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ABSTRACT

In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment

strategies. Various techniques are available for pre-clinical animal studies, fromwhich much has been learned and still can

be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of

cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current

imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents.

The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell,

such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process

affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and

chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the

relevant label into cells. While these technologies have already been applied in clinical trials and have increased the

understanding of cell-based therapy mechanism, many challenges are still faced.

INTRODUCTION
Cell-based therapies have, in recent years, been recog-
nized as an important therapeutic option in healthcare.1

Based on the plasticity and migratory capacity of cells,
cell-based therapeutics offer unique possibilities in re-
generative medicine, cancer treatment and metabolic
diseases.2–5 For these applications, the ability of cells to
repair damaged tissue, act as drug carriers or modulate or
enhance natural cellular processes is used as a treatment
strategy. Crucial issues for guaranteeing safe and effective
use of cell transplants are in determining the most opti-
mal cell type, the route, dose, accuracy and timing of
administration, and the persistence and functionality of
the transplanted cells. To effectively address these issues,
non-invasive visualization of the in vivo fate of the
transplanted cells may be crucial.6

In the past decade, various in vivo cell imaging techniques
have been developed that enable researchers to track
transplanted cells in real-time in vivo by optical imaging
(OI), MRI single photon emission tomography (SPECT)
or positron emission tomography (PET).7,8 Central to
these techniques is the labelling or tagging of the cells
prior to transplantation. The most commonly used and
the easiest way to achieve this is by introducing a labelling

agent into the cells by exposing the cells to the labelling
agent in culture.9–11 The cells then actively incorporate
the particles through endocytotic pathways where they
generally end up in endosomal compartments.12 The now
cell-associated labelling agent then serves as the signalling
beacon by which transplanted cells can be identified in
imaging studies (Figure 1). An alternative way of labelling
cells is an indirect approach by introducing a reporter
gene into the cells of interest. This technology offers
various advantages regarding the in vivo monitoring of
cell fate and function but while widely used in animal
models, this approach is currently far from clinical
translation and beyond the scope of this review. Interested
readers are referred to other reviews dealing with this
technology.13,14

The main challenge encountered during the cell labelling
procedure is to efficiently incorporate the label into the
cell, such that the labelled cells can be imaged at high
sensitivity for prolonged periods of time, without the la-
belling process affecting the functionality of the cells. In
this respect, nanoparticles offer attractive features since
their structure and chemical properties can be modified to
facilitate cellular incorporation and because they can carry
a high payload of the relevant label into cells.15
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The various imaging techniques each have their own advantages
and disadvantages regarding their use in cell tracking studies. OI
techniques offer various advantages and have been widely used
in pre-clinical studies. The limited tissue penetration capability
of light, however, limits the use of these techniques to a large
extent to small laboratory animals.16 Studies aimed at clinical
translatability, have therefore focused on MRI, PET or SPECT,
which are not limited by signal penetration depths in tissue.8,17

However, despite the fact that, as of yet, the only FDA-approved
cell tracking agent is Indium-111 (111In)-oxine, the use of nu-
clear imaging techniques for in vivo cell tracking beyond lym-
phocyte scintigraphy, has been limited by concerns regarding
radiation damage to cells and the generally short half-life of
suitable radioisotopes (in the order of 2 h–6 days). In addition,
issues regarding limited intracellular retention of the most
commonly used agents are considered an important disadvan-
tage of nuclear imaging approaches for cell tracking.8,17 Cur-
rently, MRI is regarded as the imaging technique of choice for
clinically applicable cell tracking. The main advantages of MRI
over other techniques are its excellent three-dimensional ana-
tomical imaging capabilities at high resolution together with
functional imaging capabilities. The fact that no ionizing radi-
ation is needed makes it therefore suitable for non-invasive and
repeatable imaging.

Imaging agents for MRI-based cell tracking can be subdivided
into the following categories: superparamagnetic contrast agents
(typically containing iron oxide), paramagnetic contrast agents

(typically containing gadolinium or manganese), chemical ex-
change saturation transfer (CEST) agents and non-proton
contrast agents (typically containing fluorine). Each of these
categories of contrast agents have specific properties with asso-
ciated advantages and limitations. In many cases, these agents
have been used in the form of nanoparticles in order to increase
their biocompatibility, delivery efficiency and/or signalling
properties. In the following sections, we will discuss the role of
the most commonly used nanoparticles and in in vivo cell
tracking, including recent developments. Some of the key fea-
tures of these cell labelling agents are summarized in Table 1.

SUPERPARAMAGNETIC IRON
OXIDE NANOPARTICLES
Superparamagnetic iron oxide (SPIO) particles typically consist
of a crystalline iron oxide (Fe3O4 or Fe2O3) core coated with
a hydrophilic shell of dextran, citrate, polymers or lipids. The
iron oxide crystals have a strong magnetic moment, causing
a disturbance of the local magnetic field by which they affect the
T2 relaxation of surrounding water protons resulting in local
signal loss in MR images. After some initial reports in the early
nineties, showing the feasibility of tracking iron oxide-labelled
cells by MRI,40,41 many studies followed in which a large variety
of iron oxide nanoparticles was studied for their use as cell
tracking agents.42,43 This field of research was especially boosted
by the major advances made in stem cell biology and the still
increasing interest in cell-based therapies,1,2 and the realization
that in vivo cell tracking technology could help in the

Figure 1. Nanoparticle labelling and imaging of cells. Top panels: an electron microscopy (left) and fluorescent microscopy (right)

image of human umbilical vein cells labelled with iron oxide nanoparticles and fluorescent Gd–liposomes, respectively, showing

intracellular presence of the nanoparticles after labelling procedure. Arrows indicate intracellular deposits of iron oxide

nanoparticles. Bottom panels: magnetic resonance images obtained from rats injected subcutaneously with cells labelled with

iron oxide particles or Gd–liposomes (liposomes containing gadopentetate dimeglumine in the water phase).
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development of safe and effective cell-based treatment strategies.
Rapid clinical implementation appeared feasible when it was
shown that cells could be labelled efficiently with commercially
available SPIO particles that were FDA-approved as a liver
contrast agent, i.e. ferumoxides and ferucarbotran.44,45 These
agents were indeed used in early clinical studies (Table 2), but
some practical and technical limitations ultimately prevented
more widespread clinical use of SPIO-based cell tracking. Pos-
sibly, the first main reason for the limited number of clinical
studies with SPIO particles is the fact that manufacturing of the
aforementioned preparations was discontinued in the late 90s
because of lack of sales for its FDA-approved application for the
detection of liver tumours.21,46 Besides this lack of availability of
clinically approved SPIO particles, a number of technical limi-
tations in the use of SPIO particles for cell tracking was also
revealed, probably contributing to reduced interest in this
technology. The main limitations of SPIO particles are a lack of
specificity of the signal,47 persistence of extracellular
deposits48,49 and very complex quantifiability (Figure 2). Even
though in some studies a linear relationship between iron oxide
concentration and R2/R2* values50,51 has been demonstrated,
the reliability of such methods is limited since the R2/R2* values
are also dependent on intravoxel distribution.52–54

However, despite these limitations, SPIO particles are still con-
sidered of interest for cell tracking in clinical studies.21,22,55,56

Main incentives for this continued interest in SPIO particles are
the fact that as of yet, they appear to provide the highest detection
sensitivity (Table 1), and the vast amount of available data on the
safety of the use of SPIO. From the FDA-approved use of fer-
umoxide and ferucarbotran for liver tumour imaging, systemic
safety of SPIO was established. In addition, many studies using
these agents for labelling of a variety of cells demonstrated safety
of the use of SPIOs for intracellular labelling. In general, no ad-
verse effects on cell survival or cell functionality in terms of dif-
ferentiation capacity, cytokine release profiles or migratory
capacity have been observed. Also in a recently published article
in which healthy volunteers were injected with SPIO-labelled
peripheral blood mononuclear cells, in vivo safety of SPIO cell
injections was demonstrated.25 Therefore, there are continued
efforts in generating new, optimized SPIO particles for cell la-
belling and imaging.57–59 However, major challenges are faced in
going through the regulatory requirements55,56 and the costs in-
volved may be prohibitive in bringing such particles to the
clinic.56,60 Current strategies seem to be focused on off-label use
of already FDA-approved components in generating a SPIO-based
intracellular labelling agent.56,61

Table 1. Most commonly used types of contrast agents (probes) for MRI-based cell tracking

Probe
Basic imaging

principle
Main advantage

Main
disadvantage

Detection
sensitivity
(number
of cells)f

Used for cell
tracking in

human subjects

Iron oxide
nanoparticles

Shortening T2
relaxation of
surrounding water
protons

High sensitivity
Lack of specific
signal; i.e.
signal loss

1 cella,18,19 Yes20–29

Gd-based
nanoparticles

Shortening T1
relaxation of
surrounding water
molecules

Giving rise to signal
enhancement

Issues regarding
toxicity

300–3000 cellsb,30–32 No

Manganese-based
nanoparticles

Shortening T1
relaxation of
surrounding water
molecules

Natural body mineral
Issues regarding
toxicity

1000–100,000
cellsc,33–35

No

Chemical exchange
saturation
transfer agents

Transfer of selectively
saturated,
exchangeable spins to
surrounding bulk
water via chemical
exchange

Multispectral
imaging

Requires
specialized imaging
techniques

10,000 cellsd,36 No

19F-based
nanoparticles

Magnetic spin of
19F nuclei

Not naturally present
in body, therefore
providing
unique signal

Requires
specialized imaging
techniques

2000–9000 cellse,37,38 Yes39

19F, fluorine-19.
aat intracellular concentrations of 9–50pg/cell; voxel size 0.26–13 1023mm3.
bat intracellular Gd concentrations of 0.05–70pg/cell; voxel size 2.24–10.33 1023mm3.
cat intracellular Mn concentrations of 0.35–0.7pg/cell; voxel size 1603 102-3mm3 (only specified by Letourneau et al.35).
dat intracellular CEST agent concentrations of 3–4mM/cell; voxel size 24–733 1023mm3.
eat intracellular 19F concentrations of 0.35–0.7pg/cell; voxel size 660–20003 1023mm3.
fDetection sensitivity is highly dependent of various conditions, such as the cell type, intracellular loading, imaging parameters including voxel size,
and magnetic field strength.
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PARAMAGNETIC GADOLINIUM-BASED
NANOPARTICLES
Gadolinium(III) chelates are the most commonly used contrast
agents in clinical MRI and are generally characterized as T1 or
positive contrast agents. The seven unpaired electrons of the
Gd31 ion create a magnetic moment that accelerate the re-
laxation of surrounding water protons typically resulting in
signal enhancement on MR images. The possibility of obtaining
positive contrast from labelled cells instead of negative contrast
as obtained with SPIOs has been considered a major advantage
and stimulated the use of Gd-based nanoparticles for cell la-
belling. Particulate Gd contrast agents were shown to be far
more effective than regular Gd chelates in terms of the amount
of Gd initially incorporated and the retention of Gd in the cell
over time.31,62,63 Various particulate formulations of Gd-based
cell tracking agents have been developed over the past few years
including liposomal31,64 and micellar63,65 nanoparticles,
polymer-coated Gd–oxide particles32,66,67 and carbon nano-
structures68 in order to increase cellular loading with Gd or to
increase the signalling capacity by increasing the T1 relaxivity.

A remarkable finding with Gd-based cell labelling has been that
Gd-labelled cells showed different contrast behaviour depending
on the labelling strategy used and/or the specific environmental
circumstances. In contrast to an expected signal enhancement,
clusters of Gd-labelled cells were found to give rise to signal loss
under both in vivo and in vitro conditions.31,69,70 Explanations
for this phenomenon include aspects regarding the local con-
centration of Gadolinium and the effect of compartmentaliza-
tion of the Gd-based agents influencing the rate of exchange and
the availability of free water protons. Capitalizing on the com-
partmentalization effect, Guenoun et al71 proposed using the
changing contrast behaviour of cells labelled with gadolinium
liposomes as a read out method for assessing the functional
status of injected cells (Figure 3). They showed that at an
identical Gd concentration, Gd incorporated inside the cell gave
rise to signal loss while Gd released from non-viable cells
resulted in signal gain which quickly dissipated.31,71

Despite the fact that various studies showed limited or no ad-
verse effects of the Gd-based labelling agents on the functionality
of labelled cells at relevant labelling concentrations,31,62,63,66,68,72

major concerns regarding the toxicity of the long-term pres-
ence of ionic Gd exist,70,73,74 which may limit introduction of
such agents into the clinic. Gadolinium contrast agents have
been associated with the occurrence of nefrogenic systemic
fibrosis in patients with impaired kidney functions, and Modo
et al74 reported on a negative effect on disease pathology of
implanted neural stem cells labelled with the Gd-based con-
trast agent GRID (Gadolinium-Rhodamine Dextran) in a rat
stroke model.

PARAMAGNETIC MANGANESE-BASED
NANOPARTICLES
Similar to Gd, manganese is also known as a T1 contrast agent,
shortening the relaxation time of surrounding water protons.
Because of the concerns regarding the cellular toxicity of Gd
ions, manganese has been studied as an alternative positive
contrast agent for cell labelling. Manganese is a natural cellular

component and functions, for instance, as a cofactor for
enzymes and receptors. Manganese as a contrast agent has been
used in the form of manganese chloride (FDA-approved). Initial
studies on the use of manganese-based agents for cell labelling
and imaging also used MnCl2.

75 Moreover, because of the fact
that manganese is transported by calcium channels, MnCl2 has
been proposed as a cell labelling agent by which a direct read out
of the viability of cells would be possible.76 Because of the low
relaxivity properties of MnCl2, nanoparticle formulations of
manganese have been explored as T1 agents for cell labelling.
This involves manganese oxide particles with variations in
coating with the goal to improve biocompatibility, stability
and/or relaxivity.34,35,77 Most recently silica-coated MnO par-
ticles were shown to have excellent relaxivity properties, also at
magnetic field strengths .3.0 T. This allowed for highly sensi-
tive, positive contrast detection of MnO-labelled cells; in the
order of several thousand cells (Table 1). Unfortunately, how-
ever, in various reports significant effects of MnO particles on
cell functionality have also been reported, such as reduced cell
survival33,76,78 and impaired multipotent differentiation
capacity.34,79 These findings may significantly reduce interest for
clinical translation of such approaches.

CHEMICAL EXCHANGE SATURATION TRANSFER -
AGENT NANOPARTICLES
CEST agents are a special class of contrast agents for MRI.
CEST agents contain slow exchangeable protons that can be
selectively saturated by an off-resonance pulse upon which the
saturation is transferred to surrounding bulk water via
chemical exchange.80 The possibility to generate multiple
contrast signatures by choosing agents with unique and dif-
ferent resonance frequencies, offered the attractive feature of
imaging different cell populations in the same anatomical site,
by labelling each cell population with a different CEST con-
trast agent.36 Like with T1 agents, the use of CEST agents also
has been limited by sensitivity issues. Therefore, much effort
has been put into the generation of macromolecular and
nanoparticle-based CEST agents for molecular imaging and
cell tracking purposes.80–82 A type of nanoformulation that
has been receiving most interest in this respect is liposomal-
based CEST agents.82,83 While these nanoformulations of
CEST agents were shown to have unique features and the
potential for interesting molecular imaging applications, their
use as efficient intracellular labels was negated by the finding
that upon internalization of liposomal CEST agents, image
contrast of these agents is significantly reduced.84 Nonetheless,
particulate CEST agents are still considered of interest in the
monitoring of cell-based treatment strategies.8 In a recent
study, Chan et al85 demonstrated the use of a liposomal CEST
agent as a nanosensor for monitoring survival of transplanted
cells. In this study, the liposomal CEST agent was encapsulated
together with hepatocytes in an alginate hydrogel. Due to the
pH-sensitive characteristics of the CEST agent, changes in pH
within the hydrogel resulting from cell death could be moni-
tored and used as a measure for cell survival (Figure 4). The
authors concluded that since all components used were clin-
ical grade, this approach lends itself for clinical translation.
Currently there are, to our knowledge, no reports on severe
adverse effects of CEST agents on cell functionality.
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FLUORINE-19-BASED NANOPARTICLES
A cell labelling strategy that has been gaining increasing interest
in recent years lies within the use of fluorine-19 (19F)-based
contrast agents. This non-proton-based imaging strategy offers
an important advantage from the fact that 19F is not naturally
present in the body, consequently endowing 19F-labelled cells
with a highly specific signal.86 Additionally, 19F MRI allows for
robust quantification of labelled cells.87 These characteristics,
together with the fact that biologically inert and stable 19F for-
mulations exist and have already been used in clinical settings as
oxygen carriers88 or ultrasound contrast agent (http://www.fda.
gov/NewsEvents/Newsroom/PressAnnouncements/ucm418509.
htm) have further promoted this interest for 19F-based cell
imaging. However, 19F imaging does require some dedicated
hardware on a MRI system, which is usually not routinely
available in most MRI centres.

For cell labelling, studies have mainly focused on the use on
perfluorocarbons (PFCs).10 A main advantage of PFCs is that
each molecule contains a high number of 19F nuclei, increasing
the signalling capacity per molecule. In order to promote
biocompatibility and cell loading efficiency, formulations of
PFCs used for cell labelling and imaging generally consist of
coated nanoemulsions or polymer-based nanoparticles.10,89,90

A nanoemulsion-based formulation of PFCs was also used in
the very recently published first report on 19F-based cell im-
aging in humans.39 In this study, dendritic cells (DCs) were
labelled with a PFC nanoemulsion formulation, with the
purpose of visualizing the DCs after intradermal administra-
tion as part of a Phase-I trial for DC-based immunotherapy of
Stage-4 colorectal cancer (Figure 5). While through this study
basic clinical feasibility of 19F-based cell tracking was demon-
strated, the current main concern of 19F-based cell imaging, i.e.
limited sensitivity, was also highlighted. In this study, three
patients received a DC injection dose of 13 107 cells which
could be reliably detected and quantified 4 h after injection. In
contrast, in two patients injected with a DC dose of 13 106

cells no reliable detection of the cell transplant was possible.
For the patients who received 13 107, the calculated average
intravoxel cell concentration was between 43 105 and
6.253 105 cells/voxel. In comparison, in the first reported
human application of iron oxide-based cell imaging a signifi-
cantly lower detection sensitivity of labelled cells was demon-
strated.20 In this study, a detection sensitivity of 23 103 cells/
voxel was demonstrated. Nonetheless, the report by Ahrens
et al39 is encouraging and will certainly further inspire already
ongoing efforts into the development of improved 19F-based
cell imaging techniques. These involve efforts to increase cel-
lular uptake by probe modifications or the use of transfection
agents that promote cellular uptake of particles,91–93 probe
modifications that increase the signalling capacity per
molecule,94,95 and hardware and software developments.37

NANOPARTICLE CHARACTERISTICS THAT MAY
AFFECT CELL LABELLING EFFICIENCY
AND TOXICITY
For nanoparticles to be used for cell labelling purposes, main
requirements that should be met are biocompatibility, stability
and high contrast generating properties. In the past years

various advances in nanotechnology have increased the pos-
sibilities in producing a large variety of nanoparticles towards
this end. However, various studies have also demonstrated that
in practice, limitations regarding these issues are still en-
countered. In the next paragraphs, we will highlight some of
these findings in which specific nanoparticle characteristics
are responsible for, sometimes unexpected, effects on cell la-
belling and/or imaging efficiency and cellular toxicity. In some
cases, however, these effects seem to be strongly cell type
dependent.

Effects of nanoparticle size
The effect of nanoparticle size on its performance as an in-
tracellular label has been extensively studied and described for
iron oxide particles.96–101 In general, with increasing particle size
(up to several microns) more efficient cellular uptake and sig-
nalling capacity have been observed. However, also some con-
tradictory results have been reported, where smaller particles
showed higher labelling efficiency.102 Effects of particle size have
also been related to some adverse consequences, i.e. reduced
migration capacity of DCs.103 In this study, it was shown that
migration of DCs labelled with iron oxide nanoparticles was
reduced compared with unlabelled cells. The reduction in mi-
gration capacity was stronger for larger particles (0.9mm)
compared with smaller particles (80–120 nm). Reduced migra-
tory capacity or cell motility has also been described for iron
oxide-labelled neural stem cells and mesenchymal stem
cells.49,104 However, migratory capacity was restored following
active exocytosis of the iron oxide nanoparticles. The speed
of exocytosis has also been reported to be dependent on
nanoparticle size.105 In a study by Xu et al106 larger PLGA-
encapsulated iron oxide nanoparticles had a 3-fold longer re-
tention in mesenchymal stem cells compared with smaller iron
oxide nanoparticles. Active exocytosis has also been reported for
various other types of nanoparticles107–109 and can occur via
lysosome secretion, vesicle-related secretion and non-vesicle-
related secretion.105 Release of nanoparticles either by active
exocytosis or following cell death is considered one of the main
disadvantages of the use of nanoparticles for cell labelling and
imaging. The released nanoparticles can reside for a long time or
be taken up by other cells and thus create a contrast agent-
related signal that is not related to the presence of the trans-
planted cell itself.51,71,110–113 In the study by Guenoun et al,71 it
was shown that prolonged retention of released cell label is
dependent on nanoparticle characteristics. In this study, a com-
parison was made between iron oxide nanoparticles and Gd–
liposomes (liposomes containing gadopentetate dimeglumine in
the water phase) as cell labelling agents for monitoring the
in vivo fate of transplanted cells. Both viable and non-viable cells
were injected subcutaneously and monitored over time by MRI.
For cells labelled with Gd–liposomes, the cell-associated sig-
nalling effect disappeared rapidly when non-viable cells were
injected, while the signalling effect of non-viable cells labelled
with iron oxide persisted for a long time (Figure 3).

For MnO particles similar observations regarding the effect of
particle size on cellular uptake efficiency and signalling capacity
were made in a study by Létourneau et al.35 In this study, small and
ultrasmall MnO particles were generated and used for cell labelling.
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Analogous to observations with iron oxide particles, the larger
MnO particles exhibit more efficient cellular uptake. In suspension,
the larger particles also exhibited higher relaxivity per Mn atom.
Upon internalization into cells, however, the relaxation effect pro-
duced by Mn was not anymore different between these two for-
mulations. The likely explanation for this phenomenon is that
during endocytosis of the ultrasmall particles, clustering of these
particles in endosomes occurred, which apparently resulted in the
same net relaxation effect obtained with the larger particles.
However, because cellular uptake of the larger particles was more
efficient resulting in a higher total cell load on a per cell basis, the
larger particles showed superior signalling capacity. A similar effect
of intracellular clustering on relaxation properties was found for
iron oxide-based nanoparticles.114 As a negative effect of larger
particle size, the authors found a higher toxicity level, reflected in
reduced cell viability, for the larger particles than for the smaller
particles.35 The maximal tolerated dose for labelling, that is without
affecting cell viability, was approximately two-fold higher for the
smaller particles.

To our knowledge, particle size in and of itself has in general not
been reported as a major factor affecting cellular function. In
general, iron oxide particles are considered as safe for cell la-
belling with little to no cellular toxicity, at doses relevant for cell
labelling. Generally, adverse effects have only been observed at
doses exceeding 100mgml21.115 However, several studies did
show negative effects on cellular function following labelling
with iron oxide particles at lower doses, including negative
effects on multilineage differentiation capacity,116 migratory
capacity,104 altered cytokine production117 or cell survival.118 In
a review by Singh et al,114 the various mechanisms by which iron

oxide agents can exert adverse effects on cell function have been
discussed, and include effects on membrane integrity, mito-
chondrial function, generation of reactive oxygen species and
DNA damage. In many cases, the toxic effects are dose de-
pendent and related to specific nanoparticle composition
aspects.119 Composition has been shown to be clearly related to
potential adverse effects and in general for their performance as
cell labelling agent for a large variety of nanoparticle as also
illustrated in the section on nanoparticle composition.

Effects of nanoparticle composition
A key aspect of nanoparticles is that they offer a large vari-
ability regarding their composition, both in terms of core
composition and shell composition. Therefore, nanoparticles
can theoretically be generated with a specific purpose in mind,
for instance with the goal to be used as a cell labelling agent.
The ideal cell labelling agent would have to fulfil the following
main requirements: excellent dispersion and stability in phys-
iological fluids and environments, efficient incorporation into
cells, high signalling capabilities and excellent biocompatibility.
Various studies on the use of nanoparticles as a cell labelling
agent have demonstrated that in practice the generation of
a nanoparticle that fulfils all these requirements is apparently
not so straightforward.

Coating of nanoparticles must provide a good stability to its
dispersion and containment of the metal ions that generate the
signalling effect. This is important to maintain the signalling
properties and to prevent adverse effects caused by free metal
atoms, which have been shown to cause cytotoxic effects. For
loosely bound coatings such as with the much used dextrans,
particle degradation in the presence of an acidic environment,
such as in endosomes and lysosomes, has been reported.120 For
iron oxide particles, this was shown to result in rapid modi-
fication of the magnetic properties and hampering of long-
term follow-up by MRI. Additionally, following degradation of
the particle, metal atoms can subsequently leach out into the
cytosol causing unwanted cellular effects. Negative effects of
leached metal atoms have been shown for iron, gadolinium and
manganese.73,78,115,120 Generally, the observed effects were
strongly dose dependent and also connected to uptake effi-
ciency. In various studies, it was also shown that next to uptake
efficiency of particles, the extent of the adverse effects could
also be strongly cell type dependent.78,99,121,122 Because of
these findings there is a continued effort in trying to generate
more stable particles and/or particles with an improved balance
between core composition and coating.77,114,123–125 In our
group, we made the observation that for a liposomal encap-
sulated gadolinium particle, adverse effects on cellular func-
tionality was more directly associated with the liposomal
capsule than with the chelated gadolinium molecules.31 The
maximal tolerated dose of the cell label was identical for Gd-
encapsulated liposomes as for empty liposomes. In order to
promote efficient cellular uptake, we had chosen to generate
the liposomes in such a way that they would have a net positive
surface charge. As demonstrated in the article, such a formu-
lation did indeed allow for highly efficient uptake of the par-
ticles. However, the aspect that promoted cellular uptake was
most likely also responsible for the observed dose-dependent

Figure 2. Limited signal specificity of the iron oxide-labelled

cells injected intramyocardially in a porcine myocardial in-

farction model. The left panel shows gradient echo scan, before

injection of iron oxide-labelled cells. The middle panel shows the

same slice after injection with 0.1, 1 or 43 106 iron oxide-labelled

cells. The right panel shows a similar series of injections in

remote, non-infarcted myocardium. Although the cell injections

create larger areas of signal voids in the middle panel, their

precise location cannot be determined because of the signal

voids induced by the presence of haemoglobin degradation

products. Bar indicates 0.5cm. Reprinted from van den Bos

et al47 with permission from Oxford University Press.
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adverse effect. Cationic lipids have been described for their
potential to negatively affect cellular function.126 As an addi-
tional positive feature, we did find excellent stability of the
intracellular cell label at a non-toxic labelling dose of the
Gd–liposomes. Total intracellular Gd content, i.e. within
the total daughter cell population, did not majorly decline over
a culture period of 21 days.

Next to stability of the particle, Kim et al34 demonstrated that
particle coating can also directly influence the signalling efficacy
of metal-based probes. In this study, on a new type of MnO
particle, they showed that coating with mesoporous silica was
superior to coating with PEG–phospholipids and dense silica in
terms of T1 relaxivity (.10-fold higher). The superior relaxivity
of the mesoporous silica-coated nanoparticles was explained by
the facilitated access of surrounding water molecules to the core
of the particle containing the manganese ions leading to efficient
relaxation of the surrounding water molecules. Their study also
demonstrated the effect of coating on cellular uptake efficiency.
The mesoporous silica coating endowed the MnO particles with
a net negative surface charge. With cell membranes typically
having a net negative surface charge, interaction between cells
and mesoporous particles is less efficient. Therefore, to promote
cell uptake of the negatively charged MnO particles additional
manipulation of the cells by electroporation was necessary to
obtain efficient labelling. Once internalized, however, the label

was well retained in mesenchymal stem cells, allowing for in vivo
tracking of cells transplanted into the brain of mice for more
than 2 weeks.

In a study by Kasten et al127 effects of nanoparticle composition
on signalling efficacy and toxicity were demonstrated using
human adipose tissue-derived stem cells. In this study, two types
of newly synthetized iron oxide nanoparticles were used that
were similar regarding particle size and surface charge but dif-
fered regarding iron crystal composition and particle coating.
Specifically, these particles consisted of a single iron core particle
surrounded by a dextran matrix, called nanomag-D-spio, or
a multicrystalline iron core surrounded by a starch shell, called
bionized nanoferrite (BNF) starch particles. While both particles
showed similar cellular uptake efficiency, a clear difference in
signalling capacity and cellular toxicity was found. Un-
fortunately, the BNF particles that had a more beneficial relax-
ivity also showed more extensive adverse effects on cellular
function in terms of multilineage differentiation capability.
Similar effects of iron core composition on signalling capacity
were also reported by other groups101 without reporting any
significant differences of core composition on cellular function.
In a study by van Tilborg et al,128 effects of particle core com-
position on signalling properties, incorporation efficiency and
cell functionality were shown. In this study, various bio-
compatible components were used to generate iron oxide-based

Figure 3. Monitoring the cellular status of cells by situation-dependent contrast behaviour of Gd. MSCs were labelled with either

Gd–liposomes or iron oxide particles and an optical reporter gene (firefly luciferase). Following labelling, cell populations were split in

two identical samples. One part was then submitted to repeated freeze-thawing to generate non-viable intact cells. Dual-labelled cells

were injected intramuscularly into the lower back of rats, i.e. viable labelled cells on the left side and non-viable cells on the right side.

Rats were imaged by MRI (3.0T) and bioluminescent imaging at several time points over a period of 2 weeks. (a) SPIO–MSCs caused

a signal void (hypointensity), regardless of the cell viability. In the acute post-transplantation stage, no substantial differences in visual

appearance were detected between viable and non-viable SPIO-MSCs. (b) Viable Gd–MSCs showed a different dynamic signal

behaviour compared with non-viable MSCs. Immediately post-transplantation, viable MSCs were consistently detected as

a hypointense area on T1 weighted scans (“quenched signal intensity”), whereas a similar density of non-viable Gd–MSCs resulted in

increased signal intensity (hyperintensity) at the injection site. In contrast to SPIO–MSCs, hyperintense signal from non-viable Gd–MSCs

had already resolved after 2h post-transplantation. An increased signal intensity on BLI images reflects the cell proliferation that

contributed to the tracer dilution observed by MRI.T1W, T1 weighted; T2*W, T2* weighted; BLI, bioluminescence imaging; MSCs,

mesenchymal stem cells. Reprinted from Guenoun et al71 with permission from John Wiley and Sons.
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nanoparticles for cell labelling. The various components used to
generate the particles were chosen with the goal to obtain par-
ticles for efficient cell labelling and imaging. The main sur-
prising finding in this study was that a combination of by itself
highly biocompatible components, such as soybean oil, iron
oxide phospholipids and polyethylene glycol, resulted in a cyto-
toxic product. In addition, shelf life of the end product was also
significantly reduced following chemical interactions of the
components used. In this study, the authors concluded on
a negative effect of oxidizing properties of the iron oxide crystals
on lipid components of the particle. Furthermore, this study also
demonstrated that not only size and surface properties of
nanoparticles can strongly influence cellular uptake but also core
composition.

In the generation of nanoparticles as a cell labelling agent, ap-
parently various challenges exist in creating an end product that
has high signalling capacity, shows efficient cellular uptake and
does not negatively affect cell functionality. Therefore, careful

testing of all these aspects is required during the evaluation of
newly generated products.

CLINICALLY RELEVANT INSIGHTS GAINED FROM
PRE-CLINICAL STUDIES AND CLINICAL
EXPERIENCE WITH CELL TRACKING
Despite the various challenges met, as described in the previous
sections, the value of MRI-based cell tracking for the de-
velopment and use of cell-based treatment strategies was,
amongst others, clearly demonstrated with the first published
article on the use of cell tracking by MRI in human patients.20 In
this study, tumour antigen-containing DCs were labelled with
iron oxide nanoparticles or 111In-oxine and coinjected into
lymph nodes of 10 patients with melanoma under ultrasound
guidance. The patients subsequently underwent MRI and scin-
tigraphy, by which the labelled DC vaccine could be visualized.
Not only did the study show feasibility of such an approach, the
study also demonstrated, owing to the high level of anatomical
information obtained with MRI, that in four out of eight

Figure 4. Imaging the functional status of cells by lipoCEST nanosensors. (a) MR images of LipoCEST capsules containing hepatocytes.

Shown are magnetization transfer-weighted (MTw) images and magnetization transfer ratio (MTR) asymmetry (MTRasym) maps at

2ppm of various cell samples. “Apoptotic cells”: LipoCEST capsules containing hepatocytes before (0h) and after (12hrs) addition of

50mM staurosporine. “Live cells”: LipoCEST capsules containing hepatocytes without the addition of staurosporine imaged at time

points 0 and 12h. “Dead cells”: LipoCEST capsules containing hepatocytes treated with STS before encapsulation imaged at time

points 0 and 12h. (b) MTRasym for the three groups at 0h (open bars) and 12h (solid bars). (c) Fluorescence overlay images of

capsules from the STS and control phantoms shown in (a). Samples are stained for live cells (fluorescein diacetate, green), dead cells

(propridium iodide, red) and apoptotic cells (Annexin V, blue). Scale bar5200mm. ** indicates statistical significance for the difference

in measured values. Reprinted from Chan et al85 with permission from Nature Publishing Group.
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evaluable patients, the injection of the DC vaccine did not occur
in the right place. In these four patients, the vaccine was injected
into either the surrounding muscle or fat tissue instead of into
the target lymph node. Furthermore, imaging of the labelled
cells also demonstrated that depending on the patient, higher or
larger numbers (1–40%) of the injected cells migrated from the
initial target lymph node to surrounding draining lymph nodes.
Since this type of therapy is based on direct cell-to-cell inter-
actions between the DC vaccine and T cells in lymph nodes,
information such as obtained in this study may be of crucial
importance for effective design, execution and monitoring of
these kinds of treatment strategies. In the years following this
first report on MRI-based cell tracking in humans, a number of
other reports on clinical trials were published, in which in vivo
monitoring of cells labelled with iron oxide nanoparticles was
performed.27–29 These studies in patients with traumatic brain
injury, spinal cord injury or diabetes, mainly demonstrated the
feasibility of MRI-based cell tracking techniques to monitor
delivery and migration of labelled cells. They also provided
additional proof on the lack of adverse effects of cell function-
ality by the labelling procedure, in that cell migration was not
impaired or in the case of transplanted pancreatic islets27 their
insulin-producing ability was not impaired. Following these
initial four clinical studies, another seven reports on clinical
studies with iron oxide-labelled cells appeared. In addition, re-
cently two articles were published describing initial evaluation or
preparation of MRI-based cell tracking using PFC nano-
particles39 and ferumoxytol56 as cell labelling agents, re-
spectively. Some specifics of these studies and the main findings
are summarized in Table 2.

Next to the above mentioned studies, other in vivo cell tracking
studies (mainly pre-clinical) have provided some valuable
insights into the mechanistic aspects of cell-based therapies. For
instance, in order for transplanted cells to fulfil their intended
function, a first prerequisite is that the cells reach the target site.
Connected to this the question arises on what the most efficient
route of administration is for a given situation. For stem cell-
based therapy of cardiovascular disease, various delivery routes

have been contemplated and used, e.g. intravenous, intra-
coronary and intramyocardial injection. In vivo tracking studies
have revealed that only a limited number of cells reach the in-
farcted myocardium after intravenous and intracoronary
injection.129,130 Direct intramyocardial injection was shown to
result in higher cell delivery efficiency to the infarcted myocar-
dium, however, being a technically quite challenging technique
to execute.131

Another example of how in vivo cell tracking may help in defining
the optimal delivery route was demonstrated in a study in rats by
Gorelik et al.132 In this study, homing of glial precursor cell de-
livery to inflamed brain after intra-arterial injection was studied.
To this end, the cells were labelled with iron oxide particles and
injected into the carotid artery and their homing to the brain was
monitored by MRI. Initial studies showed that without ligation of
side-branches of the internal carotid artery, the bulk of injected
cells ended up in tissue areas outside the brain. Only after ligation
of the side-branches, successful targeting of the injected cells to
the brain was achieved (Figure 6). In addition, the investigators
also showed that activation of precursor glial cells prior to in-
jection resulted in higher targeting efficiency compared with non-
activated cells. This aspect touches upon another important aspect
where cell tracking may help in designing effective cell-based
treatment strategies. Currently, many cell types are being con-
sidered for cell-based therapy; here, the challenge lies in de-
termining which types are most suitable in trying to fulfil criteria
regarding therapeutic efficacy, ease of access and practical use.133

Using fluorine-18 fludeoxyglucose as cell labelling agent and PET
imaging, Hofmann et al129 could demonstrate differences in
biodistribution and homing to infarcted myocardium between
selected CD341 bone marrow cells and unselected bone marrow
cells when injected intracoronary in patients with myocardial
infarction. In another approach, van der Bogt et al134,135 used
bioluminescent imaging of firefly luciferase transduced cells, to
compare the efficacy of various cell types for the treatment of
myocardial infarction using a murine myocardial infarction
model. Most disappointingly, however, the main finding from
these studies was the general poor survival in the myocardium of

Figure 5. In vivo imaging of dendritic cells (DCs) labelled with fluorine-19 (19F) nanoparticles injected intradermally into quadriceps

of patients with colorectal cancer. In these patients, approximately 13 107 labelled cells were injected. (a) A representative 19F MRS

spectrum of patient at 4h post inoculation. The DCs appear as a single narrow peak. “Reference” is from an external tube containing

triflouroacetic acid placed alongside the patient. (b) Axial composite 19F/1H images of the right thigh at 4h post inoculation in three

patients, a 53-year-old female (left), a 45-year-old female (middle) and a 61-year-old male (right), where the DCs are rendered in

“hot-iron” pseudocolor and the 1H anatomy is displayed in greyscale (F, femur; RF, rectus femoris; SFA, superficial femoral artery; LN,

inguinal lymph node). (c) The results of the in vivo quantification of apparent cell numbers using the 19F MRI data, measured in two

patients. By approximately 24h post inoculation, roughly half of the injected DCs were still present at the injection site. Reprinted

from Bonetto et al39 with permission from John Wiley and Sons.
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the various cell types tested, including bone marrow mononuclear
cells, adipose stromal cells, mesenchymal stem cells, skeletal
myoblasts and fibroblasts. Using the same imaging technology,
Janowski et al136 recently demonstrated the site-dependent sur-
vival of allogeneic neural progenitor grafts in the brain of mice
with a clear involvement of the immune system. Poor graft sur-
vival has now been generally accepted as a major hurdle for
successful cell therapy in regenerative medicine approaches,
therefore much effort is currently put into strategies to improve
graft survival.137–141

Clearly, in vivo cell tracking can provide valuable information for
the design and use of cell-based treatment strategies. Un-
fortunately, current limitations imposed by practical, technical
and regulatory issues still prevent widespread clinical use of
available imaging technology. Currently no FDA-approved,
nanoparticle-based cell labelling agents are available for clinical
use. Ferumoxytol, a FDA-approved iron oxide nanoparticle for
treatment of anaemia, is now being considered for off-label use

as a cell labelling agent in clinical trials.55,56 To limit the number
of regulatory requirements that would have to be fulfilled for
this off-label use, an alternative strategy for labelling of mes-
enchymal stem cells was recently proposed.55,61 This encom-
passes labelling of cells in vivo instead of ex vivo by intravenous
injection of ferumoxytol, which is then endocytosed by mes-
enchymal stromal cells (MSC) in bone marrow. Surprisingly,
this technique proved to be highly efficient and superior to ex
vivo labelling. While this technique was used in an osteochon-
dral defect model, it may be suitable for various other applica-
tions and may also be suitable for various other types of
nanoparticle-based labels.142 Of course, for new particles basic
safety and signalling efficacy will still have to be proven.

PERSPECTIVES IN CELL TRACKING
Widespread clinical application of cell tracking techniques is at
the least, still many years away. However, in coming years much
can already be learned from small and large animal models
where recent technological developments can further help in

Figure 6. Real-timemonitoring of injection accuracy with MRI. (a) Diagram of procedure with pterygopalatine artery left intact. After

ligation of external carotid and occipital arteries, common carotid artery was cannulated and SPIO-labelled cells were infused. (b, c)

T2* weighted MR images of rat brain and surrounding muscles obtained immediately before (b) and after (c) injection demonstrate

that vast majority of cells are localized into extracerebral tissue (arrows), with negligible binding within brain. (d) Diagram of

procedure with ligation of pterygopalatine artery. All infused cells were perfused into internal carotid artery and localized

successfully into ipsilateral hemisphere. (e, f) MR images obtained immediately before (e) and after (f) injection. Arrows indicate

area of cell docking. CA, choroidal anterior artery; CCA, common carotid artery; ECA, external carotid artery; ICA, internal carotid

artery; MCA, middle cerebral artery; PA, pterygopalatine artery; PCA, posterior cerebral artery. Reprinted from Gorelik et al132 with

permission from the Radiological Society of North America.
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elucidating the mechanisms underlying the success of cell-based
therapies. In such pre-clinical studies on cell-based therapies,
not only questions regarding accurate delivery of the cell graft
can be addressed, but also how the cell grafts function and how
therapeutic effect is mediated. These insights can then be used
for the design of clinical trials. Next to that, current technology
can already be used to address questions regarding the accurate
delivery of the graft and migratory behaviour of the cells in

specific situations, as has been demonstrated by studies in
patients performed so far. The challenge for clinical cell tracking
still lies in the development of the ideal technique. No available
technique will be able to address all relevant questions. There-
fore, depending on the question(s) addressed, the most suitable
technique or combination of techniques i.e. using multiple
modalities, will have to be selected. This will also include the
most suitable label for a specific question.
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