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Introduction

A variety of pathological conditions can increase risk for development of ventricular 

arrhythmias in humans including diabetes, obesity, myocardial infarction (MI), and heart 

failure. Many of these diseases involve global disruption of the autonomic nervous system, 

including increased sympathetic drive and parasympathetic withdrawal, but another 

common factor among these disorders is sympathetic dysfunction within the heart. 

Treatments that target cardiac sympathetic transmission, including beta blockers and 

ganglionectomy, prolong life and decrease arrhythmias 1–5.

Sympathetic control of the heart under normal conditions occurs primarily via 

norepinephrine (NE) acting on β adrenergic receptors (β-AR) to stimulate increases in heart 

rate (chronotropy), conduction velocity (dromotropy), and contractility (inotropy). These 

positive effects of sympathetic stimulation allow myocytes to meet increased cardiac 

demands during stress or exercise, serving to maintain homeostasis. The nervous system 

adapts to changing conditions, however, and sympathetic neurons undergo structural and 

functional alterations in response to injury and disease. There are at least four types of 

sympathetic remodeling that occur during conditions of increased arrhythmia susceptibility: 

hyperinnervation (increased nerve density), denervation (decreased nerve density), altered 

neurotransmitter or neuropeptide production, and increased neuronal excitability. Rubart and 

Zipes proposed a model to explain how these diverse changes in sympathetic transmission 
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might contribute to arrhythmia generation 6, suggesting that inappropriate heterogeneity of 

NE release within the heart leads to differential electrical remodeling of cardiac myocytes 

and predisposes the heart to electrical instability. Many studies now support the hypothesis 

that heterogeneity of noradrenergic transmission increases the risk of arrhythmia, and have 

identified some of the mechanisms that underlie neuronal remodeling. This review will 

examine the mechanisms of sympathetic remodeling and will connect neural changes to 

increased arrhythmia susceptibility. We will focus on ventricular arrhythmias, as atrial 

arrhythmias were reviewed recently 7.

Hyperinnervation and excess NE release

Regional hyperinnervation was the first type of neural remodeling linked to arrhythmia 

generation in humans 8, 9. Areas of sympathetic hyperinnervation, defined as increased 

nerve fiber density compared to control tissue, have now been identified in many conditions 

with increased arrhythmia susceptibility including heart failure 9, myocardial 

infarction 10, 11, spinal cord injury 12, and diet induced obesity13, 14. Nerve growth factor 

(NGF) has been the focus of studies related to cardiac hyperinnervation since NGF 

stimulates the extension, or sprouting, of sympathetic nerve endings during development and 

after injury. Cardiac NGF is elevated in animal and human hearts during conditions 

associated with hyperinnervation 10, 12, 15, and is decreased in conditions that include a loss 

of functional sympathetic innervation such as late stage heart failure 16 and diabetic 

neuropathy 17.

Sympathetic axon outgrowth is triggered through activation of the TrkA (Tropomyosin 

receptor kinase A) receptor, which stimulates serine phosphorylation of STAT3 (signal 

transducer and activator of transcription 3) in addition to activating other signaling 

pathways. Although TrkA can be activated by both NGF and Neurotrophin 3 during 

development, NGF is the only ligand that activates TrkA in mature sympathetic neurons, 

and thus is crucial for maintaining sympathetic neuron health and stimulating axon 

regeneration. Recent studies indicate that cytokines like Leukemia Inhibitory Factor (LIF) 

and Cardiotrophin-1 (CT-1), which activate the gp130 receptor, do not stimulate axon 

growth on their own but are required for maximal NGF-induced sympathetic axon 

extension 18. These cytokines stimulate tyrosine phosphorylation of STAT3, and 

phosphorylation of STAT3 on both serine and tyrosine is required for maximal axon 

outgrowth 18. The related cytokine leptin also enhances sympathetic axon outgrowth 19, and 

may contribute to the cardiac hyperinnervation observed in diet-induced obesity.

Pathological conditions resulting in hyperinnervation within the heart are also associated 

with increased sympathetic drive from the CNS, and enhanced excitability of post-

ganglionic neurons may also contribute to elevated adrenergic transmission in the heart. 

Neuronal cell size is increased significantly in stellate ganglia removed from humans with 

ischemic and non-ischemic cardiomyopathy compared to control ganglia 20, and similar 

changes identified in canines coincide with increased neuronal excitability 21. Similarly, 

increased dendrite field size and synapse number contribute to elevated cardiac sympathetic 

tone in rats following T5 spinal cord transection 22. Retrograde signaling by NGF regulates 

synapse formation during development 23 and high NGF likely contributes to increased cell 
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size and synapse formation after injury. NGF may also increase sympathetic excitability by 

altering sensitivity to inflammatory mediators 24, and by altering neuronal firing 

properties 25. Interestingly, statins decrease sympathetic neuron excitability by stimulating 

dendrite retraction 26, raising the possibility that dampening sympathetic drive via peripheral 

actions contributes to their therapeutic value in patients with cardiovascular disease.

Functional noradrenergic transmission requires a balance between NE synthesis, release, and 

reuptake, each of which can be regulated independently 27. For example, after myocardial 

infarction newly sprouting sympathetic fibers have low NE content 28, but there is a 

paradoxical increase in extracellular NE 27. This can be explained in part by elevated NE 

synthesis and release in other regions of the heart that are not matched by a similar increase 

in NE removal 11. Such functional changes have been identified in patients with heart 

failure, where increased NE release as well as decreased NE reuptake contribute to a buildup 

of extracellular NE and excessive activation of β-AR 29.

Myocardial responses to acute hyperinnervation/excess NE

Norepinephrine released from sympathetic nerves activates cardiac β-AR to modulate 

myocyte repolarization and contractility. Sympathetic nerves are not distributed evenly 

across the heart, but are most dense near the base of the ventricles. Likewise, the epicardial 

to endocardial gradient in cardiac action potential duration (APD) 30–32 that is critical for 

normal activation and repolarization of the left ventricle is regulated by innervation, and 

disrupting the normal organization of sympathetic nerves in an otherwise healthy heart is 

arrhythmogenic 33, 34. Activation of cardiac β-AR modulates myocyte repolarization by 

altering transmembrane currents and Ca2+ homeostasis 35–37. β-AR stimulated cAMP leads 

to phosphorylation of proteins involved in excitation-contraction coupling including 

phospholamban, L-type Ca2+ channels, and ryanodine receptors (RyR), resulting in 

increased sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity and an increase in 

SR Ca2+ content38. Thus, during sympathetic stimulation more Ca2+ is released from the 

SR39 to activate the myofilaments, increasing contractility, but spontaneous Ca2+ release 

from the SR also becomes more likely 40, 41. Therefore, the positive inotropic effects of 

sympathetic stimulation that allow myocytes to meet increased cardiac demands are 

accompanied by an increased risk for pathological arrhythmias via focal (triggered) 

mechanisms.

At the cellular level, focal activity during sympathetic activation is likely due to delayed 

afterdepolarizations (DADs),42 which are membrane depolarizations occurring during phase 

4 of the action potential. The increased cytosolic and SR Ca2+ levels that occur during 

sympathetic activation can lead to SR Ca2+ overload (Figure 1), which may result in 

spontaneous opening of RyRs and Ca2+ release that is not in response to an action potential. 

This leads to Ca2+ extrusion from the cytosol via the Na+/Ca2+ exchanger (NCX).43 NCX is 

electrogenic, extruding one Ca2+ ion (2+) in exchange for 3 Na+ ions (3+), which produces a 

net inward current. If the inward current is large enough, the cell membrane depolarizes and 

a triggered action potential may occur.
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At the tissue level, several thousand cells must all experience DADs simultaneously in order 

to generate enough depolarizing current to produce a propagating action potential (called the 

‘source-sink mismatch’).44, 45 Recent studies revealed that local application of β-AR 

agonists such as NE or isoproterenol can induce premature ventricular complexes (PVCs) 

and sustained focal VT in intact hearts,46–49 providing a mechanistic link between the 

numerous experimental and clinical investigations that have found regional hyperinnervation 

accompanied by increased arrhythmia risk. 8 Furthermore, electrophysiological remodeling 

of cardiac myocytes in response to myocardial infarction or heart failure can cause changes 

(e.g., increased expression of NCX,50 increased SR Ca2+ leak through RyR,51 decreased 

inward rectifying K+ current,43 decreased gap junction coupling,52 and fibrosis) that further 

increase the likelihood of DADs and arrhythmia generation in response to localized 

sympathetic stimulation. 45, 46

Sympathetic stimulation also has effects on ionic currents that impact the ventricular action 

potential and risk for reentrant arrhythmias. The effects of adrenergic activation on 

individual ion channels have been reviewed elsewhere53, 54, but one of the best-known 

features of β-AR stimulation is an increase in L-type Ca2+ current via phosphorylation of the 

channel (Cav1.2).55 This effect, by itself, is expected to increase APD, but is 

counterbalanced by the effect of β-AR on K+ currents, most notably an increase in IKs, 

although IKr may also be involved.56, 57 The net effect of NE typically results in a 

shortening of the APD, a requirement for the heart to beat at faster rates during sympathetic 

activity. Due to the base to apex gradient in cardiac sympathetic nerves, however, 

sympathetic activation results in non-uniform changes in APD throughout the ventricle. For 

example, sympathetic nerve stimulation in a normal rabbit heart led to increased dispersion 

of repolarization and reversed the direction of the repolarization wavefront.58 

Administration of the β-AR agonist isoproterenol generated a different set of responses, 

suggesting that the dramatic changes in repolarization observed with sympathetic nerve 

stimulation were not due to differences in β-AR distribution or sensitivity, but rather due to 

the heterogeneous distribution of the nerves. 58 Similar results have been obtained in porcine 

ventricles, where dramatically different spatial patterns of activation-recovery intervals 

(ARIs, surrogate measure for APD) and repolarization were observed in response to 

sympathetic nerve stimulation vs. circulating NE59, 60. Thus, even under non-pathological 

conditions, considerable heterogeneity of sympathetic nerve distribution leads to increased 

dispersion of repolarization and potential for reentrant arrhythmias. Therefore, in conditions 

of maladaptive nerve remodeling, significantly greater heterogeneity of APD and 

repolarization may exist. Indeed, sympathetic stimulation after myocardial infarction not 

only caused increased dispersion of repolarization compared to controls, but activation and 

propagation patterns were also altered significantly 61. This was confirmed in patients with 

MI in whom reflex sympathetic stimulation caused a 230% increase in dispersion of 

repolarization compared to patients with structurally normal hearts.62

Myocardial responses to chronic hyperinnervation/excess NE

Acute effects of sympathetic activation often occur on a background of remodeled 

myocardial properties induced by heart failure or MI, but alterations to sympathetic 

transmission can also lead to chronic remodeling of the myocardium. Sympathetic 
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hyperinnervation and elevated sympathetic tone are key features of many cardiovascular 

diseases. In these conditions the myocardium becomes less responsive to adrenergic 

stimulation over time, and simultaneously less capable of maintaining adequate cardiac 

output, which further increases sympathetic drive from the CNS. The loss of cardiomyocyte 

responsiveness to adrenergic stimulation is a hallmark of sustained adrenergic stimulation 

and hyperinnervation 63. Several factors contribute to this loss of sensitivity, including 

down-regulation of the receptor itself 64, but an especially important regulator of β-AR 

activity is the G-protein receptor kinase 2 (GRK2, also known as βARK1). Acutely, GRK2 

is activated by PKA in response to adrenergic stimulation and acts to inhibit β-AR activity in 

a self-contained negative feedback loop. Sustained activation of β-AR in adult mice, 

however, leads to increased GRK2 expression 64. A similar increase in GRK2 is seen in 

canine heart failure, where it is reversed by sympathetic denervation, confirming regulation 

of GRK2 by sympathetic transmission 65. Long term activation of β-AR also leads to G-

protein uncoupling and a reduction of Gαs protein 66, as well as a reduction of repolarizing 

K+ current 67, 68. Thus, sustained activation of adrenergic receptors leads to adaptations that 

limit myocyte sensitivity to adrenergic stimulation and alter ion channel expression. Long 

term treatment with beta blockers blunts many of these adaptations 63 and normalizes 

myocyte calcium handling 69, contributing to the well-established protective effects of 

sympathetic blockade 1–4.

Cardiac denervation and axon degeneration

The mechanisms by which too much sympathetic transmission can be toxic for the heart are 

well-characterized, but the local loss of sympathetic transmission within the heart also 

contributes to rhythm instability. Regional deficits in sympathetic transmission, identified in 

patients by imaging the uptake of labeled NE transporter substrates, have been observed in 

several pathological conditions including myocardial infarction 70, 71, heart failure 72, and 

Parkinson’s Disease 73. Several recent clinical studies suggest that sympathetic denervation 

after MI predicts the probability of serious ventricular arrhythmias 74–76, and a detailed 

electrical mapping study in human hearts revealed that sympathetic denervation of the 

normal myocardium adjacent to the scar resulted in β-AR agonist super-sensitivity and 

increased dispersion of repolarization that was arrhythmogenic 62.

Paradoxically, members of the neurotrophin family of growth factors can be involved in the 

destruction of sympathetic nerves following cardiac injury. While the neurotrophin NGF 

stimulates TrkA in sympathetic neurons to promote axon maintenance and process 

outgrowth, its precursor protein ProNGF, which is elevated in the human heart after MI 77, 

activates the p75 neurotrophin receptor (p75NTR; also called TNF receptor super family 16, 

TNFRS16), to trigger axon degeneration 78, 79 (Figure 2). Similarly, ProBDNF (Pro Brain 

Derived Neurotrophic Factor) and BDNF selectively activate p75NTR on sympathetic 

neurons to stimulate axon degeneration 80. The Trk tyrosine kinase receptors and p75NTR 

have opposing actions not just in cardiac sympathetic nerves81, but also in the coronary 

vasculature 77 and cardiac myocytes 15, 82. Thus, ProNGF activation of p75NTR after MI 

leads to the loss of nerve fibers in viable myocardium 81 as well as microvascular damage 

and scar extension 77.
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While activation of p75NTR can contribute to the loss of cardiac nerves, other factors are 

involved in sustaining denervation. Chondroitin sulfate proteoglycans (CSPGs) are produced 

in the cardiac scar after ischemia-reperfusion, where they prevent reinnervation of the border 

zone and scar 83. This contrasts with the scar that forms after sustained ischemia, which is 

devoid of CSPGs 83 and receives sympathetic hyperinnervation 10, 27. Removing or 

inhibiting the CSPG receptor protein tyrosine phosphatase receptor sigma (PTPσ) in mice 

leads to reinnervation of the scar and border zone, restoring normal NE content and β-AR 

responsiveness to that region of the damaged left ventricle 84. Consistent with the human 

studies linking post-MI denervation to arrhythmia risk, restoring innervation throughout the 

scar and border zone in mouse heart normalizes post-MI calcium handling and decreases 

arrhythmia susceptibility 84.

Myocardial responses to chronic denervation

Just as sympathetic hyperinnervation can alter the molecular makeup of myocytes, sustained 

sympathetic denervation has similarly profound effects. One of the best characterized 

changes is a loss of the transient outward K+ current Ito, which is responsible for the initial 

repolarization in phase 1 of the action potential. Sympathetic denervation in rat decreases Ito 

by lowering expression of several different K+ channel subunits, and increases susceptibility 

to ventricular fibrillation 85, 86. Decreased Ito is also observed in disease states characterized 

by sympathetic denervation including Chagas disease, diabetic neuropathy, and myocardial 

infarction 84, 87, 88. Restoring adrenergic transmission in Chagas animals with NE 

infusion 89, or promoting sympathetic re-innervation of denervated infarct and border zone 

tissue 84 reverses the loss of Ito.

The consequences of sympathetic denervation are not limited to the transient outward K+ 

current. While hyperinnervation increases GRK2, sustained treatment with the beta blocker 

atenolol in mice90 and surgical sympathectomy in dogs65 leads to GRK2 down-regulation. 

This reduction in GRK2 may play an important role in the β-AR supersensitivity observed 

following sympathetic denervation, as GRK2 knock out mice exhibit a similar 

supersensitivity91. The absence of GRK2 also alters Ca2+ homeostasis by reducing SERCA 

activity, which leads to reduced SR Ca2+ load and increased cytosolic Ca2+ levels, thus 

increasing NCX activity91. Increased activity of the electrogenic NCX can initiate DADs, 

and the adrenergic supersensitivity that accompanies decreased GRK2 increases the 

likelihood that β-AR stimulation will be sufficient to overcome source-sink mismatch and 

generate focal arrhythmia47. Consistent with this possibility, isoproterenol stimulation of 

hearts after MI triggers focal arrhythmias that arise from denervated tissue near the infarct, 

while release of NE from sympathetic nerves in the same hearts does not trigger 

arrhythmias 84. Restoration of sympathetic innervation to the scar and border zone of 

infarcted hearts prevents isoproterenol-induced arrhythmias and abnormal Ca2+ handling, 

confirming a role for denervation induced β-AR super-sensitivity in arrhythmia 

generation 84. Sudden cardiac death is most common in the morning 92 when circulating 

catecholamines are rising rapidly 93, suggesting that high circulating NE and epinephrine 

trigger arrhythmias in denervated myocardium via activating super-sensitive β-AR signaling 

pathways. Thus, denervation and hyperinnervation may trigger arrhythmias via similar 

mechanisms within cardiac myocytes.
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Neurotransmitter and neuropeptide production

In addition to the loss or gain of nerve fibers, sympathetic neurons innervating the heart can 

undergo changes in neurotransmitter and peptide production and release following injury. 

Sympathetic nerves in the heart produce the peptide co-transmitter neuropeptide Y (NPY), 

which inhibits release of ACh from cardiac parasympathetic nerves 94 and causes 

vasoconstriction on the cardiac vasculature 95. NPY is elevated after MI 96, and high plasma 

NPY levels in patients with acute ST elevation MI correlate with increased microvascular 

resistance following reperfusion 97. NPY is released during periods of high sympathetic 

drive, and in the context of myocardial infarction high levels of sympathetic activation 

resulting in NPY release appears to be detrimental for the heart. Over a longer time frame, 

cardiac damage can lead to changes in neuropeptide and neurotransmitter expression in 

sympathetic neurons. The best characterized change in sympathetic transmission is a 

developmental transition from production of NE to ACh due to the actions of gp130 

cytokines 98. Recent studies revealed a similar change in phenotype triggered by cytokines 

like LIF and CT-1 during heart failure 99. Stellate ganglia obtained from humans with heart 

failure also exhibited expression of proteins associated with cholinergic transmission 99, 

suggesting that cholinergic sympathetic transmission can occur in the human heart. 

Although the functional consequences of ACh release from sympathetic nerves are unclear, 

NE and ACh have opposing effects on ventricular action potential duration (NE shortens 

whereas ACh lengthens). Thus, cholinergic sympathetic transmission may indeed be 

arrhythmogenic by limiting the adaptation of the action potential duration to increased heart 

rates during sympathetic activity. Therefore, the functional impact of changes in 

neurotransmitter phenotype represents an important area for future investigation.

Summary

Interactions between sympathetic neurons and cardiac myocytes can become destructive in 

pathophysiological conditions, giving rise to electrical instability and increased arrhythmia 

susceptibility. We have summarized the most common changes that occur in cardiac 

sympathetic neurons during pathologies associated with increased ventricular arrhythmia 

risk, and how altered neurotransmission might contribute to arrhythmia generation. Many 

relevant studies were excluded due to reference limits, but we have tried to cite work from 

different laboratories who have contributed to our understanding. Interventions that target 

the sympathetic innervation of the heart have been successful in treating arrhythmias, and 

our hope is that this review will stimulate the development of new interventions aimed at 

normalizing sympathetic dysfunction.
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Figure 1. 
Hyperinnervation and denervation can both contribute to arrhythmias. Acute 

hyperinnervation or excess NE (Top) leads to increased activation of β-ARs (beta adrenergic 

receptors) and subsequent changes in Ik and calcium overload. β-AR signaling increases Ik 

which shortens action potential duration (APD). At the same time, intracellular Ca2+ rises 

due to enhanced influx via the L-type Ca2+ channel and increased release from the 

sarcoplasmic reticulum (SR). Extrusion of Ca2+ from the cytosol via the Na+/Ca2+ 

exchanger (NCX) produces a net inward current leading to delayed afterdepolarizations 
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(DADs). In contrast, chronic hyperinnervation leads to desensitization of β-AR signaling 

and decreased Ik. Chronic denervation (Bottom) results in β-AR supersensitivity and 

decreased Ito. Activation of super-sensitive β-AR signaling pathways by circulating 

epinephrine leads to calcium overload and DADs.
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Figure 2. 
Neurotrophins stimulate different effects in sympathetic neurons via activation of p75NTR 

and/or TrkA. Pro-Neurotrophins like ProNGF and ProBDNF are processed to mature 

neurotrophins (NGF, BDNF) by intra- and extra-cellular proteases. Activation of a p75NTR/

Sortilin receptor complex by ProNGF or ProBDNF, or activation of p75NTR by BDNF, 

stimulates axon degeneration in sympathetic neurons. In contrast, NGF signaling via TrkA 

or a TrkA/p75NTR receptor complex stimulates sympathetic axon maintenance and growth.
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