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Abstract

In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug 

repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple 

types of data for accurate DTI prediction. Although recent studies have demonstrated that 

genomic, chemical and pharmacological data can provide reliable information for DTI prediction, 

it remains unclear whether functional information on proteins can also contribute to this task. 

Little work has been developed to combine such information with other data to identify new 

interactions between drugs and targets. In this paper, we introduce functional data into DTI 

prediction and construct biological space for targets using the functional similarity measure. We 

present a probabilistic graphical model, called conditional random field (CRF), to systematically 

integrate genomic, chemical, functional and pharmacological data plus the topology of DTI 

networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets 

show that our method can achieve excellent prediction performance with the area under the 

precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can 

successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be 

practically useful for drug repositioning.
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1. Introduction

In recent years, drug repositioning or drug repurposing has become an increasingly popular 

trend in drug discovery.1–4 The main goal of drug repositioning is to reuse existing or 

abandoned drugs and identify their new therapeutic functions. Recent literature reveals that 

drugs often possess the so-called promiscuity property,5,6 that is, individual drugs can act on 

other off-target proteins in addition to the original target. This property provides a strong 

theoretical support for drug repositioning.

In silico prediction of drug-target interactions (DTIs) has been widely applied in drug 

repositioning, since it can significantly reduce time and cost of drug development. 

Molecular docking methods have been commonly used in predicting new DTIs if structure 

coordinates of both proteins and drugs are available.7–10 When three-dimensional (3D) 

structures of molecules are absent, we need to depend on other approaches to perform DTI 

prediction. The structure-free approaches can be roughly divided into two categories: 

ligand-based and network-based methods. Ligand-based methods exploit ligand similarity to 

identify new targets that can interact with a query drug.11,12 Although with some successful 

stories, ligand-based approaches have di±culty in identifying new interactions associated 

with novel binding scaffolds.13 Network-based methods14–20 detect the latent correlation 

features of DTIs to predict new interactions, and recently have become a popular tool for 

drug repositioning and drug development. A key challenge in network-based prediction 

approaches lies in integrating heterogeneous data for accurate DTI prediction. Traditional 

DTI prediction approaches often relate genomic and chemical data with DTI networks to 

perform new prediction.21 Recently, pharmacological data such as drug side-effets have also 

been taken into consideration,18,20,22–24 and the results suggest that incorporating more data 

into DTI prediction can further improve prediction accuracy. Most existing network-based 

approaches mainly rely on the sequence similarity to measure the closeness of two targets. 

The sequence similarity, however, is not necessarily sufficient enough to characterize the 

shared patterns of DTI profiles between two targets.

Functional similarity enables us to compare two proteins with respect to their molecular and 

biological functions.25 It is defined mainly based on Gene Ontology (GO) terms, which 

indicate the biological roles of gene products. This measure can identify functionally-related 

proteins regardless of homology, and hence provide additional information about the 

similarity of two targets aside from their genomic data. Based on functional similarity, we 

can construct biological space for proteins and analyze their DTI patterns from a different 

angle.

Although numerous approaches18,20,23,24,26 have been proposed to integrate genomic (i.e., 

protein sequences), chemical (i.e., chemical substructures of drugs) and pharmacological 

(i.e., drug side-effects) data for predicting unknown DTIs, functional information has not 

been well exploited in DTI prediction. To our knowledge, little work has been developed to 

systematically integrate functional information on proteins with the aforementioned data to 

predict missing interactions between drugs and targets. In this paper, we present a new 

approach to address the DTI prediction problem by systematically integrating large-scale 

chemical, pharmacological, genomic and functional data and DTI network information into 
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a unified framework. Our method applies a probabilistic graphical model, called conditional 

random field (CRF), to encode the complicated network associated with drugs and targets, 

and predict new DTIs. We apply a stochastic gradient ascent approach plus the contrastive 

divergence (CD) algorithm27 to train our graphical model and capture the hidden 

correlations between drugs and targets. Tests on two benchmark datasets derived from 

multiple publicly-available databases show that our CRF model can effectively integrate 

multiple sources of information and achieve excellent prediction performance, with the area 

under the precision-recall curve (AUPR) up to 94.9. These results indicate that our approach 

can have potential applications in drug repositioning.

In summary, the following contributions are made in this paper: (1) Introduction of 

functional data into DTI prediction and construction of biological space for proteins using 

the functional similarity measure; (2) Development of a new machine learning approach that 

can systematically integrate heterogeneous data into a unified framework to predict 

unknown DTIs; and (3) Promising testing results on two benchmark datasets.

2. Methods

2.1. Conditional Random Field Framework

Conditional random field (CRF) is a probabilistic graphical model or a variant of Markov 

random field28–30 that was first proposed for object recognition and image segmentation.31 

Now it has been widely used in many fields such as shallow parsing,32 named entity 

recognition,33 topic distillation,34 social recommendation35 and molecular structural 

modelling.36 We apply a binary CRF model34,35 to formulate our DTI prediction problem.

Let {di} ≤ i ≤ nd be the set of known drugs and {tj} 1 ≤ j ≤ nt, be the set of targets, where nd 

and nt represent the total numbers of drugs and targets respectively. We use X to denote 

observed data, including known DTIs and various similarity scores, such as sequence 

similarity scores for proteins and chemical similarity scores for drugs. In other words, X 

stands for a set of binary indicators representing known drug-target interactions, and positive 

variables representing observed similarity scores. For each drug di, we construct a CRF on 

an undirected graph G = (Vt, Et), where Vt = {tt} is the set of targets and each edge in Et 

represents the similarity between a pair of targets. Let vector Y = (y1, y2, ... ynt) denote the 

prediction, where each yj is a binary random variable representing the prediction of target tj, 

that is, yj = 1 if the predicted interaction between drug di and target tj is true, and yj = 0 

otherwise. We call this model the target-based CRF. Similarly, for each target tj, we 

construct a CRF on an undirected graph G = (Vd, Ed), where Vd = {dd} is the set of drugs 

and each edge in Ed represents the similarity between a pair of drugs. We call the second 

model the drug-based CRF. For the convenience of description, next, we will mainly use the 

target-based model as an example to illustrate the learning and prediction procedures of our 

CRF model unless otherwise specified.

For each target-based CRF, we define a joint probability distribution conditioning on 

observation X. In the underlying graph, each node represents a target ti or its associated 

binary random variable yi, and each edge connecting two nodes represents the dependency 

between these two nodes. Hereinafter, we will slightly abuse the notation and use terms 
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‘node’ and ‘random variable’ interchangeably. The undirected graphical model possesses the 

so-called conditional independence property,37 which states that the conditional distribution 

of node yi is independent of all other nodes given its ‘neighbors’ (i.e., all other nodes that yi 

is connected to). By connecting similar proteins together, we indeed assume that the 

conditional state of a target depends only on the states of other proteins with high similarity. 

Details about how to construct edges between targets will be described in Section 3.1.

In a CRF model, the energy of a joint configuration Y given X can be defined as follows:

(1)

where f (yi|X) is a local node feature function defined based on the state of yi, g(yi, yj|X) is a 

relational edge feature function defined based on states of both yi and yj, and ai ≥ 0 and bij ≥ 

0 are weight parameters that need to be learned from training data. In our DTI prediction 

framework, we let all target-based or drug-based CRFs share the same parameters ai and bij. 

Then the joint probability density function of Y given X can be defined as

(2)

where Z (X) = ΣY exp (−E(Y | X)) is the normalizing constant, also called partition function. 

We define functions f (·) and g (·) as followings:

(3)

(4)

where Hxi (yi) represents the observed feature of target ti, and Hxi,xj (yi − yj) represents the 

relational feature measure of yi and yj given observation X. In our framework, we let Hxi (yi) 

be the average number of observed drug interactions for target ti, and let Hxi,xj (yi − yj) be 

the difference between binary variables yi and yj. By defining the above two feature 

functions, we indeed add a penalization when (1) predictions for two connected nodes are 

different, and (2) the prediction of a given node deviates from its average state. Unlike in 

Ref. 35, which assumes that all nodes share the same parameter a and all edges share the 

same parameter b, here in our model all weight parameters ai, bij are set to be different 

values for individual nodes and edges. This parameter setting is more flexible to capture 

information from data and can avoid potential improper assumptions about weight 

parameters. Our test results (details are not shown in the paper) suggest that this new 

parameter setting can yield better performance than the original version35 which chooses a 

relatively rigid parameter setting.

2.2. Parameter Training

In the training process, we aim to learn parameters ai and bij from training data. We use 

stochastic gradient ascent38 as an optimization method to maximize the conditional log-

likelihood of training data. To simplify the notation, we use vector θ to denote parameters 
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(ai, bij), and function vector h to denote (f, g). Then the probability density function in Eq. 

(2) can be rewritten as

(5)

Thus we can derive the following conditional log-likelihood:

(6)

Since each component of θ is non-negative, we let . For 

simplicity, we use exp (θ′) to represent . Then we have

(7)

The gradient in Eq. (7) is

(8)

where Eθ(h(Y|X)) is the expectation of h (Y |X) and Y|X follows the distribution pθ defined in 

Eq. (5).

To apply the gradient ascent method, we need to deal with the expectation term in Eq. (8). It 

is algebraically intractable to directly calculate this expectation, and one possible solution is 

to employ some simulation techniques such as Markov Chain Monte Carlo (MCMC) to 

approximate its value. A Gibbs sampling method was used in Ref. 35 to sample a sequence 

of Y following the current distribution pθ and then approximate Eθ(h(Y|X)) by

(9)

where {ỹi}, 1 ≤ i ≤ L, is the sampled sequence, and L is the total number of sampling 

iterations. Sampling such sequence often proceeds as follows: We first randomly pick some 

initial value y0, and then sample each variable using the current value according to its 

conditional distribution. Normally, after some burn-in period, the distribution of yi can 

approximate distribution pθ.

Although Gibbs sampling is a popular method to approximate the expectation, it su®ers 

from heavy computational cost, which is impractical in our case. Here we apply another 

sampling algorithm, called contrastive divergence (CD), which was first proposed in Ref. 

27. The CD algorithm has been successfully used to train restricted Boltzmann machines39 

and it can be easily implemented. The basic idea of the CD algorithm is to substitute Eθ(h (Y|

X)) in Eq. (8) by EpT (h(Y|X)), where pT represents the distribution of data transformed by T 
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cycles of Gibbs sampling.27 In practice, T is often chosen to be one. Although the CD 

algorithm may lead to biased estimates, the bias is small in general.40 In practice, the CD 

algorithm can provide an effcient method to approximate the log-likelihood function.27,39,40

2.3. Predicting New Drug-Target Interactions

To predict unknown drug-target interactions for a query drug given observation X, we 

compute the conditional probability distribution p (yk|y−k, X) for each target tk, where y−k 

denote the all other targets except tk. For i ≠ k, yi = 1 if target yi is known to interact with the 

query drug, and yi = 0 otherwise. We then calculate the conditional expectation of yk as the 

prediction score of the interaction between target yk and the query drug.

3. Results 3.1. Constructing Conditional Random Field

In our CRF model, an edge connecting two nodes indicates the relational dependency 

between them, and we assume that two connected nodes should share high similarity. One 

natural approach for constructing edges in the underlying graph is to connect two nodes if 

their similarity score is above a threshold. By choosing different threshold values we should 

be able to tune the number of edges in the graph. This construction method, which we call 

the threshold-based approach, could yield an unbalanced graph in which some nodes may 

have much fewer neighbors than others. This situation would make it difficult for inferring 

the states of those neighbor-free nodes. To avoid this problem, we used another approach to 

construct the underlying graph. For each node ti, let Ni be the set of top K nodes that have 

the highest similarity scores with ti, and we connect two nodes ti and tj if ti ∈ Nj or tj ∈ Ni. 

We refer to this new approach as the degree-based approach, which ensures that the degree 

of each node in the underlying graph is at least K and roughly balanced, and thus can 

prevent the existence of ‘isolated’ nodes. In practice, we should not choose a large value of 

K in order to train our CRF model efficiently on a large-scale dataset. Our sensitivity 

analysis shows that our results did not vary much for different K values (Supplementary 

Material S2). We can also combine the above two approaches to get an integration-based 

approach for constructing edges, that is, we connected two nodes mainly based on a 

similarity score threshold but also added more connections to a node if its degree is less than 

K. The comparison results show that different construction approaches did not influence 

much on prediction performance when choosing K ≥ 2 (Supplementary Material S3). In the 

following analysis, the underlying graph of our CRF model was constructed mainly based 

on the degree-based approach, unless otherwise specified. We chose K = 4 when a single 

similarity measure was used and K = 2 when multiple similarity measures were used. This 

parameter was fixed throughout all our tests.

We tested the following six different approaches in our conditional random field framework:

• Genomic approach (GEN): The target-based CRF was constructed using the 

sequence similarity measure.

• Functional approach (FUN): The target-based CRF was constructed using the 

functional similarity measure.
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• Integrated Genomic-Functional approach (IGF): The target-based CRF was 

constructed using the sequence and functional similarity measures simultaneously. 

In other words, two nodes were connected if they satisfied the sequence or 

functional similarity criterion.

• Chemical approach (CHEM): The drug-based CRF was constructed using the 

chemical similarity measure.

• Pharmacological approach (PHAR): The drug-based CRF was constructed using 

the sidee®ect similarity measure.

• Integrated Chemical-Pharmacological approach (ICP): The drug-based CRF was 

constructed using the chemical and side-effect similarity measures simultaneously. 

In other words, an edge was constructed if it was valid under the chemical or side-

effect similarity measure criterion.

In addition, we investigated the combination of two independent predictions from target-

based and drug-based CRFs respectively. For any given drug-target pair, let Sd denote the 

prediction score using the drug-based CRF model and St denote the prediction score using 

the target-based CRF model. Then our final score for this query drug-target pair is

(10)

In the current version of our program, we fixed α = 0.5. By fine-tuning the parameter ®, we 

may achieve better results than our current tests. Our final approach integrated chemical, 

pharmacological, genomic and functional data simultaneously:

• Full Integration approach (FI): The final prediction was the simple linear 

combination of both integrated chemical- pharmacological (ICP) and integrated 

genomic-functional (IGF) approaches using Eq. (10).

Our program was implemented in Matlab (2010 b) based on the UGM package developed 

by Mark Schmidt (http://www.di.ens.fr/~mschmidt/Software/UGM.html). UGM is a Matlab 

toolbox that implements various tasks in discrete undirected graphical models with pairwise 

potentials. We used the default parameters of functions in the UGM package throughout all 

our tests.

3.2. Datasets

To demonstrate the predictive power of our approach, we first tested it on a dataset derived 

from the KEGG database41,42 which contains experimentally-verified drug-target 

interactions. We call this dataset the first dataset. All drugs in the first dataset have 

molecular weight more than 100. In order to obtain pharmacological information we only 

included those drugs that also have side-e®ect records in the SIDER database.43 As a 

consequence, in total 875 drugs and 249 proteins with 2596 drug-target interactions were 

obtained in the first dataset.

To compare with other existing approaches, we tested our algorithm on another dataset that 

has been published in Ref. 24, where all drugs have records in SIDER, JAPIC and AERS. 
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JAPIC and AERS are two public databases about drug side-effects. More details about these 

two databases can be found in Ref. 24. The data we tested here is slightly different from the 

original data which contains 359 drugs and 226 proteins with 1188 drug-target interactions. 

We excluded six proteins that do not have any GO annotation and two drugs that have no 

interaction with the remaining proteins. Thus the new dataset includes 357 drugs and 220 

proteins with 1174 drug-target interactions. We call this new dataset the second dataset. 

Descriptive statistics about the first and second datasets are provided in Supplementary 

Material S1.

Chemical similarities between drugs were calculated using the graph kernel approach,44 

where chemical structure information of drugs was taken from the KEGG database. Side-

effect similarities between drugs were calculated using the same method as in Ref. 24, 

where pharmacological information was obtained from the SIDER database. Sequence 

similarities between proteins were computed using local alignment kernel approach.45 

Functional similarities between proteins were calculated using online software 

FunSimMat,46,47 in which functional similarity scores were derived from GO terms 

annotated with biological process and molecular function. In both datasets that we have 

tested, most pairs of proteins or drugs were dissimilar. In the first dataset, less than 3% of all 

drug pairs had chemical similarity score greater than 0.85 (all similarity scores were 

normalized to 1), and less than 1% of all protein pairs had sequence similarity score greater 

than 0.85. In the second dataset, less than 2% of all drug pairs had chemical similarity score 

greater than 0.85, and less than 1% of all protein pairs had sequence similarity score greater 

than 0.85.

3.3. Performance Evaluation

We used the Receiver Operator Characteristic (ROC) curve and the Precision-Recall (PR) 

curve to evaluate the performance of our algorithm. In addition, we also computed the AUC 

(area under ROC curve) and AUPR (area under PR curve) scores. In our performance 

evaluation, true positives were those correctly predicted interactions, while false positives 

were those predicted interactions that were not present in the tested dataset. For highly-

unbalanced data, the PR curve is usually considered to be a better criterion to assess the 

prediction performance, since it can punish more false positive examples.16,19,48 Thus our 

analysis mainly focused on AUPR, although in many cases AUC and AUPR were positively 

correlated. Our tests were performed mainly using a 10-fold cross-validation procedure. In 

this procedure, all DTIs were randomly partitioned into 10 equal size subsamples. Each 

subsample was in turn used as validation data to test our algorithm, and the remaining nine 

subsamples were used as training data.

Table 1 summarizes the test results on the first dataset using the 10-fold cross-validation 

procedure. Under the target-based CRF framework, integrating both genomic and functional 

data achieved better performance than other two approaches, with the AUPR score improved 

by > 3%. When both chemical and pharmacological data were integrated into the drug-based 

CRF framework, the results outperformed each single-similarity based approach with the 

AUPR score improved by > 4%. When integrating all available information, the FI approach 

achieved the best performance with AUPR > 94. Figure 1 shows the AUPR curves for 
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different approaches tested on the first dataset. These results demonstrate that incorporating 

additional information about drugs and proteins can further improve prediction accuracy. To 

check the robustness of our model, we also performed a 5-fold cross-validation test, and 

only observed a slight decrease in AUC and AUPR values (Supplementary Material S4).

3.4. Comparison Results

To compare with other existing approaches, we tested our algorithm on the second dataset, 

i.e., the benchmark dataset published in Ref. 24. Here we mainly compared our approach 

with the pairwise kernel regression (PKR) method proposed in Ref. 24, which claimed that 

PKR outperformed many other state-of-the-art methods on the same data. As in Ref. 24, we 

also tested seven different approaches, including AERS-freq-based pharmacogenomic 

approach (AERS-freq), AERS-bit-based pharmacogenomic approach (AERS-bit), SIDER-

based pharmacogenomic approach (SIDER), JAPIC-based pharmacogenomic approach 

(JAPIC), chemogenomic approach (CHEM), integrated pharmacogenomic approach 

(INTEG-P) and integrated pharmaco-chemogenomic approach (INTEG-PC). These different 

methods, as suggested by their names, are defined mainly based on input data, and more 

details about them can be found in Ref. 24 or Supplementary Material S5 of this paper. In 

addition, we tested an additional approach that combines chemical, side-effect, sequence and 

functional data together. This approach was not included in Ref. 24 and we referred to it as 

‘INTEG-ALL’. Table 2 shows the comparison results between our conditional random field 

(CRF) model and the pairwise kernel regression (PKR) model.

As shown in table 2, our method outperformed the PKR model over all different tests. In 

particular, our approach can improve the AUPR score by up to 10.5 when only SIDER-

based information was used. Furthermore, the results produced by CRF were not as sensitive 

to different input data as those produced by PKR. For example, the AUPR score of PKR 

based on JAPIC was about 10% larger than that based on SIDER, whereas the test of our 

algorithm on SIDER-based data can still yield decent performance. These comparison 

results indicate that our method is more robust to input data than PKR, and may have a 

better capacity to handle noise in data.a

4. Conclusion

In this article, we introduced functional data into DTI prediction and developed a 

probabilistic graphical model to predict new drug-target interactions using known drug-

target interactions and various similarity scores for both drugs and targets. Our model can 

integrate chemical, pharmacological, genomic and functional data systematically, and 

predict new DTI interactions with high accuracy. We demonstrated that incorporating 

functional information of targets can further improve prediction performance.

Currently, our algorithm uses a simple linear combination of independent predictions from 

drug-based and target-based CRFs respectively. In the future, we will extend our model into 

a more sophisticated framework that can better integrate both drug-based and target-based 

aAlthough our dataset were slightly differently from the original data tested in the PKR model (six proteins and two drugs were 
excluded from the original dataset), the tiny difference between two datasets should not change the conclusions that we draw here.
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CRF models. In addition, we will incorporate other data such as drug-drug interaction (DDI) 

and protein-protein interaction (PPI) information into DTI prediction. We hope that by 

incorporating these additional information our model can reveal mechanism of drug action 

to a greater extent. Currently we only evaluated our approach based on benchmark data. We 

will explore the practical applications of our prediction algorithm, e.g., identifying novel 

drug-target interactions for drug repositioning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
PR curves for different approaches on the first dataset. (A) PR curves for drug-based CRFs. 

(B) PR curves for target-based CRFs. (C) PR curves for the FI approach.
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Table 1

Prediction results on the first dataset using 10-fold cross-validation. Both AUC and AUPR scores are 

normalized to 100. The best result is shown in bold.

Approach
Evaluation Criterion

AUC AUPR

Target-based CRF

GEN 97.3 80.7

FUN 97.7 80.9

IGF 98.0 83.9

Drug-based CRF

CHEM 96.0 81.5

PHAR 96.6 79.9

ICP 98.1 85.9

Full Integration Approach (FI) 99.2 94.9
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Table 2

The comparison results between our CRF and PKR methods. The second dataset was tested in our CRF model 

using 3-fold cross-validation. The results for PKR were taken from Ref. 24 in which pair-wise cross-validation 

corresponds to our 3-fold cross-validation test here. Note that the INTEG-ALL approach was absent in Ref. 

24. The best score is shown in bold.

Approach
AUPR

CRF PKR

AERS-freq 85.7 80.6

AERS-bit 85.4 81.3

SIDER 87.3 76.8

JAPIC 91.2 87.7

CHEM 87.7 79.7

INTEG-P 90.7 87.4

INTEG-PC 90.4 88.5

INTEG-ALL 91.5 \
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