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Abstract

This article investigates late-onset cognitive impairment using neuroimaging and genetics 

biomarkers for subjects participating in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

Eight hundred and eight ADNI subjects were identified and divided into three groups: those with 

Alzheimer’s Disease (AD), those with mild cognitive impairment (MCI), and asymptomatic 

normal control (NC) group. Two hundred of the subjects qualified for AD diagnosis at the 

baseline; three hundred and eighty-three had MCI; and 225 were included in the NC group. The 

structural magnetic resonance imaging (MRI) data were parcellated using BrainParser, and the 80 

most important neuroimaging biomarkers were extracted using the Global Shape Analysis (GSA) 

Pipeline workflow. We obtained 80 SNPs using Plink analysis via the Pipeline environment. In the 

AD cohort, rs2137962 was significantly associated with changes in left and right hippocampi and 

bilaterally in parahippocampal gyri, and rs1498853, rs288503, and rs288496 were significantly 

associated with hippocampi bilaterally, the right parahippocampal gyrus, and left inferior temporal 

gyrus. In the MCI cohort, rs17028008 and rs17027976 were significantly associated with right 

caudate and right fusiform gyrus, and rs2075650 (TOMM40) was significantly associated with 

right caudate, rs1334496 and rs4829605 were significantly associated with right inferior temporal 

gyrus. In the NC cohort, Chromosome 15 [rs734854 (STOML1), rs11072463 (PML), rs4886844 

(PML) and rs1052242 (PML)] was significantly associated with the both hippocampi and both 

insular cortex and rs4899412 (RGS6) was significantly associated with caudate related 

biomarkers. We observed significant correlations between the SNPs and the neuroimaging 
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phenotypes in the 808 subjects in terms of neuroimaging genetics. These results illustrate some of 

the neuroimaging-genetics associations between the AD, MCI and NC cohorts.
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I. Introduction

Alzheimer’s Disease (AD)

Alzheimer’s disease (AD), is by far the most common form of dementia among the elderly. 

Late onset AD (LOAD), defined by the onset of symptoms after age 65, is sporadic, non-

familial AD and has annual incidence rates increasing from 1% at age 65–70 years to 6–8% 

at age 85 and older[1, 2]. Genetic studies have provided significant insights on the molecular 

basis of AD, but the mechanisms underlying AD onset and progression remain largely 

unexplained. While the underlying causes of LOAD are still unknown, there is ample 

evidence from familial aggregation, transmission pattern, and twin studies that AD has a 

substantial genetic component that has an estimated heritability of 58% to 79%[3, 4], and 

the lifetime risk of AD among first-degree relatives of patients may be twice that of the 

general population[5]. The vast majority has complex, genetic determinants because only 

apolipoprotein E (APOE) has been established unequivocally as a LOAD-susceptible gene.

AD Imaging Studies

Recent and ongoing advances in neuroimaging and genetics, including high-throughput 

genotyping techniques, have made it possible to scan populations with multimodality 

neuroimaging, collect genome-wide data [6, 7] and study the influence of genetic variation 

on the brain structure and function [8–10]. In this paper, neuroimaging genetics refers to the 

use of brain imaging to evaluate phenotypic variation in the brain morphometry and 

physiology as a function of genotypic variation, using computationally-derived 

neuroanatomical, functional or connectivity imaging markers as phenotype assays to 

evaluate genetic variation[11]. The genes that influence differently volume and shape 

changes in neuroimaging phenotypes between AD and normal controls (NC) subjects may 

provide important information regarding the mechanisms of disease-related changes in 

neuroimaging phenotypes[8].

Alzheimer’s Genetics

Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) baseline MRI and genetic 

database, we selected LOAD, mild cognitive impairment (MCI) subjects and NC subjects. In 

this paper, we present a neuroimaging genetics framework that uses a whole-genome-and-

whole-brain strategy to systematically evaluate genetic effects on neuroimaging phenotypes 

to discover quantitative trait loci (QTLs). Quantitative trait (QT) association studies have 

been shown to have increased statistical power and thus decreased sample size requirements 

[12]. In addition, neuroimaging phenotypes may be closer to the underlying biological 

etiology of the disease, making it easier to identify underlying genes [8]. The methodology 

proposed in this paper is based on the identification of strong associations between regional 
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neuroimaging phenotypes as QTs and single nucleotide polymorphism (SNP) genotypes as 

QTLs.

Many recent studies of the genetics of AD have examined familial and hereditary aspects of 

the disorder as well as sporadic cases of AD. APOE ε4 allele is implicated in AD and 

associated with AD pathobiology as a risk factor. On the other hand, APOE ε2 allele is well 

known as a protective factor for AD [13–15]. The genetics of AD are complex because the 

practical effects may be weak, albeit statistical effects could still be strong, sample-sizes are 

often unbalanced (number of cases ≪ genomics biomarkers), and considerable difficulties 

with result replication and validation [16–19]. Large-scale genome-wide association studies 

(GWAS) show promise in untangling the genetic footprint of this neurodegenerative disease 

[18, 20–24].

This study focuses on analyzing gene interactions and collective genome effects on the brain 

structure in ADNI AD, MCI and NC data to broaden our horizon of understanding of late-

onset cognitive impairment in terms of neuroimaging genetics. Specifically, the goal is to 

utilize existent Laboratory of Neuro Imaging (LONI) computational tools and techniques 

(e.g., the LONI Probabilistic Brain Atlas [25], BrainParser [26], LONI Pipeline environment 

[27, 28]) to study interrelations between genotypes and biomedical neuroimaging features in 

the subjects from ADNI. This study of collective multi-gene effects on phenotype and 

neuroimaging measures is expected to enable, with great probability, the detection of 

genotype-phenotype associations, which may be marginal for a single SNP or a single gene.

There were several efforts to investigate phenotypic, genetic and imaging markers by 

combining neuroimaging phenotypes (QT) and genetic variations [8, 29, 30]. However, 

there are few studies have included shape-based neuroimaging measures. Therefore, in this 

study, we are attempting to expand the narrow scope, in terms of late-onset cognitive 

impairment, that has been maintained in the field of neuroimaging genetics using the 

Pipeline environment.

II. Methods

Study participants

808 ADNI participants were screened, enrolled, and followed up prospectively according to 

the study protocol described in [31] [Supplementary Table 1]. For each participant, clinical 

severity of dementia was assessed using an annual semi-structured interview, which yielded 

an overall Clinical Dementia Rating (CDR) score and the CDR Sum of Boxes [32]. In 

addition, the Mini-Mental State Examination and a neuropsychological battery were also 

recorded. Three types of participant cohorts were selected from the ADNI database based on 

their classification at baseline. The 808 ADNI participants, ages 65 to 85, included: 225 

NC’s (Male: 116, Female: 109), 383 MCI’s (Male: 246, Female: 137), and 200 AD’s (Male: 

108, Female: 92).

Subject Genotyping

To generate an individual genotype labeling, the ADNI database were downloaded (http://

www.loni.usc.edu/ADNI) and merged into a single dataset containing the genome-wide 

Moon et al. Page 3

J Alzheimers Dis. Author manuscript; available in PMC 2016 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.loni.usc.edu/ADNI
http://www.loni.usc.edu/ADNI


information of all 808 participants. We used PLINK [33] version 1.09 (http://

pngu.mgh.harvard.edu/~purcell/plink/) to conduct the genetic analyses of the blood samples 

obtained from DNA extraction. Both the DNA extraction and genotyping (by TGen using 

the Illumina Human610-Quad BeadChip) were done blindly to group assignment. Finally, 

using Illumina BeadStudio 3.2 software, the normalized bead intensity data for each sample 

were used to generate SNP genotypes from fluorescent intensities using the manufacturer’s 

default cluster settings. The detailed genotyping process is described in this study protocol 

[8].

Quality control (QC) protocols on the genome-wide data were performed using the PLINK 

software package (http://pngu.mgh.harvard.edu/purcell/plink/), release v1.09. The following 

criteria were used to exclude SNPs from the imaging-genetics analysis: (1) call rate per 

SNP>90%, (2) minor allele frequency (MAF) > 10%, and (3) Hardy-Weinberg equilibrium 

test of p>0.01. The final number of SNPs included in the analyses was 587,383, see [8].

We used PLINK [34] for population stratification. PLINK uses genome-wide average 

proportion of alleles shared between any two individuals to cluster subjects into 

homogeneous subsets and perform classical multidimensional scaling (MDS) [35] to 

visualize substructure and provide quantitative indices of population genetic variation.

Structural MRI Data

We downloaded the raw Digital Imaging and Communications in Medicine (DICOM) 

images ADNI data from this publicly accessible DB (http://www.loni.usc.edu/ADNI). The 

ADNI MRI scans were acquired at multiple sites using the GE Health Care 

(Buckinghamshire, England), Siemens Medical Solutions USA (Atlanta, Georgia), or Philips 

Electronics 1.5 T (Philips Electronics North America; Sunnyvale, California) system [36]. 

Two high resolution T1-weighted volumetric magnetization-prepared 180° radiofrequency 

pulses and rapid gradient-echo (MP_RAGE) scans were collected for each study participant, 

and the raw DICOM images were downloaded from the public ADNI site (http://

adni.loni.usc.edu/data-samples). Parameter values can be found at http://adni.loni.usc.edu/

about/centers-cores/. The raw neuroimaging scans were corrected for intensity 

inhomogeneity, scull-stripped, and subcortical white matter and deep gray matter volumetric 

structures were segmented using previously published methods [37].

The Pipeline Computational Environment

The 808 ADNI subjects (AD, MCI and NC) were chosen from amongst all subjects in the 

ADNI-1 database (DB) as of September 2010. To manage the raw and derived data, 

processing protocols and provenance we employed the LONI Pipeline [28, 38]. The Pipeline 

is a graphical workflow environment facilitating the collaborative design, execution, 

validation, visualization, modification and sharing of complex heterogeneous computational 

protocols.

To promote “open-science” development and validation, we designed a Global Shape 

Analysis1, Pipeline workflow [Supplementary Fig. 1, Supplementary File] [28] that 

represents an end-to-end computational protocol for high-throughput data preprocessing. 

The pipeline workflow includes skull-stripping [39], volumetric registration [40], brain 
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anatomical parcellation into 56 ROIs [25, 26], extraction of volume and shape measures 

(average mean curvature, surface area, volume, shape index and curvedness) and between 

group statistical analyses of shape regional differences. The output of the pipeline workflow 

is a collection of 3D scenes illustrating the statistically significant regional anatomical 

differences between the study cohorts.

Using the complete collection of 280 imaging markers (56 ROIs × 5 shape measures), we 

chose the 80 most significant neuroimaging biomarkers which provided the highest 

discrimination between the AD and NC groups. The 80 neuroimaging biomarkers were 

derived from the structural imaging data using the GSA workflow and are based on the 

automated ROI extractions generated by BrainParser [25, 26]. Fig. 2 illustrates the LPBA40 

atlas, an example of the 3D reconstruction of the BrainParser output for one subject, and the 

names of the 56 ROIs. Finally, the pipeline workflow, Supplementary Fig. 1, computed the 

most significant genotypic discriminants among AD, MCI and NC subjects. The 80 

neuroimaging biomarkers were then associated with the top 80 SNPs, which were chosen by 

the PLINK [34].

AD Gene Networks

To measure how relevant our target genes are to known AD gene networks, we chose 416 

SNPs based on an uncorrected p-value threshold of 0.00005. We took 140 of these genes 

[Supplementary Table 2] that commonly appeared in the RefSeq, UCSC and Ensembl gene 

annotations. These three resources were used as they are commonly referred to in the 

SNPnexus Database, http://www.snp-nexus.org. Then, we searched for known pathways/

networks associated with LOAD, Supplementary Table 3:

1. The AD associated pathway (168 genes) from KEGG pathway (http://

www.genome.jp/dbgetbin/www_bget?pathway:map05010);

2. AlzGene (47 genes) (http://www.alzgene.org/); and

3. The 20 gene modules in a recent study [41].

We next ran gene enrichment analysis using the hypergeometric test [42] between the 140 

genes from the current study and the 22 gene sets, which were obtained from these three 

resources [Supplementary Table 3].

Imaging-Genetic Associations

We used standard GWAS techniques [43–45] to extract 80 SNPs according to their p-values 

indicating significant differences among MCI, AD and NC subjects. The results of the 

association between the 80 SNPs phenotypes and the 80 neuroimaging biomarkers are 

depicted using connectograms [46] and heatmaps [47].

1Global Shape Analysis Workflow (http://bit.ly/15tK0Hd)
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III. Results

Demographic characteristics

The demographics and clinical data of the subjects at the baseline are summarized in Table 1 

(using Chi-square and ANOVA). The 808 subjects (aged 65–85 years) were chosen from the 

ADNI datasets. The AD, MCI and NC subjects had no statistically significant differences in 

age.

Neuroimaging biomarker and SNP phenotypes selection

The most significant 80 neuroimaging biomarkers were selected from among the 56 ROIs 

and five different volume- and shape-based metrics, based on how well they discriminated 

between the AD and NC cohorts (the significance threshold of P <0.05). The quality control 

(QC) result is shown in Fig. 3 and the QQ normal probability plot is shown in Fig. 4. The 80 

SNPs that were chosen according to their p-values (the significance threshold of P <0.0002) 

are shown in Fig. 5 and Supplementary Table 4. The choice of 80 neuroimaging and 80 SNP 

biomarkers was driven by balancing the need to expand the number of possible biomarkers 

with the need of minimizing the number of elements in the heatmap matrices used to 

generate the connectogram in the results section.

Nine ROIs for the 20 nueuroimaging biomarkers were included for the volume and shape 

measures (Fig. 1 and Supplementary Table 4). The 80 most significant SNPs are shown in 

Supplementary Table 4.

AD Gene Networks

The hypergeometric test for enrichment was employed, as the hypergeometric distribution 

models the situation where random samples are selected from a finite population containing 

a labelled subset. In functional enrichment studies, the hypergeometric test yields the 

probability of targeting a specific gene (k = 1) from labelled categories (22 gene sets from 

the 3 archives) when targeting a total of n = 140 genes from the genome. The null 

hypothesis is that genes were targeted randomly versus an alternative research hypothesis 

that genes belong to a given annotation (label) were preferentially targeted. All p-values 

were significant as shown in Supplementary Table 3.

Genetic association study

The results of the genetic association study between the 80 SNPs and the 80 neuroimaging 

phenotypes are shown in Supplementary Fig. 2(A,B,C). The Pipeline workflow that was 

used to compute these SNP-imaging biomarker associations is shown in Supplementary Fig. 

3.

Among the results of the association among the 200 AD subjects, shown in Supplementary 

Fig. 2(A), there were several significant results (P<0.01). Among the results of the 

association among the 383 MCI subjects, shown in Supplementary Fig. 2(B), there were 

several significant results (P<0.01). Among the results of the association among the 225 NC 

subjects, shown in Supplementary Fig. 2(C), there were several significant results (P<0.05). 

In the heatmaps, if the density curve moves to the left (i.e., the teal color) or right (i.e., the 
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pink color) extremes, then association between the corresponding SNPs (rows) and imaging 

markers (columns) is significant. The vertical curves in each column illustrate the location 

where the current cell value (i.e., the color) is relative to the distribution [in the range 

(−3:+3)] of the ordered and standardized p-values. The association results ranked in terms of 

their p values are shown in Supplementary Table 5(A,B,C).

In addition, we used dynamic circular connectogram graphs shown in Supplementary Fig. 

4(A,B,C) to illustrate the relations between the significant SNPs and the neuroimaging 

biomarkers in the AD, MCI and NC groups. Each of the SNPs (represented by unique RS 

sequence ID) and each shape morphometry measure, corresponding to the most important 

ROIs, are represented in the connectogram graph by circularly arranged ideograms. 

Appearance models (style and color) indicate the relative impact of the corresponding SNP 

(right) and ROI measure (left semicircle). Data tracks comprise the two concentric rings in 

the outer shell of the graph. Translocations between circular segments are shown as chordal 

curves that connect regions brought into adjacency by magnitude of the p-value representing 

the strength of the SNP-ROI association according to the results of the statistical tests.

IV. Discussion

Shape measures

Table 2 shows the definitions of the five intrinsic geometric cortical measures used in this 

study, as well as the formulas used to compute them. The principal curvatures (κ1, κ2) were 

computed using triangulated surface models that represented the boundaries of different 

brain areas [48]. ID(x,y,z) represents the indicator function of the region of interest (D) [49]; 

SΩ: r = r(u, v), (u, v) ∈ Ω, is the parametric surface representation of the region boundary 

[50].

Global Shape Analysis (GSA)

All the p-values of the 80 neuroimaging biomarkers are shown in Supplementary Table 4. 

The left and right hippocampal volumes were the most significant neuroimaging biomarkers, 

as we expected. It was followed by the L_inferior_temporal_gyrus (Volume and 

SurfaceArea). There are several prior brain-morphometry studies [45, 51–53] that indicate 

that localized brain change may have subtle signature, preserve regional volumes, and 

require more sensitive surface or tensor-based analytics to detect. We chose to use shape-

based morphometry to avoid some of the potential problems with pure volume-based 

analytics. For example, Shen et al. used voxel-based morphometry (VBM) for gray matter 

density estimation and FreeSurfer V4 for measuring volume and cortical thickness in terms 

of neuroimaging genetics, but didn’t get shape-based morphometry.[29]. Stein et al. used 

tensor-based morphometry (TBM) to measure individual differences in brain structure at the 

voxel level in terms of neuroimaging genetics, but didn’t get shape-based morphometry 

[44]. And, Biffi et al. used FreeSurfer V4 for measuring volume and cortical thickness in 

terms of neuroimaging genetics, but didn’t get shape-based morphometry [30]. In this study, 

we found significant differences not only for regional brain volumes but also for their 

boundary shapes, such as surface area and shape index, in nine specific ROIs (Fig. 1) 

including both hippocampi between AD and NC.
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SNP Selection

The rs2075650 and rs11072463 SNPs survived the False Discovery Rate (FDR) correction 

for the multiple testing (p=1.719e-04 and p=0.03321, respectively), although the 

significance of the other SNPs was reduced via the FDR correction. Located on the 

TOMM40 gene, rs2075650 has been previously researched and identified [8, 54–56]. Our 

association analysis identified the rs2075650 as a most significant marker, but the finding 

replicates a previous GWAS wherein the location of the SNP (the TOMM40 gene) was 

asserted as having played a role in the cause of the AD. The TOMM40 gene influences the 

mitochondrial function and was recently linked to an earlier onset of AD [54]. Interestingly, 

the rs2075650 (TOMM40) and rs429358 (APOE) haplotype showed greater genome wide 

association with AD than rs2075650 alone [8]. Previously only considered in union with 

APOE, due to linkage disequilibrium (LD) between the two genes, TOMM40 has been 

found to independently influence age of onset of AD. The mitochondrial import channel 

(TOM) has been implicated in AD as an important site of amyloid precursor protein (APP) 

accumulation, which can make increase in reactive oxygen species (H2O2) and 

mitochondrial dysfunction. APP accumulation within the mitochondrial import channel was 

more abundant in frontal cortex and the hippocampus [57].

rs11072463, located in the PML (promyelocytic leukemia) gene which codes for PML 

protein was identified as the second most significant SNP. PML is expressed in the 

hippocampus, cortex, cerebellum, and brain stem in adult mice [58]. Recent studies have 

provided evidence that PML is associated with neurogenesis [59] in the central nerve system 

(CNS) and is related to the protein that regulate the cytoskeleton [60], whose expression in 

the CNS is induced by specific patterns of synaptic activity, long-term potentiation (LTP) 

and memory formation and consolidation. Increasing evidence also supports a role for PML 

in regulating synaptic plasticity in the brain [58]. According to previous reports [59], loss of 

PML appears to affect neurogenesis – it is possible to hypothesize that PML might regulate 

plasticity and behavior in normal brain function. PML protein and PML mRNA level are 

upregulated in human AD brains [61]. Recent findings suggest that γ-secretase activity 

might be upregulated in human AD brains [62]. Presenilin (PS) is part of the γ-secretase 

complex that produces the Aß. Although the function of PS is well known as a γ-secretase 

component, PS also regulates various cellular functions including apoptotic cell death. p53 

could be an important mediator of PS function in apoptotic cell death induced by DNA 

damage. Increased level of PML protein is also detected in neurons of the temporal cortex of 

AD brains, where γ-secretase activity is essential for pathogenesis [61]. It may be reasonable 

to hypothesize that PML expression is elevated in dementia patients.

Twenty nine genes including the TOMM40 gene (rs2075650 and rs157580, Chr 19) were 

related to the 32 SNPs that were chosen based on their p values [Supplementary Table 4]. 

Considering how varied genetic datasets can vary, it is very important to replicate the 

findings in different datasets with different methods [8, 54, 55, 63]. These SNPs and the 

genes in which they are located have a lot of important functions and putative pathways or 

networks through which they can be related with the processes underlying AD. 

Supplementary Table 6 represents the summary of the genes.
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A large European GWAS study identified variants at CLU (rs11136000, Chr 8) and CR1 

(rs6656401, Chr 1) associated with AD, in addition to the previously known APOE locus 

[64]. Harold et al. added PICALM (rs3851179, Chr 11) as associated with AD and extended 

the SNPs which are associated with AD, such as SSB (rs11894266, Chr 2), MS4A6A 

(rs610932, rs662196 and rs583791, Chr 11), CNTN5 (rs10501927, Chr 11), B1N1 

(rs7561528 and rs744373, Chr 2), MS4A4E (rs676309, Chr 11), DAB1 (rs1539053 Chr 1), 

C11orf30 (rs11827375, Chr 11), CR1 (rs1408077, rs6701713 and rs3818361, Chr 1). 

rs9446432 (Chr 6), rs1157242 (Chr 8), and rs9384428 (Chr 6) [65]. In terms of GWAS, the 

results in these reports are somewhat different from our findings. We did not detect an 

association with CLU, CR1 and PICALM genes in the current study. CD2AP, CD33, 

EPHA1, and ABCA7 genes have also been previously studied [66], but we could not find 

associations of these genes. Among the significantly associated 80 SNPs, we also found 

various chromosome locations that vary with diagnosis.

AD Gene Network Analysis

Our findings indicate that the set of 140 genes that we chose (from 416 SNPs with p-value < 

0.00005) represents commonly appearing genes in known AD gene networks.

Neuroimaging-Genetics Association

For the AD cohort, SNP rs2137962, Chromosome 8, and SNPs in chromosome 3 

(rs1498853, rs288503, rs288496) were significantly related with many neuroimaging 

biomarkers in temporal lobe. This suggests that compared to other brain regions the 

temporal area may be more influenced by these SNPs [Supplementary Table 5(A)]. 

Previously, these SNPs (rs2137962, rs1498853, rs288503, rs288496) have not been reported 

to be associated with specific brain areas in dementia. Potkin et al. reported that APOE 

(rs429358, rs7412, Chr 19), TOMM40 (rs2075650, rs11556505, Chr 19) were associated 

with hippocampal volume reductions in AD subjects. EFNA5, ARSB, MAGI2, PRUNE2, 

and CAND1 genes were considered as associated with hippocampal reductions for AD 

patients [8]. Biffi et al. reported that the APOE ε allele was strongly associated with all 

measures except white matter lesion volume (WML), rs1408077 (CR1), rs3851179 

(PICALM), and rs10501927 (CNTN5) were associated with entorhinal cortical thickness 

(ECT), hippocampal volume with ECT, and WML with parahippocampal gyrus thickness 

[30].

In MCI cohort, the SNPs (rs1702797, rs17028008, rs1251262), chromosome 4, were 

significantly associated with R_caudate and R_fugiform_gyrus. Further, rs2075650 

(TOMM40), chromosome 19, was significantly associated with R_caudate [Supplementary 

Table 5(B)]. Shen et al. reported that rs2075650 (TOMM40) was significantly associated 

with bilateral hippocampal volume and left amygdala volume in terms of neuroimaging 

genetics in a mixed population of NC, MCI and AD [29]. However, in the current study, 

TOMM40 was most significantly associated with R_caudate mostly in the MCI group.

It is interesting to note that in the NC cohort, the SNPs [rs734854 (STOML1), rs11072463 

(PML), rs4886844 (PML), rs1052242 (PML)] included in chromosome 15 were 

significantly associated with the neuroimaging biomarkers associated with R_hippocampus, 
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L_hippocampus, R_insular_cortex, and L_insular_cortex [Supplementary Table 5(C)]. Thus, 

we may conclude that the chromosome 15 is closely associated with hippocampal and 

insular cortical shape. The STOML1 gene codes for stomatin (EPB72)-like 1. Diseases 

associated with this gene include tuberculosis and neuronitis. The PML gene was most 

significantly associated with the neuroimaging phenotypes mentioned above especially in 

the NC group. Additional neuroimaging genetics on both STOML1 and PML genes appear 

warranted for future studies. rs4899412 (RGS6) located in chromosome 14 was significantly 

associated with caudate related biomarkers. The RGS6 gene encodes a member of the RGS 

(regulator of G protein signaling) family of proteins. The RGS proteins negatively regulate 

G protein signaling, and may modulate neuronal, cardiovascular, lymphocytic activities, and 

cancer risk. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial and 

atrioventricular nodal regions [67]. The function is known as doing role in heart related 

pathological situations, but not well known as a factor that can influence on cognitive 

function. The RGS6 gene can influence the pathophysiological processes underlying AD 

similarly to APOE ε4 which plays roles in the pathophysiological AD process and as the 

factors underlying coronary heart disease or cerebrovascular disease as well [68, 69]. In the 

MCI group, rs2075650 (TOMM40) was most significantly associated with the R_caudate, it 

was not significantly associated with any of the neuroimaging biomarkers in the NC group. 

As Hua et al. reported, for healthy elderly subjects, APOE ε2 (but no ε4) carriers had a 

smaller ventricular volume than homozygous APOE ε3 carriers, which is the commonest 

genotype [53]. This may support the hypothesis that this APOE ε2 genotype has a protective 

effect and genetic influence of the APOE on brain structure can happen even in healthy 

subjects.

We have generated much information from this study, but further studies are required to 

replicate and expand the study findings using a larger population in terms of neuroimaging 

genetics. As the currently available data does not provide sufficient information for a 

detailed study of SNP-brain structure correlations, we do plan to continue pursuing 

pathways analytic methods for supporting and further validating these findings in terms of 

neuroimaging genetics of AD. Future functional studies using information in comprehensive 

pathway databases, including Biocarta, and gene expression/RNAseq data are likely to 

provide additional insights for the complex interactions between neuroimaging, genetic, 

epigenetic and phenotypic covariates.

Limitations and future directions

The crucial limitations of this study arose from its small sample size. Because of our 

restricted power, we were forced to constrain our analysis to SNPs and loci with high prior 

probabilities of association with AD and imaging phenotypes. Our restricted power also 

limited the conclusions we drew on our observed differential genetic effects on 

neuroimaging traits. The possibility of false positive remains for multiple testing. ADNI has 

developed and validated an automated white matter hyper intensities (WMH) detection 

method that aligns the imaging data to an elderly template and identifies WMHs on a per-

voxel basis based on image intensities and prior knowledge of the probability of WMH 

occurrence at each location in the brain [70]. We did not manually double-check the entire 

brain scans of all participants, to avoid potential subjective bias due to rater introduced 
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locations, sizes, or etiology of MRI-evident infarcts in the quality control protocol. So, there 

is a potential that minor WMH effects may play role in our analyses. The sample only 

contained mild AD patients (CDR =1), a relatively narrow range of illness, and is thus not 

fully representative of the disease. Also, the ADNI sample was not collected under an 

epidemiological ascertainment strategy and the sample size was relatively small for a 

GWAS study, which may affect the generalizability of the findings. Currently, ADNI does 

not collect gene expression/RNAseq data and we could not complete a network analysis in 

terms of neuroimaging genetics at this point in time due to lack of resources and data. 

Despite the limitations and challenges of this paper, its encouraging results obtained using 

the proposed analytic framework appear to have potential for enabling the discovery of 

imaging genetics and for localizing candidate imaging and genomic regions. It is concluded 

that imaging genetics holds the possibility of yielding important clues for the formulation of 

an advanced method of early detection and treatment of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The global shape analysis (GSA) Pipeline workflow and a 3D scene output
The global shape analysis (GSA) Pipeline workflow and one example of a 3D scene output 

file indicating statistically significant (p-value < 0.05) volumetric differences between the 

AD, MCI and NC cohorts. These scene files are generated for each group comparison and 

each shape or volume metric.

#Nine ROIs in this 3D scene [The volume and shape measures] for the associations of the 

top 20 most significant biomarkers among 80*80 measures: R_hippocampus, 

L_hippocampus, R_inferior_temporal_gyrus, L_inferior_temporal_gyrus, 

R_parahippocampal_gyrus, L_parahippocampal_gyrus, R_caudate, L_caudate, 

L_superior_temporal_gyrus
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Fig. 2. Summary of the 56 regions of interest (ROIs)
Summary of the 56 regions of interest (ROIs) (A,C) extracted by the BrainParser software 

using the LPBA40 atlas (B).
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Fig. 3. 
QC process.
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Fig. 4. 
QQ normal probability plot
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Fig. 5. 
Manhattan plot (80 SNPs)
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Table 1

Demographic information.

Category NC MCI AD p-value

Number of Subjects 225 382 200

Gender (M/F) 116/109 246/137 108/92 0.004

Age 75.99±4.93 74.77±7.45 75.32±7.39 0.102

MMSE 29.11±1.00 27.05±1.79 23.48±2.15 <0.0001

ADAS_Cog 6.15±2.86 11.43±4.40 18.46±6.28 <0.0001

Education (years, mean±SD) 16.01±2.90 15.63±3.03 14.81±3.17 <0.0001

Handedness (R/L) 207/18 348/35 188/12 0.418

APOE (ε2/ε3/ε4) 37/349/64 26/491/249 10/221/169 <0.0001
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Table 2

Intrinsic geometric cortical features and their definitions

Geometric Measure Mathematical formulas

Volume

Surface Area

Mean Curvature

Shape Index

Curvedness
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