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Abstract

We study the regression relationship among covariates in case-control data, an area known as the
secondary analysis of case-control studies. The context is such that only the form of the regression
mean is specified, so that we allow an arbitrary regression error distribution, which can depend on
the covariates and thus can be heteroscedastic. Under mild regularity conditions we establish the
theoretical identifiability of such models. Previous work in this context has either (a) specified a
fully parametric distribution for the regression errors, (b) specified a homoscedastic distribution
for the regression errors, (c) has specified the rate of disease in the population (we refer this as true
population), or (d) has made a rare disease approximation. We construct a class of semiparametric
estimation procedures that rely on none of these. The estimators differ from the usual
semiparametric ones in that they draw conclusions about the true population, while technically
operating in a hypothetic superpopulation. We also construct estimators with a unique feature, in
that they are robust against the misspecification of the regression error distribution in terms of
variance structure, while all other nonparametric effects are estimated despite of the biased
samples. We establish the asymptotic properties of the estimators and illustrate their finite sample
performance through simulation studies, as well as through an empirical example on the relation
between red meat consumption and heterocyclic amines. Our analysis verified the positive
relationship between red meat consumption and two forms of HCA, indicating that increased red
meat consumption leads to increased levels of MelQA and PhiP, both being risk factors for
colorectal cancer. Computer software as well as data to illustrate the methodology are available at
http://wileyonlinelibrary.com/journal/rss-datasets.

Keywords
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1 Introduction

Population-based case-control designs, hereafter called case-control designs, are popularly
used for studying risk factors for rare diseases, such as cancers. The idealized set up of such
designs is as follows. At a given time, there is an underlying base population, which we refer
to as the true population throughout the paper. Within the true population, there are two
subpopulations, those with the disease, called cases, and those without the disease, called
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controls. Separately, a random sample is taken from the case subpopulation, and a random
sample is taken from the control subpopulation. Data on various covariates are then
collected in a retrospective fashion, so that they reflect history prior to the disease. Nested
case-control studies and case-cohort or case-base studies are variations of the retrospective
case-control design.

The primary purpose of case-control designs is to understand the relation between disease
occurrence and the covariates. The secondary analysis of such case-control data (Jiang et al.,
2006; Lin and Zeng, 2009; Li, et al., 2010; Wei, et al., 2012, He et al., 2012) is based on the
realization that the data further provide information about the relationship among the
covariates. The relation between covariates are often of interest as well, as they can reveal
associations between various covariates such as gene-environment, gene-gene and
environment-environment associations. These analyses become especially important when,
as is the case of retrospective sampling, a random sample from the true population is not
available; see the secondary analysis literature mentioned above for more examples. If we
seek to understand the regression relationship between covariates Y and X in the true
population, we generally cannot use the case-control data set as if it were a random sample
from the true population. Indeed, unless disease is independent of Y given X, the regression
of Y on X based on the case-control sample will lead to a relationship different from that in
the true population.

To see this numerically, we first define our notation. There are Ng cases and N1 controls,
with N = Ng + N1. Suppose that Ng = N1 = 500, and that disease status D is related to
covariates (Y, X) in the true population through the linear logistic model

_ exp{d(a.+xTa;+yas)}

D=d|X=z, Y=y)=f" (d,x,y)=H(d = '
pr(D=dX=z, Y=y)=[]"¢ (d,x,y)=H(d,x,y,a) 1+exp(a.+xTag+yas)’

D|X.,Y

0]

where for this illustration, a = (ag, a1, a@p) = (-5.5, 1.0, 0.5). Suppose further that the
regression relationship in the true population isthat Y = £, + Xf+ ¢ with 5. =0, f=1and ¢
~ Normal(0, 1). In addition, in the true population, X ~ Uniform(0, 1). In this setup,
suppose the disease is rare, with pr(D = 1) ~ 0.01. Thus, while controls are 99% of the true
population, they are only 50% of the case-control study. To understand the bias induced by
ignoring the case-control sampling scheme, we generated 3,000 case-control studies with
intercept 4, = 0 and slope =1, and computed the intercept and slope estimates using all the
data. Simply regressing Y on X and ignoring the case-control sampling scheme, the mean
estimated intercept and slope across the 3,000 simulated data sets were 0.150 and 1.174,
respectively, reflecting considerable bias, which leads to a coverage rate of only 67% for a
nominal 95% confidence interval. Figure 1 shows the attained regression function compared
to the true regression function. Using the method that we develop in this paper, our method
yields the average intercept and slope estimates of 0.0024 and 1.0035, thus eliminating the
bias caused by ignoring the case-control sampling scheme.

The bias in the secondary analysis is in stark contrast to what happens in the primary
analysis, where estimating (ay, a) is of interest. It is well known that a; and a, can be
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estimated consistently via ordinary logistic regression of D on (Y, X) by treating the case-
control sample as if it were a random sample of the true population (Prentice and Pyke,
1979).

Our goal is to estimate the regression of Y on X in the true population, using case-control
data, where for a function m(-) known up to a parameter g,

Y=m(X,B)+e, (2

where we make only the assumption that E(gX) = 0. Two solutions to estimating g have
been proposed in the literature. (Lin and Zeng, 2009) and, obliquely, (Chen et al., 2008)
proposed to assume a particular fully parametric distribution for £ and then perform a semi-
parametric efficient analysis, where the distribution of X is nonparametric. There is
excellent software for this problem in the case that £ = Normal(0, ), i.e., homoscedastic
and normally distributed (http://www.bios.unc.edu/~lin/software/SPREG/). To implement
this software, however, one must either specify the disease rate pr(D = 1) in the true
population or one must make a “rare-disease” assumption, which is implemented by
assuming pr(D = 1) < 0.01. When the disease rate is known, reweighting the observations
also corrects the biases (Scott and Wild, 2002). Wei, et al. (2012) dispense with the
normality assumption, but still assume a homoscedastic distribution for ¢ independent of X
and make a rare disease approximation.

In practice, the disease rate in the population being sampled is not known. In addition, it
might not be rare. As an example, in Section 6, we use data from a case-control study of
colorectal adenoma, a precursor to colorectal cancer, relating measures of heterocyclic
amines to red meat consumption. While colorectal cancer is rare, colorectal adenomas are
not, being on the order of 7% or more depending on the population being sampled (Yamaji
et al., 2004; Corley et al., 2014). In this data set, one of the regressions is also heavily
heteroscedastic. We will demonstrate that both approaches mentioned above have problems
when some of the assumptions, such as the rare disease assumption, the known disease rate
assumption and the known error distribution assumption, are violated (Tables 1-6).

In order to relax such assumptions, novel methods are needed. In this paper, we do not
assume any distributional form for € or £| X, we do not assume that the regression is
homoscedastic, we do not require the disease rate to be known and we do not make a rare
disease approximation. We do this by adopting the concept of a superpopulation (Ma, 2010):
a similar idea is called an alternative characterization of the case-control study by Chen et al.
(2009).

The main idea behind a superpopulation is to enable us to view the case-control sample as a
sample of independent and identically distributed (iid) observations from the
superpopulation. Conceptually, superpopulation is simply a proportional expansion of the
case-control sample to infinity. Why a superpopulation constructed through such expansion
achieves the purpose of viewing the case-control sample as an iid sample is studied carefully
Ma (2010). The ability of viewing the case-control sample as a random sample permits us to
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use classical semiparametric approaches (Bickel et al., 1993; Tsiatis, 2006), regardless if the
disease rate in the real population is rare or not, or is known or not.

We derive a class of semiparametric estimators and identify the efficient member. We
further construct a member of the family that is relatively simple to compute, and illustrate
how to construct the efficient estimator, applicable to both rare and common diseases. The
derivation of semiparametric estimators in this context is challenging because the
calculations must use quantities defined in the unknown true population to perform analysis
in the superpopulation, since the models under the true population and the superpopulation
share common parameters. In addition, as established in Ma (2010), the resulting
semiparametric estimators further retain asymptotic consistency, a root-n convergence rate,
asymptotic normality and semiparametric efficiency with respect to the true population as
well. For example, our efficient estimator has the usual property that its asymptotic variance
cannot be further reduced by any other device or by taking into account the case-control
sampling structure.

The rest of the paper is organized as follows. Under conditions, we first establish the
technical identifiability of our problem in Section 2. In Section 3, we formulate the problem
into a classic semiparametric one by using the superpopulation notion and carry out analytic
calculations to prepare for the estimation procedure. In Section 4, we describe details of
implementation and the asymptotic theory. Simulation studies are performed in Section 5 to
illustrate the finite sample performance of the procedure, showing that our method is robust,
efficient and maintains nominal coverage for confidence intervals. An empirical analysis is
provided in Section 6. Section 7 contains a short discussion. Technical details are given in
an Appendix, as well as in the Supplementary Material. Computer code and data to illustrate
our method are available http://wileyonlinelibrary.com/journal/rss-datasets.

2 The Superpopulation Model Framework

The primary disease model is the linear logistic model (1), with a=(a,, 7, a2)T. Here and
throughout the text, we use superscript “true” to represent quantities or operations related to
the underlying true population, and also to distinguish it from a superpopulation that will be
formally introduced later. In addition, in this underlying true population, Y is believed to be
related to X through (2), which we rewrite as the regression model

f;r&e(x’ y)=n2{y — m(x,B),x}, (3)

where m(-) is the regression mean function known up to the parameter fand 7, is an
unknown probability density function that has mean zero given X. Defining e=Y - m(X, f),
then E(e| X) = 0. The distribution of & whether conditional on X or marginally, is left
unspecified. In particular, heteroscedasticity is allowed. Making the identification (e, X) =
{Y = m(X, B), X}, this means that 7, > 0 satisfies [ erp(g, X)du(e) = 0 and [ (e, X)du(e)
=1, but its form is unknown. Here and throughout the text, we use y(-) to denote a Lebesgue
measure for a continuous random variable and a counting measure for a discrete random
variable. The distribution of the covariate X in the underlying true population is also
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unspecified, and its density or mass function is fi¢(x)=g, (x), where 77; > 0 satisfies |
m(x)du(x) = 1.

The superpopulation framework of Ma (2010) is that one can think of the case-control
sample as a random sample from an imaginary infinite superpopulation, in which the disease

to non-disease ratio is N1/Ng. Let Ng = Ng when d = 0 and N4 = N; when D = 1. Define the
true prObabiIity that D = d as pguc(da a, ,Ba 1, 772):f771 (X)Uz (63 X)H(da XY, a)d,u(x)d,u(y).

The density of (D, Y, X) in the superpopulation is defined as

oo (g, d)=Namne(e, ) H(d X, y,0) @
X,Y,D\"* I N pg“e(d,a,ﬂ»ﬁhm)

Although Bappears in ¢, for notational brevity, we do not explicitly write &(f). In the
secondary analysis framework, the main interest is . However we formally treat 8= (aT,
BT as the parameter of interest. We treat 7;(-) and 7p(:,") as the infinite dimensional
nuisance parameters, thus bypassing the need to estimate them.

Remark 1. When no assumptions are made about the relationship between Y and X in the
true population, the logistic intercept a is not identified (Prentice and Pyke, 1979), and
neither is the regression of Y on X. Thus, if consistency of estimation is desired, truly
nonparametric regression in a case-control study of our type is not possible. We believe that
the key to identification lies in placing a restriction on the joint distribution of (Y, X) in the
base population. For example, Chatterjee and Carroll (2005) show that if Y and X are
independent, then «¢ is generally identified, and they show this explicitly when one of the
two is discrete. In our case, the restriction is a parametric model for E(Y|X). It is a reasonable
conjecture that such a restriction is enough for the identifiability of a., a conjecture that we
confirm next.

2.1 Identifiability

We first establish identifiability of the parameters a, £in the superpopulation. For greater

generality, we consider the slightly more flexible model H(d, X, y) = exp[d{a; + u(X, y, a1,
ap)HI[1+exp{ac + u(X, y, a1, @)}, where u(0, 0, ay, ap) = 0 for all a1, a. Obviously, this
model contains the original linear logistic model we are studying. We assume that there is

no (af, aQ)T # (af, dg)T such that for all (x, y), u(x, y, a1, a) = u(x, y, a, a). These are
natural minimal conditions that are usually satisfied automatically as long as the
parameterizations of u and m are not redundant. We also assume the following two
conditions.

Assumption 1. Assume that the second moment of & is bounded marginally and 7, is a
bounded function, i.e., E(¢?) < oo and Supx ¢ 12(& X) < oo. For any fixed parameters ay, ap,
B, and any 6> 0, there exists a constant vector cq, a constant ¢, € [0, 1] and a region P with
complement D¢ such that when x — ¢y,
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sup lim (1+exp[ac+u{x,m(x,ﬁ)—i—s,al,ag}})_l — ¢|=0,

Ee@c){%cl

and limy_.¢; pr(e € D | X =x)<d4. In addition, for any element e € D, |e[ = 1. Typically we
expect P° = [-K, K] for some large K, ¢; = oo or —oo or contains oo as components, and ¢,
=0 or 1, although this is not required.

Assumption 2. ¢(8, ,/))~: limy ¢, {m(X, ,6)~— m(x, A} #0 forﬂ;ﬂ.

Remark 2. Assume that pr(|g > K|X = x) — 0 as K — oo uniformly in x. We can easily
verify that when both m and u are linear functions, where we write m(x, #) = x'8; + A, both
assumptions are satisfied except when a; + f1ap = 0. When this happens, u{m(x, £, a1, ay}
degenerates to a constant, and we can verify that although g is still identifiable, /& and a.
are no longer identifiable, see the Supplementary Material for details of verification of both
the identifiability and the non-identifiability verification.

We state the identifiability result in Proposition 1 and provide the proof in Appendix A.1.

Proposition 1. Make Assumptions 1-2. Also assume that there are constants (C4, C») such
that 0 < C; < Ng/N1 < C, < co. Then the parameters a and Sare identifiable.

Remark 3. Identifiability under some specific situations has been considered in the
literature. For example, Chatterjee and Carroll (2005), Chatterjee et al. (2006) and Chen et
al. (2009) considered the case that X and Y are independent, while Chen et al. (2008) and
Lin and Zeng (2009) explicitly studied the identifiability issue when the disease rate model
is linear logistic and the secondary model is fully parametric. The model we consider here is
more general, in that only a mean function is assumed for the secondary model. These
authors all note that while in practice, it may be difficult to estimate a, estimation of the
other parameters can still be performed effectively, see also Lobach et al. (2008).

3 Analytic Derivations

3.1 True and Conjectured Models

The major point of our article is that we only propose a model for E(Y | X), denoted m(X, /),
and we specifically want to avoid positing a model for the density function of the regression
errors =Y = m(X, A conditional on X. We will accomplish this by a two-step process.
First, in Section 3.2, we will derive the semiparametric efficient estimating equation in the
superpopulation for estimating (a, ) when the density of Y given X in the true population is
known. Recognizing that we do not want to make such an assumption, in Section 4, we will
show how to modify the estimating equation so that it has mean zero asymptotically, even if
the conjectured model for the regression errors is false, thus resulting in model-robust
consistent estimation.
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3.2 Analysis Under a True Model

As described in Section 3.1, here we will derive the form of the semiparametric efficient
estimating equation when the conjectured model for the regression errors in (3) is true. Later
in Section 4, we will modify the estimating function to make it model-robust.

Viewing the observations as randomly sampled from the superpopulation, we can perform a
conventional semiparametric analysis. Of course, all the calculations need to be done with
respect to the superpopulation, and all the probability statements need to be with respect to
Lebesgue measure for continuous random variables and counting measure for discrete
random variables in the superpopulation, and they will be if not otherwise pointed out. The
functions (7, 7, H), which are probability density/mass functions in the true population, do
not represent the corresponding probabilities density/mass functions in the superpopulation.
They are merely functions that satisfy 7(x) =0, | m(X) du (X) =1, 7p(g, X) =0, [ (s,
X)du(e) = 1, [ emp(e, X)du(e) = 0, H(d, x, y) = 0, H(O, x, y) + H(1, X, y) = 1. In fact, we
introduced these symbols to discourage the mistake of automatically viewing them as the
corresponding density or mass functions in the superpopulation.

Using model (4), calculating the partial derivative of the loglikelihood with respect to a and
B itis easy to see that the score function has the form S¢«(X, Y, D, & =S(X, Y, D, ) - E(S|

D), where 8= (aT, fN)T, So=(S_, SE)T: and

_ 8log{H(daX7 ’a)}/aa
S(x,y’d,e)—{ 810g{772(5ai)}/‘9ﬁ } ©

Explicitly,

S.(X,Y,D,0)=0log{H(D,X,Y,a)}/da— E[dlog{H(D,X,Y,a)}/da|D];

$3(X, Y, D,8)=0log{na(=, X)} /9B — E[dlog{ns (=, X)}/9]| D).

In Appendix A.2, we further derive the nuisance tangent space A and its orthogonal
complement space A+ as

A:{g(é‘, X) - E(g|D):Etrue(g):Etrlle(5g|x):0 a.s.};
AL =[h(D, &, X):E(h)=0, E{h—E(h|D)|e, X} x 3" (Na/N)H(d, X, y)/p'™ (d)==a(X) a.5.,

D
d
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where g(g, X) and h(D, &, x) are arbitrary functions that satisfy their respective constraints
described above, a(x) is an arbitrary function of x, and a.s. stands for almost surely with
respect to the true superpopulation distribution.

Having obtained both the score function and the two spaces A and A+, conceptually, we
only need to project the score function onto A-- to obtain the efficient score Sefr. Doing this
is, however, extraordinarily technical, and hence we defer the details to the Supplementary
Material. Here we merely state the result in Proposition 2, which requires a series of
definitions, as follows.

Define mo=p5"(0)= [ (x)n2 (e, x) H (0, %, y)dp(x)dp(y);
m=pg " (1)=m (x)n2(e, %) H(L, %, y)dp(x)dp(y);
bo=E{f ey (1X,Y)| D=0} b =E{f, ., (0,X, Y)| D=1}
co=E(S|D=0) — E{E(S|e, X)|D=0};
c1=E(S|D=1) — E{E(S|e,X)|D=1};

506, 9)= [ Sheo INaH (d,%,9)} (V1) 301 (X)=[ Bl 20X V)X 7
t2(X)=Euue{eE(Sle, X)|X} — (co/bo) Burue{efp x5 (0, X, YV)[XF;
t3(X)= — by ' Exrue{ef .y (0, X, Y)[X}; a(x)=t1 (x){ta2(x)+t3(x)uo};
wo=(1 — E[et,(X)t3(X)r(X, V)| D=0)) " E[et;(X)ta(X)r(X, V)| D=0];
u;— — (No/Nl)uO; V():(ﬂ'l/b())(uO-i—Co); Vi= — (Wo/bo)(u0+00);
g(€7 X):E(S|€7 X:X) - E&(X)K(X, y) - VOfD‘X_,y (07 X, y) - VlfD‘X,y (17 X, y)

Proposition 2. Make the definitions (6). In the superpopulation, the semiparametric efficient
score function is S(X;, Yj, Dj) — g{Yi — m(X;, ), Xi} = (No/N)vg — (N1/N)vy. The
semiparametric efficient estimator is obtained by solving

S [S(X,. Y D) — g{Yi - m(Xi,8),X:} — (1 - Dy)vo — Divil=0. @)

We emphasize here that the estimator in Proposition 2 is not only efficient with respect to
the superpopulation, it is also efficient with respect to the true population. This is a direct
consequence of the general result that if an estimator is efficient with respect to the
superpopulation, it is also efficient with respect to the true population. A careful justification
of this claim is given in Ma (2010). Logically, this result can be understood because if we
could find a more efficient estimator with respect to the true population, this estimator
would also be more efficient with respect to the superpopulation, which causes a
contradiction. Intuitively, the special sampling strategy is in fact already absorbed into the
formulation when we construct the superpopulation, hence no information has been lost
during the conversion between populations.

4 Estimator Construction

4.1 Basic Calculations

The estimating equation (7) derived in Proposition 2 is not useful however, because it
involves various calculations that rely on the unknown 77 and 7, which were assumed to be
correctly conjectured in Section 3. If either are misspecified, the corresponding calculation
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will lead to inconsistent estimation of & The purpose of this section is to define estimators
that are consistent for estimating @based upon a posited score function, which we denote by
S*. As it turns out, if the posited score function is correct, then in addition to being
consistent, the estimator of @has the additional property of being efficient. If the posited
score function is incorrect, then the estimator of @is still consistent. So our method can be
thought of as a locally efficient estimator.

A careful inspection of the estimation procedure given in Proposition 2 and the definition of
the related quantities suggests that the critical points lie in obtaining 7y and m, in
calculating E(h | & X) and E(h | D) for any function h(D, X, Y), and in calculating Ege(h |
X) for any function h(D, X, Y).

Our algorithm is detailed as Algorithm 1, and is based upon the following considerations.

e  First, we have that

Ny=Np,(d)=N [ fry (%, 9) fp 5y (d: % 9)dp(x)dpy)=N [ fx v (€, y)(NaH/N7) {3 o(NaH) | (N7g) } dp(x)dp(y).

If we estimate the last term by

N -1
> INaH(d, X, V) /[Nma}{) | {NaH(d,X;,Yi)/(N7g)}  and remember that
m + m =1, we see that we can estimate 7 by solving

=3 H(0.X:,Y)|[ 30 NaH (d, X, Vi) {m§ (1 — mo)yma]

Algorithm 1: Computing the Locally Efficient Score Function
The first two steps are done only once.

. Posit a model for 7p(&, x) which has mean zero, and calculate (5), calling the result S*(X, Y, D). Use S*(:) in place of S(-)

in (6)-(7).

. Estimate fyp(, d) by a kernel density estimate among the data with D; = d, with result foD(x, d).

The rest of the steps are done iteratively in the estimation algorithm.

3 N N N N 1
Solve WOA:Zi:JH(O’ X, Y;){NOH(Oa X, Y;)/WO"‘NlH(la X, Yl)/(l - 7TO)} to obtain 7,

and set i =1 - m.
. In the definition of x(x, y) in (6), form K(;(, y) by replacing 7y by 7de Define ;qE K(S(i, Yi).
«  Define fgi = fo, v(d, X, i) = NgH(d, X, Y)s/(N7g).

. For any function h(d, x, y) in (6), estimate E{h(D, X, Y) | X, D = d) by nonparametric regression among observations
with D; = d.

. For any function h(d, x, y) in (6), estimate E{h(D, X, Y) | D =d) as
~ N N N 4
E{n(D, X, Y)[D:d)zzizlh(d, X, YZ)fch/ZZ:lf(h

. For any function h(d, x, y) in (6), estimate E{h(D, Y, X)|¢&, X} by
B{h(D,Y.X)|e.X}=Y""_ NyH(d,X,Y)h(d.Y,X)A(X.Y)/(N#y)
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. For any function h(d, x, y) in (6), estimate Ey,{h(D, X, Y) | X) by
N 1 . oA A 1 N
Fiue{h(D,X,Y) |X):Zd:07rdE{h(d, X,Y)[X,D=d)f, ,(X,d) /Zd:o”d Fyp(Xid)

Application to the terms in (6) yields g(s, X;) and vy, and we then form

S.x(D,X;,Y;)=S*(X,Y, D) — g(¢,X) — (1 — D)¥o — D

We have described the algorithm when X is continuous. When X is discrete, one simply replaces the density estimators and various
nonparametric regressions with the corresponding averages associated with the different x values.

e Next we have that

E(hle,X)=)_ hf,,,(dX,Y)=) {NeH(d X, Y)h(d,X,Y)/(Nmg)}{d_ NuH(dX, Y)/(Nwd)}_l.

« Inaddition,

I gmaf 5N, (X y, d)dp(y)

I amaf 3, (X y, d)dp(y)

I gmaf ¢y (X y, d)dp(y)

X amaf oy Xy, d)dp(y)

~Yamalbfyy (X y, d)dp(y)

B Zdﬂ'dfxm(xv d)

~ 2amafbfy x (X y,d)du(y) fy (X, d)

a S aTafxp (X, d)

=Y maEW[X,d) fy, (X,d) /Y mafx (X, d),

Etrue(h‘x):

where in the last expression, both fxp(x, d) and E(h | x, d) need to be estimated
nonparametrically.

»  Finally, we have

S Iy (% 9)h(d %, 9) 5y (d, %, y)dp(x)dp(y)

E(b|D=d)= Sy (®o9) oy (doX,y)dp(x)duly) 7

which can be estimated as

A N N
E(h‘D:d):Zizlh(da X, }/;)fp\x,y(d> X, )/i)/zizlfp\x,y (da Xis Yz)

4.2 Distribution Theory

Because the locally efficient estimator is derived from well-established semiparametric
procedures, while replacing the unknown quantities with nonparametric estimation in the
proposed model, it is not surprising that it is asymptotically normally distributed with
standard parametric rates of convergence. In addition, it achieves the semiparametric
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efficiency if the proposed model is correct. We describe the asymptotic properties of our
estimator in Theorems 1, and provide a sketch of the proof for Theorem 1 in the Appendix.
We first list the set of regularity conditions that Theorem 1 requires.

C1: There exists constants 0 < C < oo such that limy_,,,N1/N, = C. In addition, the
identifiability Assumptions 1 and 2 hold.

C2: The univariate kernel function is a function that integrates to 1 and has support (-1,
1) and order r, i.e., [ K(X)xldx =0 if 1 <t <rand | K(x)x"dx # 0. The d-dimensional
kernel function, still represented with K, is a product of d univariate kernel functions,

d
that is, & (x)=] | _ K («:) for a d-dimensional x.

C3:Ford=1,0, fxp(x | D =d), E(£x| X, D =d), E(aus | X, D = d), E(fg | X, D = d),
E(&f1 | X, D = d) have compact support and have continuous rt" derivatives.

C4: The bandwidth h = N"“where 1/(2p) > 7> 1/(4r), where p is the dimension of x.
This includes the optimal bandwidth h = O(N~Y(2r*P)) as long as we choose a kernel of
order 2r > p.

Condition C1 ensures that there are a sufficient number of both cases and controls in the
sample, which occurs in all case-control studies of the type we are studying (see the
introductory paragraph). Conditions C2 and C4 are standard requirements on an rth order
kernel function and on the bandwidth in the kernel smoothing literature (Ma and Zhu, 2013).
Condition C3 is not the weakest possible. We impose this condition to simplify the technical
proof. It can be replaced with weaker conditions in the region where ||x|| is large, at the
expense of a more tedious technical treatment.

Theorem 1. We emphasize that for any random vector S(D, Y, X), expectation and co-
variance in the superpopulation is linked to expectation and covariance in the case-control
sampling scheme (conditional on disease status) through

E{S(D,Y, X)}=5"o(Na/N)E{S(D, Y, X)|D=d}
cov{S(D, Y, X)}=34o(Na/N)cov{S(D, Y, X)| D=d}.

Under the regularity conditions C1-C4, in the case-control study, as N — oo, the estimator 6
N  ax A
obtained from solving the estimating equation Zizlseﬂ'(Di» X, Y;, 0)=0 satisfies

T

N'2(0 — 60) — Normal{0,A"'B(A™!)"}

where A=E{8S3(D,X,Y,8,)/06™ } and B=cov{S3(D, X, Y,8,)}.
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5 Simulations

5.1 Setup

We performed a series of simulation studies in order to evaluate the finite sample
performance of the various methods. In total, we considered 72 different cases. First, we
considered a balanced design, where Ng = N; = 500, and an imbalanced design with Ng =
666 and N1 = 334, i.e., 2 controls for every case. Second, we considered 3 disease rates: a
relatively rare disease rate of 4.5%, an extremely rare disease rate of 0.5% and a common
disease rate of 10%. The balanced design in rare or extremely rare disease cases is
representative of a typical case-control study.

Third, we considered three settings for the logistic regression. We generated X from a
Uniform(0, 1) distribution. The logistic regression model was pr(D = 1|Y, X) = H(a¢ + a1 X +
apY), where aq = 1 and we varied a, = 0.00, 0.25, 0.50. The regression model for Y given X
isY=p/+pmX+ e withpy=0and 5 =1.

Finally, we varied the distribution of the regression errors and whether they were ho-
moscedastic or not, as follows.

» Inthe first set of simulations, we generated homoscedastic errors &. The distribution
of £ was either Normal(0, %) with o = 1 or is a centered and standardized Gamma
distribution with shape parameter 0.4, normalized to have mean zero and variance
o® = 1. To achieve an approximate 4.5% disease rate, for a, = (0.00, 0.25, 0.50) we
set ac = (-3.6, —3.8, —4.0). To achieve an approximate 0.5% disease rate, for ap =
(0.00, 0.25, 0.50) we set a. = (-5.8, —6.0, —6.2). To achieve an approximate 10%
disease rate, for a, = (0.00, 0.25, 0.50) we set a; = (-2.7, -2.9, -3.1).

» Inthe second set of simulations, we generated heteroscedastic errors as follows.
The same distributions for < were used, except that £ was multiplied by (1 +
X2)3/42 in all the cases, so that var(gX) = (1 + X2)3/2/4. To achieve an approximate
4.5% disease rate, for a, = (0.00, 0.25, 0.50) we set a. = (-3.60, —3.75, —3.95). To
achieve an approximate 0.5% disease rate, for ap = (0.00, 0.25, 0.50) we set a; =
(-5.8, -5.95, —6.2). To achieve an approximate 10% disease rate, for a, = (0.00,
0.25, 0.50) we set ac= (-2.7, -2.9, -3.1).

With respect to the method described in Section 4.1, we mention the following details. The
posited model 53 being a standard normal model in step 1. This yields the second component
in S* as (y—£—/Ax)(1, X)T. In performing the many nonparametric calculations in steps 4, 5,
6, 7, we used a kernel estimates with a same bandwidth h throughout. We set the bandwidth

at h:cn51/3, and experimented with different values ¢ between ¢ = 0.5 and ¢ = 2.0, with
little change in the results. To assess variability, we used the asymptotic results in Theorem
1, with the A and B matrices replaced by their corresponding sample averages evaluated at
the estimated parameter values.

We compared our method with three others. The first was ordinary least squares among the
controls, with sandwich standard errors: the sandwich method is used to adjust confidence
intervals for possible heteroscedasticity. The second was the semiparametric efficient
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method that assumes normality and homoscedasticity, with standard errors obtained by
inverting the Hessian of the loglikelihood (Lin and Zeng (2009)). The third was the method
of Wei et al. (2013) that assumes homoscedasticity, but otherwise does not specify any
particular error distribution model: we used the bootstrap to obtain standard errors for this
method.

A striking conclusion of these simulations is that our methods, which assumes none of rare
disease, normal errors or homoscedasticity, uniformly has coverage probabilities that
achieve the nominal rates.

5.2 Homoscedastic Case

Results for the homoscedastic case are given in Tables 1-3. We display the mean estimate,
the standard deviation across the simulations, the mean estimated standard deviation,
coverage probabilities for nominal 90% and 95% confidence intervals, and the mean squared
error efficiency of the methods relative to using only the controls.

The case ap = 0.00 is interesting, because here Y is independent of D given X. Hence, all
methods should achieve nominal coverage probabilities for estimating S, which is indeed
seen in Table 1. Surprisingly, our method, which assumes neither normality nor
homoscedasticity, is as efficient in terms of mean squared error as the semiparametric
efficient method that assumes both, and is of course much more efficient than using only the
controls.

For ap # 0, and when ¢is normally distributed, our method remains comparably as efficient
as the semiparametric efficient method which assumes both normality and homoscedasticity.
However, when the errors were not normally distributed, our method has much smaller bias
and is much more efficient. In addition, the semiparametric efficient method has poor
coverage probabilities when ay = 0.50. While the method of Wei et al. (2013) maintains
good coverage probabilities in all cases, our methods also maintains coverage, has smaller
bias and is much more efficient.

5.3 Heteroscedastic Case

The results for the heteroscedastic case, with various disease rates and equal or unequal
case-control rations are given in Tables 4-6.

The results are much in line with the homoscedastic case, with a few important exceptions.
The semiparametric efficient method, which assumes both homoscedasticity and normality,
has a noticeable loss of coverage probability when a, # 0, largely caused by bias. Because
they used a bootstrap to compute standard errors, the method of Wei et al. (2013) maintains
good coverage probability except when ap = 0.50, where the bias causes deterioration in the
coverage rates. Our method maintains good coverage probabilities in all cases, and because
of its lack of bias, noticeably increased mean squared error efficiency.
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6 Empirical Example

Epidemiological studies have led to the general belief that heterocyclic amines (HCA), such
as MelQx and PhlP, are significant risk factors associated with various forms of cancers,
including colorectal cancer and breast cancer (Barrett et al., 2003; Sinha et al., 2001; De
Stefani et al., 1997). One of the important food sources contributing to carcinogenic HCA,
among many other potential sources, is red meat, which produces the agents during the
cooking process. In addition, red meat contains other nutrients such as saturated fat which is
also believed to relate to the occurrence of cancer. Due to this link, epidemiological and
nutritional studies of cancer often include both red meat consumption and HCA as
covariates to assess the risk of developing cancer, while simultaneously studying the relation
between HCA amount and red meat consumption. Understanding this relation helps to
understand the health impact of red meat consumption and is important in formulating food
consumption guidelines for the general public.

We implemented our method on a data set involving colorectal adenoma, with 640 cases and
665 controls. The cases and controls were defined by the occurrence of colorectal adenoma
(D). In our analysis, X is red meat consumption in grams. We used two different versions of
Y, namely the heterocyclic amines MelQx and PhIP that are produced during the cooking of
meat.

PhIP, MelQx and red meat were transformed by adding 1.0 and taking logarithms to
alleviate the heavy skewness of these measurements on the original scale. We also analyzed
the subset of the study who were smokers. For the controls-only analysis, standard errors of
the slope estimate were computed using the usual formula for least squares and also by the
sandwich method. For our semiparametric analysis, we computed standard errors by the
asymptotic formula of Theorem 1 and by the bootstrap, with 1,000 bootstrap samples. Given
the results of the simulation, we do not expect any significant difference between these two
estimates of standard errors for our method, with the asymptotic formula being much faster
computationally.

We performed a preliminary analysis using only the controls. In the original data scale, all
the covariates (PhiP, MelPx and red meat consumption) are very skewed and heavy-tailed,
see Figures S.1-S.2 in the Supplementary Material. The transformed data were much better
behaved, see Figures S.3-S.4 in the Supplementary Material. Numerically, the skewness of
MelQx in the original and transformed data scales are 3.46 and -0.19, respectively. The
skewness of PhIP in the original and transformed data scales are 7.93 and -0.20,
respectively. Finally, the skewness of Red Meat in the original and transformed data scales
are 1.78 and -0.58, respectively. These numbers and the plots indicate that the
transformation did an acceptable to very good job of removing skewness.

Further preliminary analysis of the controls included scatterplots of the transformed data,
both of which were reasonably well-behaved and indicated an increasing trend for
increasing red meat consumption, consistent with a linear trend, see Figure S.5 in the
Supplementary Material. To check this, we fit a quadratic model to the transformed data: in
both cases, the p-value for the quadratic term exceeded 0.20, see Figure 2. Thus, we adopted
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a linear function for the mean m(-) in the subsequent secondary analysis. In addition, the
regression of PhIP on red meat consumption is heavily heteroscedastic, while the regression
of MelQx on red meat is passably homoscedastic. This is shown in Figure 3, where we fit a
regression of the absolute residuals from a quadratic fit against red meat consumption
(Davidian and Carroll, 1987): the plots from a linear regression are essentially the same.

The results of this secondary analysis are given in Table 7. For MelQx, the ordinary least
squares standard errors when using only the controls are roughly the same and that of the
sandwich method, which makes sense since the regression is homoscedastic. In this case, as
expected from the theory, our semiparametric approach has smaller standard errors, with the
least squares standard errors being approximately 30% larger. For PhIP, where the
regression is distinctly homoscedastic, the sandwich standard errors for ordinary least
squares among the controls is roughly 30% larger than the standard error that assumes
homoscedasticity, and roughly 40% larger than our semiparametric approach. As expected
from the theory, where homoscedasticity is not assumed, the standard errors for our
semiparametric approach are nearly the same using either the asymptotic formula or the
bootstrap.

As a comparison, we also implemented the parametric method of Lin and Zeng (2009) as
well as the robust method by Wei et al. (2013). Standard errors of the former were assessed
both by using the inverse of the Hessian of the loglikelihood and by the bootstrap, while
standard errors of the latter were assessed by the bootstrap alone. The parametric method's
asymptotic standard error clearly under-estimates the variability for PhIP when compared to
the bootstrap, something expected because of the heteroscedasticity in PhIP. For MelQx,
where the error is homoscedastic, the parametric method, the robust method and our
semiparametric approach are almost identical.

In summary, in analyzing this data set, we verified the previous observation based on the
control only data that the regression error from MelQx and red meat consumption has
homoscedastic error, while that from the PhIP and red meat consumption has heteroscedastic
error. Our analysis also verified the positive relationship between red meat consumption and
these two forms of HCA, indicating that increased red meat consumption leads to increased
levels of MelQA and PhiP, both being risk factors for colorectal cancer. The first order
accuracy of the variability of the estimated slope for our method is validated though its near-
identical result with the bootstrap, and of course through the simulation results.

7 Discussion

We have developed a locally efficient semiparametric estimator for the secondary analysis
of case-control studies, where only a mean model is specified to describe the relationship
between the covariates. Despite this relatively weak assumption, we have shown that the
problem is still identifiable under certain conditions. Through introducing the notion of a
superpopulation, we are able to establish an estimation methodology via a conceptually
tractable semiparametric procedure, although the derivation is highly non-standard and not
trivial. The locally efficient estimator provides consistent estimation, and can achieve
optimal efficiency if a posited regression error model happens to be true. Although the
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analysis is performed under the superpopulation concept, the general statements of
consistency and local efficiency are valid in the case-control sampling scheme (Ma, 2010).
In addition, the general methodology is applicable even if the linear logistic model (1) is
replaced by other parametric models such as probit model, etc., as long as identifiability can
be established.

Implementing the locally efficient estimator via Algorithm 1 requires several nonparametric
regressions conditional on the covariates, which may be difficult when the dimension of the
covariates increases. In such situations, dimension reduction techniques can be a good
choice to achieve a balance between model flexibility and feasibility of parameter estimation
and inference (Ma and Zhu, 2012). Further exploration of this is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Ma's research was supported by NSF grant DMS-1206693 and NINDS grant R01-NS073671. Carroll's research was
supported by National Cancer Institute grant U01-CA057030.

Appendix: Sketch of Technical Arguments

A.l1 Proof of Proposition 1

Assume the contrary. That is, assume the problem is not |dent|f|able This means we can
find parameters ac, aq, az, B, 1o, m and ag, aq, ap, ,B 7p, SO that, denoting =Y — m(X,

MI
n d {‘+d o) bl 2
ﬂ-d:jnl (X>772{y - ’ITZ(X, ﬂ~)7 X} i)—?e{?{(soiajréﬁ(t(?y;i?gzﬁ y
~ ~ ~ (2.9 Q¢ UX,y,01,x
Wd:f’r]l (X)n2 {y - m(x, IB)’ X} 1+2xp{ac+u(x,yy,al1,a22 } y

we have that

exp{dac+du(x,y,a1,as)} 1 _ ~ exp{da.+du(x,y,a1,da2)}

1 N
" () ly—m(x, £), x} 1+exp{actu(x,y,a1,az2)} _ﬁ_dm(x)n2{y_m(x’ A),x} I+exp{actu(x,y,a1,a2)}

for all (x, y, d). Take the ratio of the above expression at d = 1 and d = 0 respectively, we
obtain that for all (x, y),

0 T0 . S
T—EXP{Q#U(X’ y, a1, az)}zﬁ—eXP{acﬂLU(X’ y,01,G49)}.
1 1
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This yields that u(x, y, aj,ap) — u(x, y, alﬂ, ag} is a constant. Since it i§ zero at x,y)=0,
hence we pav~e ulx,y, ag, ap) — u(X,y, ai, ap) = 0. Thus, a1, ap = aq, ap, exp(ag) ml m =
exp(ac) my/ 7 and

1 omEme{y—mxp).x} _ 1 h®)ify —mx,B),x}
o 1+exp{ac+u(x7 y,aq, a2)} ﬁ-O l+exp{&c+u(xa y,aq, a2)}

for all (x, y). This gives

E 1+6Xp{&c+u(x7 Y,aq, a2)}
) 1—|—exp{ac+u(X7 Yy, a, a2)}

(A.

i (%)l {y—m(x, B), x}= m(x)me{y—m(x,B),x}-

Integrating (A.2) and the product of (A.2) and y with respect to y, we obtain

B T 14 Getu(X,y,o1, .
Uil (X):%Wl (X)j 1+Z§EEZC+ZE§§:1§3% 772{y - m(X,ﬂ), X}dy7

~ A 7 1+expiactu(x,y,o1,0c
i (x)m(x, B) =22y (x) | EER{AorEaLatily, (y — m(x, ), x}ydy

respectively. Further taking ratios, we find

1 Ge Y, 2l Ce Y,
I m {y—m(x, B), xydy=m(x. B) | TEame i m (y—m(x. 8). x}dy.

If ac = ac:then we obtain m(x, £ = m(x, /)),Nhence B= ﬂWe also obtain 771EX) = 771(X)7TO7ZT0-
Sincg both 7,(x) and 7 (x) are valid depsity functions, we have 71(x) = m(x) and 7y = 7, m
= m. This subsequently yields 7, = 7, contradicting our assumptions. Thus we obtain that
ac % ag.

Denote

(e x)_1+eXp[&c+U{x,m(x,ﬂ)—i—e,al, as}]
T 1expactu{x, m(x, B)+e, ar, as}]

—m(x,B) )
—|—m(x, ﬁ)}:exp(dc - O‘c){E - m(X,ﬂ)

+m(x,B)}
+(1 — exp(a.
o) €— m(x,ﬁ)—i—m(x,ﬂ)

1—|—exp[ac—|—u{x, m(X, ﬂ)+€a ai, Ckz}] .
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8

By definition, 7, is a valid conditional density function and it satisfies | erp(e, X)de= 0, and

we have that

0=[r(g,x)n2(e, x)ds:—exp(dc—ac){m(x,ﬁ)—m(x,,3)}—|—(1—exp(dc—ac))fHCXP[;ZZ&’;%T:%‘;{Z{M’

for all x. This means

{m(x,B) —m(x,B)}exp(a. — a;)

{m(x.8)—m(x.8)}n2 (e,

T n2(e, x)de

x) de

1 —exp(a. —a) = e

for all x. If we let x — ¢4, then

c(B, B)exp(a. — a.)

1— exp(de — a0)
=c3 [, .en2(e; c1)de

- Czc(ﬂ,lé)f@cm(s’

ena(e.x)
{x?m(x,ﬁ)—i—e,a] ,(12}]) dE_[ 1+e

C])d&‘

eny (e, x)

+ lim f

xplactu{x,m(x,B)+e,a1,02}]

de
x—e1” 2 1+4exp|actu{x, m(x, B)+¢e, a1, as}]

C(ﬂnB)nQ(E? x)

_ i
xlﬂncl1f@ 1+exp[a,

= - C2C(ﬂ7,B)

— czj‘@eng (g,c1)de

+U{X, m(x, ﬂ)+€, a, Cy2}]

+eac(B,B) [, ma(e; 1) de

+ lim

em(e,x)

c(B, B)n2(e, x)

im
A2 o Texpla,

Thus,

+u{x, m(x,B)+e,ar, as}]
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exp(@. — a;)
= exp(@. — )
ena(e, c1)
<(B.B)
+02f@772(€, cy)de

teol=|-eaf,

3772(57 X)/C(ﬂaB)

+X11_,HC11[9 1+exp[ac—|—u{x, m(x,ﬂ)+€7alv CYQ}]
o 772(533() 2 :
Jim [ 1+exp|actu{x, m(x, B)+e,a1,az}] < ‘c(ﬂ’ﬁ)’f@|€|772(€7Cl)d€+2.f9ﬁ2(5’cl)d€ : ‘c(ﬂ’B)’
2 1/2
+2 Dley) < ——{B(e?)6} " +26.
brie € Zlen) < 2o 5 P

We can make the upper bound of the above expression arbitrarily small by choosing &
arbitrarily close to zero, while the quantity on the left had side is a constant. Hence we in
fact have obtained

exp(a. — o)

_ep(@e—ad)
I—exp(ae—ac)

However, —c, is between —1 and 0, simple calculation shows that these two constants cannot
be equal, hence our problem is indeed identifiable.

A.2 Derivation of A and AL

Consider the nuisance tangent space associated with 7; and 7, respectively, we have

A1={g(x) — E(g|d):Vgsuch that Ei,.(g)=0};
Ao={g(e,x) — E(g|d):Vg such that Fiye(g|X)=FEue(cg|X)=0a.s.}.

Hence A = A1+ Ay = {g(& X) — E(g]| d) : Vg such that Eqe(9) = Etrie(eg | X) =0a.s.}. Itis
easily seen that A{ =[h: E(h)=0, E{h — E(h|D)|X}=0a.s.]. This is because from

0=E[h" {g(X)
— B(g|D)}|=E[{h — E(h|D)} " {g(X)
~ E(g|D)}]=E[{h — E(h|D)}"g]
=E(E[{h - E(b[D)}"|X]g),

we obtain E{h - E(h | D) | X}2q / fxy.p (X, y, d)dp(y)/71(X) = ¢ a.s. for some constant c.
Since E[E{h — E(h | D) | X}] =0 a.s., we obtain
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0=[E{h—EM|D)[x}> ;[ [xv.p Xy, d)du(y)du(x)=[cn(x)du(x)=c a.s..

Hence ¢ = 0 and E{h - E(h | D) | X} Z;Offx,w (X,y,d)dp(y)/m (X)=0as., which
yields E{h —E(h|D)|X} =0 a.s..

Now we are in position to show

Ng H(d,X,Y)

N ) =ca(X)a.s.]

3

At=A{NAy=[h(d,&,x):E(h)=0, E{h—E(h|D)|e, Xpxy o,

where a(x) is an arbitrary function of x. This is because for any h € A{- h € Ay is
equivalent to

0=E[h™{g(e, X)
— E(g|D)}]=E[{h — E(h|D)}"{g(s, X)
— E(g|D)}|=E[{h - E(h|D)}"g]
=E(E[{h — E(h|D)}"|s,X]g).

Hence E{h - E(h | D) | & X}2Zq4fx v, p(X, Y, d){rm(X) (s X)} = ca(X) + c(X) a.s.. Because
h ¢ A+, we have E[E{h - E(h | D) | & X} | X] =0 a.s.. Hence

0= B{h — BID) e X} o=t T sty

_J{ea(X)+e(X) }n1 (x)n2(e, x)dp(y)
I af s v Xy, d)dp(y)
_ c(x)m (X) s
f %fx,y,D(X,y,d)dﬂ(y) o

hence c(X) = 0a.s. and E{h — E(h | D) | & X}Zqfx v.p(X, Y, d){m(X) (s X)} = ca(X) a.s..
This means that E{h - E(h | D) | & X} D (Na/N)H (d, X,Y)/py*(d)=ca(X) as..

A.3 Sketch of Proof of Theorem 1

For simplicity of proof, we split the N observations randomly into two sets. The first set
contains n; = N = N1~ observations and the second set contains n, = N1~9 observations,
where &'is a small positive number. We form and solve the estimating equation using data in
the first set, while calculating all the hatted quantities described in the algorithm using data
in the second set. We use this only as a technical device, although in our simulations and
empirical example we used all the data.
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In the algorithm, the approximations involve either replacing expectation with averaging, or
standard kernel regression estimation or kernel density estimation, hence the differences
between the quantities with hat and without hat have either mean zero, standard deviation

O(ny /%), or mean O(h"), standard deviation O{(n,hP)=1/2}. In particular,

QZH(Di, X;,Y:,00) — Sks(D;, X, Y;,00) has bias O(h") and standard deviation
O{(n,hP)~L2}. Recall the definition of expectation and covariance in the superpopulation
explicitly written out in the statement of Theorem 1. Then

n1
0=n;""*3 " 8i4(Di, X;, Y3, 6)
=1

ni
—n; 2 85Dy, X, Vi, 80)

ni
+n;1/22 {SZI‘E(Di7Xia }/hoO)
=1
S (Dqu: Yza00)}
—|—E {8Seﬁ(Dia)§i7Y2700)
o0

8S:ﬁf(Di7 Xia 1/1‘700) } nl/Q(é
1

—|—0p(1)}n1 (0 00 ZS ff(D“X“ 1700)+E{ 80T

0y 7S {8%(Di, X, Y:,60)
=1

- SZH(Di»Xiv)/iaoo)} +0p(1)

We see that S:ﬁ(Di> X;,Y;,6) differs from S*;(D;, X;,Y;, 8,) in that all the unknown
quantities, except S*, are estimated. This is equivalent to estimating the unknown functions
m(X), 7(e, X) in (4) and using the estimate nlzx), 77{(5, X) in calculating S*; from the
posited S*. Thus, denoting 7 = (771: 7725 we can approximate

71/22 {SeH(Dl> sz YZ, 00)
eff(Diaxia Y;;,O(])}

_n;1/2Z{SzH(Di7Xh}/’iaaoaﬁ) (Ag)

- S*ff(DUXu}/woOanO } {n 1/2288 ff(Dl)XZa)/’LyoO)no /877}(7]
=1

— 10)+0,{ny* (7 — 10) 1o, (1),
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where 9S%4(D;, X, Y;,00,m0) /9, is pathwise derivative. However, S is the projection of

S* to AL so S’ € AL Thus, for any parametric submodel of 7 involving parameter y, we
have

oS* ,00, *
E{0854(D;. X, Y;,00,7) /07" y= f B DX X0 (o, d)d () () dps(d)=— [ Sz D3, X, Vi, 00, 7)

The last equality is because by definition S, € A which is orthogonal to At and Sy e AL
Here, fx vy p (X, y, d) is defined in (4). Because yis parameter of any arbitrary submodel of 7,
we actually have obtained

E{@SZH DZ,XL,K,Oo,no)/an}— — E{S H(D7,XL,K,00,770)S } 0

where Sy is the nuisance score function along the arbitrarily chosen specific path of the
pathwise derivative. Thus, the first term of (A.3) is of order op(1). On the other hand,

1/2

O, {ni"2 (1) — n0) 2 }=0,{n*h? +n1/? (nyh?) "' }=0,(1). We therefore obtain

8SZH(Di7 Xi; }/’iv 00)
08"

—nl‘l/QZs +(D;, X, 1,00)+E{ }n}/z(é_oo)+op(1).

This yields n1/2(0 6y) — Normal{0, A" 'B(A 71)T}, and hence
N'2(6 — 6,) — Normal{0, A_IB(A_I)T}

when N — oo.
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Figure 1.
Illustration of the bias induced by the case-control sampling scheme. The red solid line is the

true regression function, while the blue dashed line is the regression function when using all
the data and ignoring the case-control sampling scheme.
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Figure 2.
The fitted curves from a quadratic regression of MelQx (solid red line) and PhIP (dashed

blue line) on red meat consumption, using the controls. The fitted values were normalized to
fit on the same plot. Neither have a statistically significant quadratic term.
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Figure 3.
Plots to diagnose heteroscedasticity, with the curves representing relative standard deviation

as a function of red meat consumption. Plotted are the fitted curves from a linear regression
of the absolute residuals of the regression of MelQx (solid red line) and PhIP (dashed blue
line) on red meat consumption, using the controls. The fitted values were normalized to be
equal at the minimum value of red meat consumption. The essentially flat curve for MelQx
indicates homoscedasticity, while that for PhIP is very strongly heteroscedastic. The latter
has implications for data analysis, see Table 7 and the discussion in Section 6.
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