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Abstract

We study the regression relationship among covariates in case-control data, an area known as the 

secondary analysis of case-control studies. The context is such that only the form of the regression 

mean is specified, so that we allow an arbitrary regression error distribution, which can depend on 

the covariates and thus can be heteroscedastic. Under mild regularity conditions we establish the 

theoretical identifiability of such models. Previous work in this context has either (a) specified a 

fully parametric distribution for the regression errors, (b) specified a homoscedastic distribution 

for the regression errors, (c) has specified the rate of disease in the population (we refer this as true 

population), or (d) has made a rare disease approximation. We construct a class of semiparametric 

estimation procedures that rely on none of these. The estimators differ from the usual 

semiparametric ones in that they draw conclusions about the true population, while technically 

operating in a hypothetic superpopulation. We also construct estimators with a unique feature, in 

that they are robust against the misspecification of the regression error distribution in terms of 

variance structure, while all other nonparametric effects are estimated despite of the biased 

samples. We establish the asymptotic properties of the estimators and illustrate their finite sample 

performance through simulation studies, as well as through an empirical example on the relation 

between red meat consumption and heterocyclic amines. Our analysis verified the positive 

relationship between red meat consumption and two forms of HCA, indicating that increased red 

meat consumption leads to increased levels of MeIQA and PhiP, both being risk factors for 

colorectal cancer. Computer software as well as data to illustrate the methodology are available at 

http://wileyonlinelibrary.com/journal/rss-datasets.
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1 Introduction

Population-based case-control designs, hereafter called case-control designs, are popularly 

used for studying risk factors for rare diseases, such as cancers. The idealized set up of such 

designs is as follows. At a given time, there is an underlying base population, which we refer 

to as the true population throughout the paper. Within the true population, there are two 

subpopulations, those with the disease, called cases, and those without the disease, called 
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controls. Separately, a random sample is taken from the case subpopulation, and a random 

sample is taken from the control subpopulation. Data on various covariates are then 

collected in a retrospective fashion, so that they reflect history prior to the disease. Nested 

case-control studies and case-cohort or case-base studies are variations of the retrospective 

case-control design.

The primary purpose of case-control designs is to understand the relation between disease 

occurrence and the covariates. The secondary analysis of such case-control data (Jiang et al., 

2006; Lin and Zeng, 2009; Li, et al., 2010; Wei, et al., 2012, He et al., 2012) is based on the 

realization that the data further provide information about the relationship among the 

covariates. The relation between covariates are often of interest as well, as they can reveal 

associations between various covariates such as gene-environment, gene-gene and 

environment-environment associations. These analyses become especially important when, 

as is the case of retrospective sampling, a random sample from the true population is not 

available; see the secondary analysis literature mentioned above for more examples. If we 

seek to understand the regression relationship between covariates Y and X in the true 

population, we generally cannot use the case-control data set as if it were a random sample 

from the true population. Indeed, unless disease is independent of Y given X, the regression 

of Y on X based on the case-control sample will lead to a relationship different from that in 

the true population.

To see this numerically, we first define our notation. There are N0 cases and N1 controls, 

with N = N0 + N1. Suppose that N0 = N1 = 500, and that disease status D is related to 

covariates (Y, X) in the true population through the linear logistic model

(1)

where for this illustration, α = (αc, α1, α2) = (−5.5, 1.0, 0.5). Suppose further that the 

regression relationship in the true population is that Y = βc + Xβ + ε, with βc = 0, β = 1 and ε 

∼ Normal(0, 1). In addition, in the true population, X ∼ Uniform(0, 1). In this setup, 

suppose the disease is rare, with pr(D = 1) ≈ 0.01. Thus, while controls are 99% of the true 

population, they are only 50% of the case-control study. To understand the bias induced by 

ignoring the case-control sampling scheme, we generated 3,000 case-control studies with 

intercept βc = 0 and slope β = 1, and computed the intercept and slope estimates using all the 

data. Simply regressing Y on X and ignoring the case-control sampling scheme, the mean 

estimated intercept and slope across the 3,000 simulated data sets were 0.150 and 1.174, 

respectively, reflecting considerable bias, which leads to a coverage rate of only 67% for a 

nominal 95% confidence interval. Figure 1 shows the attained regression function compared 

to the true regression function. Using the method that we develop in this paper, our method 

yields the average intercept and slope estimates of 0.0024 and 1.0035, thus eliminating the 

bias caused by ignoring the case-control sampling scheme.

The bias in the secondary analysis is in stark contrast to what happens in the primary 

analysis, where estimating (α1, α2) is of interest. It is well known that α1 and α2 can be 
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estimated consistently via ordinary logistic regression of D on (Y, X) by treating the case-

control sample as if it were a random sample of the true population (Prentice and Pyke, 

1979).

Our goal is to estimate the regression of Y on X in the true population, using case-control 

data, where for a function m(·) known up to a parameter β,

(2)

where we make only the assumption that E(ε|X) = 0. Two solutions to estimating β have 

been proposed in the literature. (Lin and Zeng, 2009) and, obliquely, (Chen et al., 2008) 

proposed to assume a particular fully parametric distribution for ε and then perform a semi-

parametric efficient analysis, where the distribution of X is nonparametric. There is 

excellent software for this problem in the case that ε = Normal(0, σ2), i.e., homoscedastic 

and normally distributed (http://www.bios.unc.edu/∼lin/software/SPREG/). To implement 

this software, however, one must either specify the disease rate pr(D = 1) in the true 

population or one must make a “rare-disease” assumption, which is implemented by 

assuming pr(D = 1) < 0.01. When the disease rate is known, reweighting the observations 

also corrects the biases (Scott and Wild, 2002). Wei, et al. (2012) dispense with the 

normality assumption, but still assume a homoscedastic distribution for ε independent of X 
and make a rare disease approximation.

In practice, the disease rate in the population being sampled is not known. In addition, it 

might not be rare. As an example, in Section 6, we use data from a case-control study of 

colorectal adenoma, a precursor to colorectal cancer, relating measures of heterocyclic 

amines to red meat consumption. While colorectal cancer is rare, colorectal adenomas are 

not, being on the order of 7% or more depending on the population being sampled (Yamaji 

et al., 2004; Corley et al., 2014). In this data set, one of the regressions is also heavily 

heteroscedastic. We will demonstrate that both approaches mentioned above have problems 

when some of the assumptions, such as the rare disease assumption, the known disease rate 

assumption and the known error distribution assumption, are violated (Tables 1-6).

In order to relax such assumptions, novel methods are needed. In this paper, we do not 

assume any distributional form for ε or ε | X, we do not assume that the regression is 

homoscedastic, we do not require the disease rate to be known and we do not make a rare 

disease approximation. We do this by adopting the concept of a superpopulation (Ma, 2010): 

a similar idea is called an alternative characterization of the case-control study by Chen et al. 

(2009).

The main idea behind a superpopulation is to enable us to view the case-control sample as a 

sample of independent and identically distributed (iid) observations from the 

superpopulation. Conceptually, superpopulation is simply a proportional expansion of the 

case-control sample to infinity. Why a superpopulation constructed through such expansion 

achieves the purpose of viewing the case-control sample as an iid sample is studied carefully 

Ma (2010). The ability of viewing the case-control sample as a random sample permits us to 
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use classical semiparametric approaches (Bickel et al., 1993; Tsiatis, 2006), regardless if the 

disease rate in the real population is rare or not, or is known or not.

We derive a class of semiparametric estimators and identify the efficient member. We 

further construct a member of the family that is relatively simple to compute, and illustrate 

how to construct the efficient estimator, applicable to both rare and common diseases. The 

derivation of semiparametric estimators in this context is challenging because the 

calculations must use quantities defined in the unknown true population to perform analysis 

in the superpopulation, since the models under the true population and the superpopulation 

share common parameters. In addition, as established in Ma (2010), the resulting 

semiparametric estimators further retain asymptotic consistency, a root-n convergence rate, 

asymptotic normality and semiparametric efficiency with respect to the true population as 

well. For example, our efficient estimator has the usual property that its asymptotic variance 

cannot be further reduced by any other device or by taking into account the case-control 

sampling structure.

The rest of the paper is organized as follows. Under conditions, we first establish the 

technical identifiability of our problem in Section 2. In Section 3, we formulate the problem 

into a classic semiparametric one by using the superpopulation notion and carry out analytic 

calculations to prepare for the estimation procedure. In Section 4, we describe details of 

implementation and the asymptotic theory. Simulation studies are performed in Section 5 to 

illustrate the finite sample performance of the procedure, showing that our method is robust, 

efficient and maintains nominal coverage for confidence intervals. An empirical analysis is 

provided in Section 6. Section 7 contains a short discussion. Technical details are given in 

an Appendix, as well as in the Supplementary Material. Computer code and data to illustrate 

our method are available http://wileyonlinelibrary.com/journal/rss-datasets.

2 The Superpopulation Model Framework

The primary disease model is the linear logistic model (1), with . Here and 

throughout the text, we use superscript “true” to represent quantities or operations related to 

the underlying true population, and also to distinguish it from a superpopulation that will be 

formally introduced later. In addition, in this underlying true population, Y is believed to be 

related to X through (2), which we rewrite as the regression model

(3)

where m(·) is the regression mean function known up to the parameter β and η2 is an 

unknown probability density function that has mean zero given X. Defining ε = Y − m(X, β), 

then E(ε | X) = 0. The distribution of ε, whether conditional on X or marginally, is left 

unspecified. In particular, heteroscedasticity is allowed. Making the identification η2(ε, X) = 

η2{Y − m(X, β), X}, this means that η2 ≥ 0 satisfies ∫ εη2(ε, x)dμ(ε) = 0 and ∫ η2(ε, x)dμ(ε) 

= 1, but its form is unknown. Here and throughout the text, we use μ(·) to denote a Lebesgue 

measure for a continuous random variable and a counting measure for a discrete random 

variable. The distribution of the covariate X in the underlying true population is also 
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unspecified, and its density or mass function is , where η1 ≥ 0 satisfies ∫ 

η1(x)dμ(x) = 1.

The superpopulation framework of Ma (2010) is that one can think of the case-control 

sample as a random sample from an imaginary infinite superpopulation, in which the disease 

to non-disease ratio is N1/N0. Let Nd = N0 when d = 0 and Nd = N1 when D = 1. Define the 

true probability that D = d as . 

The density of (D, Y, X) in the superpopulation is defined as

(4)

Although β appears in ε, for notational brevity, we do not explicitly write ε(β). In the 

secondary analysis framework, the main interest is β. However we formally treat θ = (αT, 

βT)T as the parameter of interest. We treat η1(·) and η2(·,·) as the infinite dimensional 

nuisance parameters, thus bypassing the need to estimate them.

Remark 1. When no assumptions are made about the relationship between Y and X in the 

true population, the logistic intercept αc is not identified (Prentice and Pyke, 1979), and 

neither is the regression of Y on X. Thus, if consistency of estimation is desired, truly 

nonparametric regression in a case-control study of our type is not possible. We believe that 

the key to identification lies in placing a restriction on the joint distribution of (Y, X) in the 

base population. For example, Chatterjee and Carroll (2005) show that if Y and X are 

independent, then αc is generally identified, and they show this explicitly when one of the 

two is discrete. In our case, the restriction is a parametric model for E(Y|X). It is a reasonable 

conjecture that such a restriction is enough for the identifiability of αc, a conjecture that we 

confirm next.

2.1 Identifiability

We first establish identifiability of the parameters α, β in the superpopulation. For greater 

generality, we consider the slightly more flexible model H(d, x, y) = exp[d{αc + u(x, y, α1, 

α2)}]/[1+exp{αc + u(x, y, α1, α2)}, where u(0, 0, α1, α2) = 0 for all α1, α2. Obviously, this 

model contains the original linear logistic model we are studying. We assume that there is 

no  such that for all (x, y), u(x, y, α1, α2) = u(x, y, α̃1, α̃
2). These are 

natural minimal conditions that are usually satisfied automatically as long as the 

parameterizations of u and m are not redundant. We also assume the following two 

conditions.

Assumption 1. Assume that the second moment of ε is bounded marginally and η2 is a 

bounded function, i.e., E(ε2) < ∞ and supx,ε η2(ε, x) < ∞. For any fixed parameters α1, α2, 

β, and any δ > 0, there exists a constant vector c1, a constant c2 ∈ [0, 1] and a region  with 

complement c such that when x → c1,
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and limx→c1 pr(ε ∈  | X = x)<δ. In addition, for any element e ∈ , |e| ≥ 1. Typically we 

expect c = [−K, K] for some large K, c1 = ∞ or −∞ or contains ±∞ as components, and c2 

= 0 or 1, although this is not required.

Assumption 2. c(β, β̃) = limx→c1{m(x, β̃) − m(x, β)} ≠ 0 for β̃ ≠ β.

Remark 2. Assume that pr(|ε| > K|X = x) → 0 as K → ∞ uniformly in x. We can easily 

verify that when both m and u are linear functions, where we write m(x, β) = xTβ1 + βc, both 

assumptions are satisfied except when α1 + β1α2 = 0. When this happens, u{m(x, β), α1, α2} 

degenerates to a constant, and we can verify that although β1 is still identifiable, βc and αc 

are no longer identifiable, see the Supplementary Material for details of verification of both 

the identifiability and the non-identifiability verification.

We state the identifiability result in Proposition 1 and provide the proof in Appendix A.1.

Proposition 1. Make Assumptions 1-2. Also assume that there are constants (C1, C2) such 

that 0 < C1 < N0/N1 < C2 < ∞. Then the parameters α and β are identifiable.

Remark 3. Identifiability under some specific situations has been considered in the 

literature. For example, Chatterjee and Carroll (2005), Chatterjee et al. (2006) and Chen et 

al. (2009) considered the case that X and Y are independent, while Chen et al. (2008) and 

Lin and Zeng (2009) explicitly studied the identifiability issue when the disease rate model 

is linear logistic and the secondary model is fully parametric. The model we consider here is 

more general, in that only a mean function is assumed for the secondary model. These 

authors all note that while in practice, it may be difficult to estimate αc, estimation of the 

other parameters can still be performed effectively, see also Lobach et al. (2008).

3 Analytic Derivations

3.1 True and Conjectured Models

The major point of our article is that we only propose a model for E(Y | X), denoted m(X, β), 

and we specifically want to avoid positing a model for the density function of the regression 

errors ε = Y − m(X, β) conditional on X. We will accomplish this by a two-step process. 

First, in Section 3.2, we will derive the semiparametric efficient estimating equation in the 

superpopulation for estimating (α, β) when the density of Y given X in the true population is 

known. Recognizing that we do not want to make such an assumption, in Section 4, we will 

show how to modify the estimating equation so that it has mean zero asymptotically, even if 

the conjectured model for the regression errors is false, thus resulting in model-robust 

consistent estimation.
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3.2 Analysis Under a True Model

As described in Section 3.1, here we will derive the form of the semiparametric efficient 

estimating equation when the conjectured model for the regression errors in (3) is true. Later 

in Section 4, we will modify the estimating function to make it model-robust.

Viewing the observations as randomly sampled from the superpopulation, we can perform a 

conventional semiparametric analysis. Of course, all the calculations need to be done with 

respect to the superpopulation, and all the probability statements need to be with respect to 

Lebesgue measure for continuous random variables and counting measure for discrete 

random variables in the superpopulation, and they will be if not otherwise pointed out. The 

functions (η1, η2, H), which are probability density/mass functions in the true population, do 

not represent the corresponding probabilities density/mass functions in the superpopulation. 

They are merely functions that satisfy η1(x) ≥ 0, ∫ η1(x) dμ (x) = 1, η2(ε, x) ≥ 0, ∫ η2(ε, 

x)dμ(ε) = 1, ∫ εη2(ε, x)dμ(ε) = 0, H(d, x, y) ≥ 0, H(0, x, y) + H(1, x, y) = 1. In fact, we 

introduced these symbols to discourage the mistake of automatically viewing them as the 

corresponding density or mass functions in the superpopulation.

Using model (4), calculating the partial derivative of the loglikelihood with respect to α and 

β, it is easy to see that the score function has the form Sθ(X, Y, D, θ) = S(X, Y, D, θ) − E(S | 

D), where θ = (αT, βT)T, , and

(5)

Explicitly,

In Appendix A.2, we further derive the nuisance tangent space Λ and its orthogonal 

complement space Λ⊥ as

Ma and Carroll Page 7

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where g(ε, x) and h(D, ε, x) are arbitrary functions that satisfy their respective constraints 

described above, a(x) is an arbitrary function of x, and a.s. stands for almost surely with 

respect to the true superpopulation distribution.

Having obtained both the score function and the two spaces Λ and Λ⊥, conceptually, we 

only need to project the score function onto Λ⊥ to obtain the efficient score Seff. Doing this 

is, however, extraordinarily technical, and hence we defer the details to the Supplementary 

Material. Here we merely state the result in Proposition 2, which requires a series of 

definitions, as follows.

(6)

Proposition 2. Make the definitions (6). In the superpopulation, the semiparametric efficient 

score function is S(Xi, Yi, Di) − g{Yi − m(Xi, β), Xi} − (N0/N)v0 − (N1/N)v1. The 

semiparametric efficient estimator is obtained by solving

(7)

We emphasize here that the estimator in Proposition 2 is not only efficient with respect to 

the superpopulation, it is also efficient with respect to the true population. This is a direct 

consequence of the general result that if an estimator is efficient with respect to the 

superpopulation, it is also efficient with respect to the true population. A careful justification 

of this claim is given in Ma (2010). Logically, this result can be understood because if we 

could find a more efficient estimator with respect to the true population, this estimator 

would also be more efficient with respect to the superpopulation, which causes a 

contradiction. Intuitively, the special sampling strategy is in fact already absorbed into the 

formulation when we construct the superpopulation, hence no information has been lost 

during the conversion between populations.

4 Estimator Construction

4.1 Basic Calculations

The estimating equation (7) derived in Proposition 2 is not useful however, because it 

involves various calculations that rely on the unknown η1 and η2, which were assumed to be 

correctly conjectured in Section 3. If either are misspecified, the corresponding calculation 
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will lead to inconsistent estimation of θ. The purpose of this section is to define estimators 

that are consistent for estimating θ based upon a posited score function, which we denote by 

S*. As it turns out, if the posited score function is correct, then in addition to being 

consistent, the estimator of θ has the additional property of being efficient. If the posited 

score function is incorrect, then the estimator of θ is still consistent. So our method can be 

thought of as a locally efficient estimator.

A careful inspection of the estimation procedure given in Proposition 2 and the definition of 

the related quantities suggests that the critical points lie in obtaining π0 and π1, in 

calculating E(h | ε, X) and E(h | D) for any function h(D, X, Y), and in calculating Etrue(h | 

X) for any function h(D, X, Y).

Our algorithm is detailed as Algorithm 1, and is based upon the following considerations.

• First, we have that

If we estimate the last term by 

 and remember that 

π0 + π1 = 1, we see that we can estimate π0 by solving

Algorithm 1: Computing the Locally Efficient Score Function

The first two steps are done only once.

• Posit a model for η2(ε, x) which has mean zero, and calculate (5), calling the result S*(X, Y, D). Use S*(·) in place of S(·) 
in (6)-(7).

• Estimate fX|D(x, d) by a kernel density estimate among the data with Di = d, with result f̂x|D(x, d).

The rest of the steps are done iteratively in the estimation algorithm.

•
Solve  to obtain π̂

0 
and set π̂

1 = 1 − π̂0.

• In the definition of κ(x, y) in (6), form κ̂(x, y) by replacing πd by π̂
d. Define κ̂i = κ̂(Xi, Yi).

• Define f̂di = f̂D|X, Y(d, Xi, Yi) = NdH(d, Xi, Yi)κ̂
i/(Nπ̂d).

• For any function h(d, x, y) in (6), estimate E{h(D, X, Y) | X, D = d) by nonparametric regression among observations 
with Di = d.

• For any function h(d, x, y) in (6), estimate E{h(D, X, Y) | D = d) as 

.

• For any function h(d, x, y) in (6), estimate E{h(D, Y, X)|ε, X} by 

.
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• For any function h(d, x, y) in (6), estimate Etrue{h(D, X, Y) | X) by 

.

Application to the terms in (6) yields ĝ(εi, Xi) and v̂d, and we then form 

.

We have described the algorithm when X is continuous. When X is discrete, one simply replaces the density estimators and various 
nonparametric regressions with the corresponding averages associated with the different x values.

• Next we have that

• In addition,

where in the last expression, both fX|D(x, d) and E(h | x, d) need to be estimated 

nonparametrically.

• Finally, we have

which can be estimated as

4.2 Distribution Theory

Because the locally efficient estimator is derived from well-established semiparametric 

procedures, while replacing the unknown quantities with nonparametric estimation in the 

proposed model, it is not surprising that it is asymptotically normally distributed with 

standard parametric rates of convergence. In addition, it achieves the semiparametric 
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efficiency if the proposed model is correct. We describe the asymptotic properties of our 

estimator in Theorems 1, and provide a sketch of the proof for Theorem 1 in the Appendix. 

We first list the set of regularity conditions that Theorem 1 requires.

C1: There exists constants 0 < C < ∞ such that limN→∞N1/N2 = C. In addition, the 

identifiability Assumptions 1 and 2 hold.

C2: The univariate kernel function is a function that integrates to 1 and has support (−1, 

1) and order r, i.e., ∫ K(x)xtdx = 0 if 1 ≤ t < r and ∫ K(x)xrdx ≠ 0. The d-dimensional 

kernel function, still represented with K, is a product of d univariate kernel functions, 

that is,  for a d-dimensional x.

C3: For d = 1, 0, fX|D(x | D = d), E(ε2κ | X, D = d), E(εμs | X, D = d), E(εf0 | X, D = d), 

E(εf1 | X, D = d) have compact support and have continuous rth derivatives.

C4: The bandwidth h = N−τ where 1/(2p) > τ > 1/(4r), where p is the dimension of x. 

This includes the optimal bandwidth h = O(N−1/(2r+p)) as long as we choose a kernel of 

order 2r > p.

Condition C1 ensures that there are a sufficient number of both cases and controls in the 

sample, which occurs in all case-control studies of the type we are studying (see the 

introductory paragraph). Conditions C2 and C4 are standard requirements on an rth order 

kernel function and on the bandwidth in the kernel smoothing literature (Ma and Zhu, 2013). 

Condition C3 is not the weakest possible. We impose this condition to simplify the technical 

proof. It can be replaced with weaker conditions in the region where ‖x‖ is large, at the 

expense of a more tedious technical treatment.

Theorem 1. We emphasize that for any random vector S(D, Y, X), expectation and co-

variance in the superpopulation is linked to expectation and covariance in the case-control 

sampling scheme (conditional on disease status) through

Under the regularity conditions C1-C4, in the case-control study, as N → ∞, the estimator θ̂ 

obtained from solving the estimating equation  satisfies

where  and .
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5 Simulations

5.1 Setup

We performed a series of simulation studies in order to evaluate the finite sample 

performance of the various methods. In total, we considered 72 different cases. First, we 

considered a balanced design, where N0 = N1 = 500, and an imbalanced design with N0 = 

666 and N1 = 334, i.e., 2 controls for every case. Second, we considered 3 disease rates: a 

relatively rare disease rate of 4.5%, an extremely rare disease rate of 0.5% and a common 

disease rate of 10%. The balanced design in rare or extremely rare disease cases is 

representative of a typical case-control study.

Third, we considered three settings for the logistic regression. We generated X from a 

Uniform(0, 1) distribution. The logistic regression model was pr(D = 1|Y, X) = H(αc + α1X + 

α2Y), where α1 = 1 and we varied α2 = 0.00, 0.25, 0.50. The regression model for Y given X 

is Y = β1+β2X + ε, with β1 = 0 and β2 = 1.

Finally, we varied the distribution of the regression errors and whether they were ho-

moscedastic or not, as follows.

• In the first set of simulations, we generated homoscedastic errors ε. The distribution 

of ε was either Normal(0, σ2) with σ2 = 1 or is a centered and standardized Gamma 

distribution with shape parameter 0.4, normalized to have mean zero and variance 

σ2 = 1. To achieve an approximate 4.5% disease rate, for α2 = (0.00, 0.25, 0.50) we 

set αc = (−3.6, −3.8, −4.0). To achieve an approximate 0.5% disease rate, for α2 = 

(0.00, 0.25, 0.50) we set αc = (−5.8, −6.0, −6.2). To achieve an approximate 10% 

disease rate, for α2 = (0.00, 0.25, 0.50) we set αc = (−2.7, −2.9, −3.1).

• In the second set of simulations, we generated heteroscedastic errors as follows. 

The same distributions for ε were used, except that ε was multiplied by (1 + 

X2)3/4/2 in all the cases, so that var(ε|X) = (1 + X2)3/2/4. To achieve an approximate 

4.5% disease rate, for α2 = (0.00, 0.25, 0.50) we set αc = (−3.60, −3.75, −3.95). To 

achieve an approximate 0.5% disease rate, for α2 = (0.00, 0.25, 0.50) we set αc = 

(−5.8, −5.95, −6.2). To achieve an approximate 10% disease rate, for α2 = (0.00, 

0.25, 0.50) we set αc= (−2.7, −2.9, −3.1).

With respect to the method described in Section 4.1, we mention the following details. The 

posited model  being a standard normal model in step 1. This yields the second component 

in S* as (y−β1−β2x)(1, x)T. In performing the many nonparametric calculations in steps 4, 5, 

6, 7, we used a kernel estimates with a same bandwidth h throughout. We set the bandwidth 

at , and experimented with different values c between c = 0.5 and c = 2.0, with 

little change in the results. To assess variability, we used the asymptotic results in Theorem 

1, with the A and B matrices replaced by their corresponding sample averages evaluated at 

the estimated parameter values.

We compared our method with three others. The first was ordinary least squares among the 

controls, with sandwich standard errors: the sandwich method is used to adjust confidence 

intervals for possible heteroscedasticity. The second was the semiparametric efficient 
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method that assumes normality and homoscedasticity, with standard errors obtained by 

inverting the Hessian of the loglikelihood (Lin and Zeng (2009)). The third was the method 

of Wei et al. (2013) that assumes homoscedasticity, but otherwise does not specify any 

particular error distribution model: we used the bootstrap to obtain standard errors for this 

method.

A striking conclusion of these simulations is that our methods, which assumes none of rare 

disease, normal errors or homoscedasticity, uniformly has coverage probabilities that 

achieve the nominal rates.

5.2 Homoscedastic Case

Results for the homoscedastic case are given in Tables 1-3. We display the mean estimate, 

the standard deviation across the simulations, the mean estimated standard deviation, 

coverage probabilities for nominal 90% and 95% confidence intervals, and the mean squared 

error efficiency of the methods relative to using only the controls.

The case α2 = 0.00 is interesting, because here Y is independent of D given X. Hence, all 

methods should achieve nominal coverage probabilities for estimating β, which is indeed 

seen in Table 1. Surprisingly, our method, which assumes neither normality nor 

homoscedasticity, is as efficient in terms of mean squared error as the semiparametric 

efficient method that assumes both, and is of course much more efficient than using only the 

controls.

For α2 ≠ 0, and when ε is normally distributed, our method remains comparably as efficient 

as the semiparametric efficient method which assumes both normality and homoscedasticity. 

However, when the errors were not normally distributed, our method has much smaller bias 

and is much more efficient. In addition, the semiparametric efficient method has poor 

coverage probabilities when α2 = 0.50. While the method of Wei et al. (2013) maintains 

good coverage probabilities in all cases, our methods also maintains coverage, has smaller 

bias and is much more efficient.

5.3 Heteroscedastic Case

The results for the heteroscedastic case, with various disease rates and equal or unequal 

case-control rations are given in Tables 4-6.

The results are much in line with the homoscedastic case, with a few important exceptions. 

The semiparametric efficient method, which assumes both homoscedasticity and normality, 

has a noticeable loss of coverage probability when α2 ≠ 0, largely caused by bias. Because 

they used a bootstrap to compute standard errors, the method of Wei et al. (2013) maintains 

good coverage probability except when α2 = 0.50, where the bias causes deterioration in the 

coverage rates. Our method maintains good coverage probabilities in all cases, and because 

of its lack of bias, noticeably increased mean squared error efficiency.
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6 Empirical Example

Epidemiological studies have led to the general belief that heterocyclic amines (HCA), such 

as MelQx and PhlP, are significant risk factors associated with various forms of cancers, 

including colorectal cancer and breast cancer (Barrett et al., 2003; Sinha et al., 2001; De 

Stefani et al., 1997). One of the important food sources contributing to carcinogenic HCA, 

among many other potential sources, is red meat, which produces the agents during the 

cooking process. In addition, red meat contains other nutrients such as saturated fat which is 

also believed to relate to the occurrence of cancer. Due to this link, epidemiological and 

nutritional studies of cancer often include both red meat consumption and HCA as 

covariates to assess the risk of developing cancer, while simultaneously studying the relation 

between HCA amount and red meat consumption. Understanding this relation helps to 

understand the health impact of red meat consumption and is important in formulating food 

consumption guidelines for the general public.

We implemented our method on a data set involving colorectal adenoma, with 640 cases and 

665 controls. The cases and controls were defined by the occurrence of colorectal adenoma 

(D). In our analysis, X is red meat consumption in grams. We used two different versions of 

Y, namely the heterocyclic amines MeIQx and PhIP that are produced during the cooking of 

meat.

PhIP, MeIQx and red meat were transformed by adding 1.0 and taking logarithms to 

alleviate the heavy skewness of these measurements on the original scale. We also analyzed 

the subset of the study who were smokers. For the controls-only analysis, standard errors of 

the slope estimate were computed using the usual formula for least squares and also by the 

sandwich method. For our semiparametric analysis, we computed standard errors by the 

asymptotic formula of Theorem 1 and by the bootstrap, with 1,000 bootstrap samples. Given 

the results of the simulation, we do not expect any significant difference between these two 

estimates of standard errors for our method, with the asymptotic formula being much faster 

computationally.

We performed a preliminary analysis using only the controls. In the original data scale, all 

the covariates (PhiP, MelPx and red meat consumption) are very skewed and heavy-tailed, 

see Figures S.1-S.2 in the Supplementary Material. The transformed data were much better 

behaved, see Figures S.3-S.4 in the Supplementary Material. Numerically, the skewness of 

MeIQx in the original and transformed data scales are 3.46 and -0.19, respectively. The 

skewness of PhIP in the original and transformed data scales are 7.93 and -0.20, 

respectively. Finally, the skewness of Red Meat in the original and transformed data scales 

are 1.78 and -0.58, respectively. These numbers and the plots indicate that the 

transformation did an acceptable to very good job of removing skewness.

Further preliminary analysis of the controls included scatterplots of the transformed data, 

both of which were reasonably well-behaved and indicated an increasing trend for 

increasing red meat consumption, consistent with a linear trend, see Figure S.5 in the 

Supplementary Material. To check this, we fit a quadratic model to the transformed data: in 

both cases, the p-value for the quadratic term exceeded 0.20, see Figure 2. Thus, we adopted 
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a linear function for the mean m(·) in the subsequent secondary analysis. In addition, the 

regression of PhIP on red meat consumption is heavily heteroscedastic, while the regression 

of MeIQx on red meat is passably homoscedastic. This is shown in Figure 3, where we fit a 

regression of the absolute residuals from a quadratic fit against red meat consumption 

(Davidian and Carroll, 1987): the plots from a linear regression are essentially the same.

The results of this secondary analysis are given in Table 7. For MeIQx, the ordinary least 

squares standard errors when using only the controls are roughly the same and that of the 

sandwich method, which makes sense since the regression is homoscedastic. In this case, as 

expected from the theory, our semiparametric approach has smaller standard errors, with the 

least squares standard errors being approximately 30% larger. For PhIP, where the 

regression is distinctly homoscedastic, the sandwich standard errors for ordinary least 

squares among the controls is roughly 30% larger than the standard error that assumes 

homoscedasticity, and roughly 40% larger than our semiparametric approach. As expected 

from the theory, where homoscedasticity is not assumed, the standard errors for our 

semiparametric approach are nearly the same using either the asymptotic formula or the 

bootstrap.

As a comparison, we also implemented the parametric method of Lin and Zeng (2009) as 

well as the robust method by Wei et al. (2013). Standard errors of the former were assessed 

both by using the inverse of the Hessian of the loglikelihood and by the bootstrap, while 

standard errors of the latter were assessed by the bootstrap alone. The parametric method's 

asymptotic standard error clearly under-estimates the variability for PhIP when compared to 

the bootstrap, something expected because of the heteroscedasticity in PhIP. For MeIQx, 

where the error is homoscedastic, the parametric method, the robust method and our 

semiparametric approach are almost identical.

In summary, in analyzing this data set, we verified the previous observation based on the 

control only data that the regression error from MeIQx and red meat consumption has 

homoscedastic error, while that from the PhIP and red meat consumption has heteroscedastic 

error. Our analysis also verified the positive relationship between red meat consumption and 

these two forms of HCA, indicating that increased red meat consumption leads to increased 

levels of MeIQA and PhiP, both being risk factors for colorectal cancer. The first order 

accuracy of the variability of the estimated slope for our method is validated though its near-

identical result with the bootstrap, and of course through the simulation results.

7 Discussion

We have developed a locally efficient semiparametric estimator for the secondary analysis 

of case-control studies, where only a mean model is specified to describe the relationship 

between the covariates. Despite this relatively weak assumption, we have shown that the 

problem is still identifiable under certain conditions. Through introducing the notion of a 

superpopulation, we are able to establish an estimation methodology via a conceptually 

tractable semiparametric procedure, although the derivation is highly non-standard and not 

trivial. The locally efficient estimator provides consistent estimation, and can achieve 

optimal efficiency if a posited regression error model happens to be true. Although the 
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analysis is performed under the superpopulation concept, the general statements of 

consistency and local efficiency are valid in the case-control sampling scheme (Ma, 2010). 

In addition, the general methodology is applicable even if the linear logistic model (1) is 

replaced by other parametric models such as probit model, etc., as long as identifiability can 

be established.

Implementing the locally efficient estimator via Algorithm 1 requires several nonparametric 

regressions conditional on the covariates, which may be difficult when the dimension of the 

covariates increases. In such situations, dimension reduction techniques can be a good 

choice to achieve a balance between model flexibility and feasibility of parameter estimation 

and inference (Ma and Zhu, 2012). Further exploration of this is needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Sketch of Technical Arguments

A.1 Proof of Proposition 1

Assume the contrary. That is, assume the problem is not identifiable. This means we can 

find parameters αc, α1, α2, β, η2, η1 and αc̃, α̃
1, α2̃, β̃, η̃

2, η̃
1 so that, denoting ε̃ = Y − m(x, 

β̃),

we have that

(A.

1)

for all (x, y, d). Take the ratio of the above expression at d = 1 and d = 0 respectively, we 

obtain that for all (x, y),

Ma and Carroll Page 16

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This yields that u(x, y, α1,α2) − u(x, y, α̃
1, α̃2) is a constant. Since it is zero at (x, y) = 0, 

hence we have u(x, y, α1, α2) − u(x, y, α̃1, α̃2) ≡ 0. Thus, α1, α2 = α̃
1, α̃2, exp(αc)π0/π1 = 

exp(α̃
c)π0̃/π̃

1 and

for all (x, y). This gives

(A.

2)

Integrating (A.2) and the product of (A.2) and y with respect to y, we obtain

respectively. Further taking ratios, we find

If αc = α̃c, then we obtain m(x, β) = m(x, β̃), hence β = β̃. We also obtain η̃
1(x) = η1(x)π̃

0/π0. 

Since both η1̃(x) and η1(x) are valid density functions, we have η̃
1(x) = η1(x) and π0 = π̃0, π1 

= π̃
1. This subsequently yields η2 = η̃

2 contradicting our assumptions. Thus we obtain that 

αc ≠ α̃
c.

Denote
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By definition, η2 is a valid conditional density function and it satisfies ∫ εη2(ε, x)dε = 0, and 

we have that

for all x. This means

for all x. If we let x → c1, then

Thus,
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We can make the upper bound of the above expression arbitrarily small by choosing δ 

arbitrarily close to zero, while the quantity on the left had side is a constant. Hence we in 

fact have obtained

However, −c2 is between −1 and 0, simple calculation shows that these two constants cannot 

be equal, hence our problem is indeed identifiable.

A.2 Derivation of Λ and Λ⊥

Consider the nuisance tangent space associated with η1 and η2 respectively, we have

Hence Λ = Λ1 + Λ2 = {g(ε, x) − E(g | d) : ∀g such that Etrue(g) = Etrue(εg | X) = 0 a.s.}. It is 

easily seen that  a.s.]. This is because from

we obtain E{h − E(h | D) | X}Σd ∫ fX,Y,D (X, y, d)dμ(y)/η1(X) = c a.s. for some constant c. 

Since E[E{h − E(h | D) | X}] = 0 a.s., we obtain
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Hence c = 0 and E{h − E(h | D) | X}  a.s., which 

yields E{h −E(h|D)|X} = 0 a.s..

Now we are in position to show

where a(x) is an arbitrary function of x. This is because for any ,  is 

equivalent to

Hence E{h − E(h | D) | ε, X}ΣdfX, Y, D(X, Y, d)/{η1(X)η2(ε, X)} = εa(X) + c(X) a.s.. Because 

, we have E[E{h − E(h | D) | ε, X} | X] = 0 a.s.. Hence

hence c(X) = 0 a.s. and E{h − E(h | D) | ε, X}ΣdfX,Y,D(X, Y, d)/{η1(X)η2(ε, X)} = εa(X) a.s.. 

This means that E{h − E(h | D) | ε, X}  a.s..

A.3 Sketch of Proof of Theorem 1

For simplicity of proof, we split the N observations randomly into two sets. The first set 

contains n1 = N − N1−δ observations and the second set contains n2 = N1−δ observations, 

where δ is a small positive number. We form and solve the estimating equation using data in 

the first set, while calculating all the hatted quantities described in the algorithm using data 

in the second set. We use this only as a technical device, although in our simulations and 

empirical example we used all the data.
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In the algorithm, the approximations involve either replacing expectation with averaging, or 

standard kernel regression estimation or kernel density estimation, hence the differences 

between the quantities with hat and without hat have either mean zero, standard deviation 

, or mean O(hr), standard deviation O{(n2hp)−1/2}. In particular, 

 has bias O(hr) and standard deviation 

O{(n2hp)−1/2}. Recall the definition of expectation and covariance in the superpopulation 

explicitly written out in the statement of Theorem 1. Then

We see that  differs from  in that all the unknown 

quantities, except S*, are estimated. This is equivalent to estimating the unknown functions 

η1(x), η2(ε, x) in (4) and using the estimate η1̂(x), η̂
2(ε, x) in calculating  from the 

posited S*. Thus, denoting η̂ = (η̂
1, η̂

2), we can approximate

(A.3)
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where  is pathwise derivative. However,  is the projection of 

S* to Λ⊥ so . Thus, for any parametric submodel of η involving parameter γ, we 

have

The last equality is because by definition Sγ ∈ Λ which is orthogonal to Λ⊥ and . 

Here, fX,Y,D (x, y, d) is defined in (4). Because γ is parameter of any arbitrary submodel of η, 

we actually have obtained

where Sη is the nuisance score function along the arbitrarily chosen specific path of the 

pathwise derivative. Thus, the first term of (A.3) is of order op(1). On the other hand, 

. We therefore obtain

This yields , and hence

when N → ∞.
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Figure 1. 
Illustration of the bias induced by the case-control sampling scheme. The red solid line is the 

true regression function, while the blue dashed line is the regression function when using all 

the data and ignoring the case-control sampling scheme.
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Figure 2. 
The fitted curves from a quadratic regression of MeIQx (solid red line) and PhIP (dashed 

blue line) on red meat consumption, using the controls. The fitted values were normalized to 

fit on the same plot. Neither have a statistically significant quadratic term.
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Figure 3. 
Plots to diagnose heteroscedasticity, with the curves representing relative standard deviation 

as a function of red meat consumption. Plotted are the fitted curves from a linear regression 

of the absolute residuals of the regression of MeIQx (solid red line) and PhIP (dashed blue 

line) on red meat consumption, using the controls. The fitted values were normalized to be 

equal at the minimum value of red meat consumption. The essentially flat curve for MeIQx 

indicates homoscedasticity, while that for PhIP is very strongly heteroscedastic. The latter 

has implications for data analysis, see Table 7 and the discussion in Section 6.
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