the absorption spectra calculated with the TDDFT for the individual
cylindrical nanowire of radius R = 61 Å, as well as the applied bias de-
pendence of the absorption spectra calculated with the TDDFT for the
cylindrical NM.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/11/e1501095/DC1
Details of quantum mechanical calculations within the TDDFT
Fig. S1. Effective one-electron potential (A) and ground-state electron density (B) calculated
with density functional theory for the cylindrical NMs with different gap sizes.
Fig. S2. Frequency-dependent absorption cross section per unit length calculated with the
TDDFT for the infinite cylinder with radius R = 61 Å.
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Fig. S3. Dependence of the absorption spectra of the cylindrical NM (A) and spherical dimer (B)
on the size of the plasmonic gap.
Fig. S4. Effective one-electron potentials (A) and Hartree and exchange-correlation
contributions to the one-electron potentials (B) calculated with density functional theory for
cylindrical NM (R1 = 41.3 Å, R2 = 47.7 Å, R3 = 61 Å) with a bias applied between the core and
the shell.
Fig. S5. (A to D) Electron dynamics triggered by the bias applied between the core and the
shell of the cylindrical NM (R1 = 41.3 Å, R2 = 47.7 Å, R3 = 61 Å).
Fig. S6. Applied bias dependence of the absorption cross section per unit length calculated for
the cylindrical NM (R1 = 41.3 Å, R2 = 47.7 Å, R3 = 61 Å) using the TDDFT (A and B) and QCM (C)
approaches within the frequency range corresponding to the bonding hybridized plasmon
mode.
Fig. S7. Applied bias dependence of the absorption cross section per unit length calculated
with the TDDFT for the cylindrical NM within the frequency range corresponding to the
plasmon mode with core character.
Fig. S8. Time evolution of the effective bias triggered by the slowly varying external potential
applied to the spherical dimer.
Fig. S9. Time evolution of the induced dipole (A) and the effective bias (B) calculated with the
TDDFT for the cylindrical NM in response to the illumination by the “probe” pulse and sudden
change in the applied bias.
Fig. S10. Current-voltage characteristic of the cylindrical NM (R1 = 41.3 Å, R2 = 47.7 Å, R3 = 61 Å).
Additional calculations for different sizes of gap S
Fig. S11. Applied bias dependence of the absorption cross section per unit length calculated
with the TDDFT for the cylindrical NM (R1 = 40.3 Å, R2 = 47.7 Å, R3 = 61 Å).
Fig. S12. (A and B) TDDFT calculations for the spherical dimer with a gap of S = 5 Å.
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