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Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a paralogous protein of mesencephalic

astrocyte-derived neurotrophic factor (MANF). Both proteins have been reported to show a

common cytoprotective effect on dopaminergic neurons as a secretory protein containing the

KDEL-like motif of the ER retrieval signal at the C-terminus, RTDL in MANF and [Q/K]TEL in

CDNF amongmany species, although functions of paralogous proteins tend to differ from

each other. In this study, we focused on post-translational regulations of their retention in the

endoplasmic reticulum (ER) and secretion and performed comparative experiments on char-

acterization of mouse MANF andmouse CDNF according to our previous report about biosyn-

thesis and secretion of mouse MANF using a NanoLuc system. In this study, co-expression of

glucose-regulated protein 78 kDa (GRP78), KDEL receptor 1 or mutant Sar1 into HEK293

cells similarly decreasedMANF and CDNF secretion with some degree of variation. Next, we

investigated whether CDNF affects the secretion of mouse cysteine-rich with EGF-like

domains 2 (CRELD2) becausemouse wild-type (wt) MANF but not its KDEL-like motif deleted

mutant (ΔCMANF) was found to promote the CRELD2 release from the transfected cells. Co-

expressing CRELD2 with wt or ΔCCDNF, we found that CDNF and ΔCMANF hardly elevated

the CRELD2 secretion. We then investigated effects of the four or six C-terminal amino acids

of MANF and CDNF on the CRELD2 secretion. As a result, co-transfection of mouse CDNF

having the mouse MANF-type C-terminal amino acids (CDNFRTDL and CDNFSARTDL)

increased the CRELD2 secretion to a small extent, but mouse CDNF having human CDNF-

type ones (CDNFKTEL and CDNFHPKTEL) well increased the CRELD2 secretion. On the other

hand, the replacement of C-terminal motifs of mouseMANFwith those of mouse CDNF (MAN-

FQTEL andMANFYPQTEL) enhanced the CRELD2 secretion, and themouseMANF having

human CDNF-type ones (MANFKTEL and MANFHPKTEL) dramatically potentiated the CRELD2

secretion. These results indicate that the secretion of mouse MANF andmouse CDNF is fun-

damentally regulated in the samemanner and that the variation of four C-terminal amino acids

in theMANF and CDNF among species might influence their intracellular functions. This find-

ing could be a hint to identify physiological functions of MANF and CDNF.
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Introduction
Various types of stress are considered to be associated with the onset and progression of neurode-
generative diseases, including Parkinson’s disease and Alzheimer’s disease. Under pathophysio-
logical conditions, cellular stresses disrupt appropriate functions of endoplasmic reticulum (ER)
and cause the accumulation of misfolded and/or unfolded proteins in the ER. This predicament,
termed ER stress [1, 2], activates unfolded protein responses (UPR), which are mediated by three
transmembrane ER-resident (or localized) proteins, PERK [3], IRE1 [4] and ATF6 [5, 6]. UPR
attenuate ER stress by suppressing translation of mRNAs, inducing chaperones and reinforcing
endoplasmic reticulum associated degradation (ERAD) [7]. However, the excessive ER stress
causes cell death [8]. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been
reported to be a downstream target of ATF6α, ATF6β and sXBP1 [9–12] and is induced in paral-
lel with ER-resident chaperones [9–13] and even pro-apoptotic factor such as growth arrest- and
DNA damage-inducible gene 153 (GADD153) in the UPR [14].

MANF was originally identified as arginine-rich, mutated in early stage of tumors (Armet),
a protein with a high mutation rate in various tumors [15, 16]. Petrova et al. demonstrated that
MANF, a secretory protein from a rat mesencephalic type-1 astrocytic cell line, is identical
with Armet and performs a selective neurotrophic effect on dopaminergic neurons [17]. In this
study, Armet is referred to as MANF, even though the precise mechanisms by which it protects
both neuronal cells and non-neuronal cells from cell death remain unclear [17–22]. Accord-
ingly, it is thought that the elucidation of physiological actions of MANF is useful for establish-
ing a therapy for neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s
disease.

Cerebral dopamine neurotrophic factor (CDNF) is a vertebrate-specific paralog of MANF
[17]. It is reported that CDNF also showed a cytoprotective effect on 6-OHDA-induced Par-
kinson’s disease model rats [23], and that the expression level of CDNF mRNA was constitu-
tive and uninfluenced by ER stress [19]. However, the transcriptional regulation of CDNF gene
remains to be determined. Although paralogous proteins tend to show different functions, the
only common function reported between these proteins is the cytoprotective effect on dopa-
mine neurons. Consequently, the clarification of distinctions and similarities between MANF
and CDNF is considered to give insights into their functions. However, a comparative investi-
gation of MANF and CDNF has not been reported, except for their structural comparison in
Drosophilia [24].

In this study, we performed the comparative consideration for secretory regulation of
MANF and CDNF because we have investigated the mechanism of MANF secretion by devel-
oping a highly sensitive and quantitative assay for the measurement of MANF secretion using
a small luciferase, NanoLuc (NL), in previous research [25, 26]. In addition, we have recently
demonstrated that MANF-overexpression potentiates the secretion of cysteine-rich with EGF-
like domains 2 (CRELD2) using several MANF mutants [27, 28]. Based on our previous studies
[26–30], we compared the secretory regulation of mouse MANF and mouse CDNF by co-
transfection of glucose-regulated protein 78 kDa (GRP78), KDEL receptor1 (KDEL-R1) and
mutant-Sar1 and revealed their different actions on the mouse CRELD2 secretion by focusing
on their four or six C-terminal amino acids.

Materials & Methods

1. Construction of plasmids
For the preparation of each mouse MANF and mouse CDNF constructs, the wild-type (wt)
MANF and CDNF genes were cloned from cDNA derived from a mouse neuroblastoma cell-
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line, Neuro2a, using RT-PCR and inserted into the pcDNA3.1 vector (Life Technologies, U.S.
A.) as described previously [27, 29]. To construct the indicated tagged-MANF and -CDNF,
DsRed2, EGFP, Flag-epitope and NL [25, 26] were inserted downstream of the putative signal
peptide sequence (MANF, 23 amino acids and CDNF, 24 amino acids) of full length MANF or
CDNF and cloned into the pcDNA3.1 vector as described previously [26, 28]. Mouse MANF
and CDNF mutants that were lacking their four C-terminal amino acids or that had their four
or six C-terminal amino acids exchanged were also amplified and cloned into the pcDNA3.1
vector as described previously [28]. Genes encoding mouse wtGRP78 and wtCRELD2 were
obtained from DNAFORM (RIKEN, Japan) and each fragment was cloned into the pcDNA3.1
vector as previously described [30]. An HA-tagged mutant-Sar1 (H79G) construct was kindly
provided by Dr. Wei Liu and Dr. Jennifer Lippincott-Schwartz [31]. Amyc-tagged KDEL-R1
was kindly gifted by Dr. Lloyd Ruddock [32].

2. Cell culture and treatment
HEK293 and COS7 cells were maintained in Dulbecco’s modified Eagle’s minimum essential
medium containing 8% fetal bovine serum. To detect the indicated proteins by western blot
analysis and fluorescent microscopy, cells were seeded into 12-well plate. For luciferase analy-
sis, cells were seeded into a 48-well plate, grown to semi-confluence and used for subsequent
experiments. Transfection of the indicated plasmids was performed using Lipofectamine-Plus
reagents (Life Technologies, U.S.A.) and PEI-MAX (Polysciences, U.S.A.) as described previ-
ously [27, 33].

3. Luciferase assay
Twenty-four hours after transiently overexpressing the indicated constructs, cells were incu-
bated in the serum-free medium for 4 h at 37°C, then culture medium and cell lysate were col-
lected and extra- and intracellular luciferase activities were calculated as described previously
[26].

4. Western blot analysis
Cells in each well were lysed with homogenate buffer [20 mM Tris-HCl (pH 8.0) containing
137 mMNaCl, 2 mM EDTA, 10% glycerol, 1% Triton X-100, 1 mM PMSF, 10 μg/ml leupeptin
and 10 μg/ml pepstatin A] as described previously [27]. After determining the protein concen-
trations by a Bradford Reagent (BioRad Laboratories, U.S.A.), cell lysates were dissolved in
SDS-Laemmli sample buffer [62.5 mM Tris-HCl (pH 6.8), 2% SDS and 10% glycerol], and
equal amounts of cell lysates in each experiment were prepared. To detect MANF, CDNF and
CRELD2 proteins in the culture medium, equal amount of each culture medium was resus-
pended in SDS-Laemmli sample buffer. In each experiment, equal amount of each sample
from lysate and culture medium were separated on 8.0–15.0% SDS-polyacrylamide electropho-
resis gels, blotted onto polyvinylidene difluoride membranes (GE Healthcare Bioscience, U.S.
A.) and identified by enhanced chemiluminescence using antibodies against MANF, CDNF,
CRELD2, the Myc-epitope, the Flag-epitope or actin. The primary antibodies used are as fol-
lows: anti-actin antibody (Calbiochem, U.S.A.); anti-CDNF and anti-CRELD2 antibodies
(R&D Systems, U.S.A.); anti-Flag antibody (M2, Sigma-Aldrich, U.S.A.); anti-GRP78 antibody
(Cell Signaling, U.S.A.); and anti-MANF antibodies (abcam, U.K. and R&D Systems, U.S.A.);
anti-Myc antibody (Santa Cruz Biotechnology, U.S.A). More than three independent cultures
were performed to confirm reproducibility and the sample number was indicated in each of fig-
ure legends. The amounts of the secreted CRELD2 were analyzed by Image J software (National
Institutes of Health. U.S.A.) and normalized by the value from mock transfected cells.
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5. Fluorescent images
COS7 cells were seeded on poly-D-lysine coated glass coverslips and transfected with
SP-EGFP-MANF, SP-DsRed2-MANF, SP-EGFP-CDNF and/or SP-DsRed2-CDNF. Forty-
eight hours after transfection, cells were washed using PBS and fixed with 4% paraformalde-
hyde for 15 min. After washing with PBS, the cells were mounted with PermaFluor Mountant
Medium (Thermo Fisher Scientific, U.S.A.) and fluorescent images were obtained by fluores-
cent microscopy using 470 nm and 540 nm filters (BZ-9000; KEYENCE, Japan) as described
previously [28, 30].

6. Statistical analysis
The results are expressed as the mean ± SEM of the indicated number. The statistical analyses
were carried out by One-way ANOVA following Turkey’s Multiple Comparison Test or Stu-
dent’s t-test. p< 0.05 was considered to be statistically significant.

Results
Our group and others have reported the secretory regulation of MANF; however, the intracel-
lular transport and regulation of CDNF secretion is not fully characterized [20, 26, 29, 34–36].
Accordingly, we focused on the secretory regulation of mouse CDNF and clarified differences
between CDNF and MANF secretion on the molecular level based on our previous study about
MANF [26, 29].

First, to compare the secretory profile of both proteins, we prepared expression vectors of
mouse MANF and mouse CDNF, which have a common Flag-epitope just behind their signal
peptide sequences at the N-terminus (SP-Flag-MANF and SP-Flag-CDNF, respectively, Fig
1A). As shown in Fig 1B, the secretion levels of Flag-tagged MANF and CDNF were nearly
identical. Consistent with the case of MANF [29], CDNF lacking the signal peptide (Flag-
CDNF) was also not secreted into the extracellular space.

Next, we further investigated a pathway for the intracellular transport of CDNF, as is the
case of MANF. Sar1 is a critical component of COPII-coated vesicles and plays an important
role in the COPII-mediated transport from the ER to the Golgi apparatus [31, 37]. We previ-
ously reported that the overexpression of mutant-Sar1, Sar1(H79G), impaired MANF secretion
and that the intracellular MANF was increased in inverse proportion [29]. We therefore com-
pared the secretion of CDNF with that of MANF by the co-transfection of Sar1(H79G). As
shown in Fig 2A, the secretory profile of SP-Flag-CDNF was similar to that of SP-Flag-MANF,
which showed a decrease in the extracellular level and an increase in the intracellular level.
Recently, we developed a more convenient and quantitative assay for determining the biosyn-
thesis and secretion of MANF using a highly active and small luciferase, NanoLuc [25, 26]. We
then adopted this system to confirm the secretory profile of MANF and CDNF more quantita-
tively (Fig 2B). Consistent with the results obtained from the western blot analysis, the overex-
pression of Sar1(H79G) decreased both of the secretion levels (17.5 ± 1.4% and 24.9 ± 1.2%,
respectively) in inverse proportion to the increase in their intracellular levels (126.0 ± 5.5% and
185.1 ± 10.5%, respectively) (Table 1).

Comparing the amino acid sequence of MANF and CDNF among several species, the four
C-terminal amino acids of MANF (RTDL) and CDNF ([K/Q]TEL) are well conserved. Next,
we examined whether the ER-localizing motifs, RTDL and QTEL, affect the secretion of
MANF and CDNF, respectively. Accordingly, the secretion levels of wild-type (wt) and its
mutant lacking four C-terminal amino acids (ΔC) were investigated with or without wtGRP78
overexpression because the overexpression of GRP78, which is known to be one of the ER resi-
dent proteins having this canonical motif (KDEL), attenuated the MANF secretion [20, 29]. As
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Fig 1. Intracellular expression and extracellular secretion of MANF and CDNF in HEK293 cells. (A)
Schematic representation of the mouse MANF and CDNF expression constructs used in this study. SP
indicates a signal peptide at the N-terminus of each protein. The cysteines are indicated by bars. The four C-
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terminal amino acids, RTDL and QTEL, putative ER localization signals at their C-termini are shown in capital
letters. (B) Western blot analysis of wild-type and modified MANF and CDNF overexpressed in HEK293 cells.
Twenty-four hours after transfection of each indicated construct into the cells, the culture medium was
replaced with fresh serum-free DMEM, and the cells were incubated for an additional 12 h. The amounts of
the indicated proteins in the cell lysate and culture medium were detected by western blot analysis using
antibodies against Flag-epitope, MANF, CDNF and actin as described in the Materials and Methods.
Representative data of three independent experiments were shown.

doi:10.1371/journal.pone.0146923.g001

Fig 2. Effects of mutant-Sar1 co-expression on the secretion of MANF and CDNF from HEK293 cells. (A) Twenty-four hours after the transfection of
SP-Flag-MANF or SP-Flag-CDNF with Sar1(H79G) or the empty vector (mock) into HEK293 cells, the culture medium was replaced with fresh serum-free
medium and the cells were cultured for an additional 12 h. The amounts of MANF and CDNF in the cell lysate and culture medium were detected by western
blot analysis as described in the Materials and Methods. Representative data of three independent cultures were shown. (B) Twenty-four hours after the
transfection of SP-NL-MANF or SP-NL-CDNF with Sar1(H79G) or the empty vector (mock) into HEK293 cells, the culture medium was replaced with serum-
free medium, and the cells were incubated for an additional 4 h. The culture medium (b, e) and cell lysate (c, f) from HEK293 cells expressing SP-NL-MANF
or SP-NL-CDNF were collected. The luciferase activity in each sample was measured as described in the Materials and Methods. The values represent the
mean ± SEM from nine independent cultures. The relative amounts of secreted SP-NL-MANF and SP-NL-CDNF in each case (a, d) were calculated from the
data of their extracellular activities (b, e) and their intracellular activities (c, f), respectively. The data were analyzed by Student’s t-test to evaluate the effects
of the co-expression of Sar1(H79G) on the luciferase activity. The values marked with an asterisk are significantly different from the value of the mock-
transfected cells, respectively (p < 0.05).

doi:10.1371/journal.pone.0146923.g002
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shown in Fig 3A, the amount of MANF in the culture medium was decreased by the overex-
pression of GRP78, which is consistent with the previous report [29]. In addition to the secre-
tory regulation of MANF in the ER, the secretions of wtCDNF and ΔCCDNF were also
decreased by the GRP78-overexpression. From the analysis using the NanoLuc system, the
ratio of GRP78-mediated secretory suppression of CDNF was found to be somewhat different
from that of MANF (Fig 3B). The secretion of NanoLuc-tagged MANF and CDNF
(SP-NL-MANF and SP-NL-CDNF, respectively) from wtGRP78 co-transfected cells were
24.0 ± 1.2% and 72.5 ± 3.2%, respectively, compared with that from mock cells, though this dif-
ference was not observed using untagged MANF and CDNF (Fig 3 and Table 2). However, the
intracellular amounts of SP-NL-MANF and SP-NL-CDNF showed no statistical significance
(110.8 ± 11.4% and 114.6 ± 6.2%, respectively) (Table 2).

It is known that KDEL-Rs, which exist on cis-Golgi network, bind to KDEL-like motif and
package ER resident proteins into COPI-coated retrograde transport vesicle [37, 38]. In addi-
tion, Henderson et al. recently reported that the overexpression of four types of KDEL-Rs
decreased the MANF secretion [34]. Therefore, we examined the effects of KDEL-R1 on the
MANF and CDNF secretions in our experiment because KDEL-R1 was reported to show the
most suppressive effect among them. As shown in Fig 4A, the secretion of wtCDNF was
decreased, as was that of wtMANF. Surprisingly, the extracellular levels of ΔCMANF and
ΔCCDNF were also decreased to the same extent even though their respective KDEL-like four
C-terminal amino acids, RTDL and QTEL, were removed. On the other hand, we observed a
significant increase in the intracellular amounts of ΔCMANF but not ΔCCDNF in the current con-
dition (Fig 4A). We further investigated effects of the KDEL-R1 overexpression on the MANF
and CDNF secretions using our NanoLuc system. As shown in Fig 4B, the secretions of
SP-NL-MANF and SP-NL-CDNF were also reduced by the co-transfection of KDEL-R1
(43.6 ± 1.8% and 59.1 ± 1.4%, respectively, Table 3). On the other hand, the intracellular
amounts of SP-NL-MANF and SP-NL-CDNF were significantly increased by KDEL-R1 over-
expression (Fig 4B and Table 3). Considering the increase in the intracellular amounts of
SP-NL-MANF and SP-NL-CDNF based on the NanoLuc activity, the co-transfection of
KDEL-R1 did not hamper their expressions, but was likely to affect the protein stability
through the retrograde transport (from the Golgi apparatus to the ER).

MANF has been reported to be localized in the ER and Golgi apparatus including the peri-
nuclear region [10, 28]. As we assumed that the secretory regulation might cause differences
between intracellular localization of MANF and CDNF, we investigated the localization of
MANF and CDNF in COS7 cells using EGFP- or DsRed2-fusion MANF and CDNF. As shown
in Fig 5A and 5B, the intracellular localization of MANF merged well with CDNF.

Very recently, we reported that the overexpression of mouse MANF enhanced mouse
CRELD2 secretion from HEK293 and COS7 cells [28]. Accordingly, we examined whether

Table 1. The relative amounts of SP-NL-MANF and SP-NL-CDNF from HEK293 cells co-transfected with mock or Sar1(H79G).

% release Medium Lysate

mock Sar1(H79G) mock Sar1(H79G) mock Sar1(H79G)

MANF 100.0 ± 1.4 17.5 ± 1.4 100.0 ± 3.4 20.0 ± 1.9 100.0 ± 3.5 126.0 ± 5.5

CDNF 100.0 ± 1.4 24.9 ± 1.2 100.0 ± 3.5 34.6 ± 2.4 100.0 ± 2.4 185.1 ± 10.5

Values show the relative luciferase activities represented in Fig 2B. The relative amounts of secreted SP-NL-MANF and SP-NL-CDNF in each case (Fig

2B a, d) were calculated from the extracellular (Fig 2B b, e) and intracellular (Fig 2B c, f) activities of SP-NL-MANF and SP-NL-CDNF, respectively. Each

value represents the mean ± SEM from nine independent cultures and was expressed as a percentage of mock cells.

doi:10.1371/journal.pone.0146923.t001
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Fig 3. Effects of GRP78 co-expression on the secretion of MANF and CDNF from HEK293 cells. (A) After the transfection of wtMANF or ΔCMANF (A-a)
and wtCDNF or ΔCCDNF (A-b) with GRP78 or the empty vector (mock) into HEK293 cells, each indicated protein was detected as described in Fig 2.
Representative data of three independent cultures were shown. The broken line represented the boundary line between wtCDNF and ΔCCDNF of the two
lanes in the same immunoblotted membrane. (B) After the transfection of SP-NL-MANF (a, b, c) or SP-NL-CDNF (d, e, f) with GRP78 or the empty vector
(mock), the luciferase activity of the culture medium (b, e) and cell lysate (c, f) from HEK293 cells expressing SP-NL-MANF or SP-NL-CDNF were measured
and relative amounts of secreted SP-NL-MANF and SP-NL-CDNF in each case (a, d) were calculated as described in Fig 2. The values represent the
mean ± SEM from six independent cultures. The data were analyzed by Student’s t-test to evaluate the effects of the co-expression of GRP78 on the
luciferase activity. The values marked with an asterisk are significantly different from the value of the mock-transfected cells, respectively (p < 0.05).

doi:10.1371/journal.pone.0146923.g003
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mouse CDNF affected the CRELD2 secretion as in the case of mouse MANF. We then co-over-
expressed CRELD2 and mouse CDNF with or without the four C-terminal amino acids in
HEK293 cells and evaluated the amounts of these proteins inside and outside of the cells,
respectively (Fig 6A and 6B). Consistent with our recent report, the overexpression of
wtMANF but not ΔCMANF remarkably increased the secretion of wtCRELD2 (Fig 6A and 6B).
Surprisingly, mouse wtCDNF and ΔCCDNF hardly influenced the secretion of CRELD2 as well
as ΔCMANF. To investigate whether the differences in the four or six C-terminal amino acids
between mouse MANF and mouse CDNF are responsible for CRELD2 secretion, because Ala-
nen et al. suggest that the importance of position-5 and -6 from the C-terminus [39]. Accord-
ingly, we constructed the expression vectors of mouse MANF and CDNF mutants whose C-
terminal KDEL-like motifs were exchanged with each other (Fig 6A). As shown in Fig 6A and
6C, we found that mouse MANF having QTEL (MANFQTEL) or YPQTEL (MANFYPQTEL)
increased the CRELD2 secretion to a similar extent. On the other hand, the C-terminal
exchanged CDNF (CDNFRTDL and CDNFSARTDL) slightly increased the CRELD2 secretion,
however it was not statistically significant compared with mock-tranfected cells (p = 0.058)
(Fig 6A and 6D). As the four C-terminal amino acids of CDNF in several species including
human, chimpanzee and rhesus macaque are “KTEL” but not “QTEL”, we investigated the
CRELD2 secretion in the presence of mouse MANF and CDNF having human CDNF-type C-
terminal motifs (KTEL and HPKTEL). Interestingly, the co-transfection of mouse MANFKTEL
or MANFHPKTEL remarkably increased the CRELD2 secretion, and the increased secretion of
CRELD2 by mouse CDNFKTEL or CDNFHPKTEL was almost the same compared with that by
mouse wtMANF (Fig 6E and 6F).

Discussion
The differing features of MANF and CDNF have not been precisely understood, although both
of them were reported to show characteristics of cytoprotection for dopamine neurons [17,
23]. As there has been only one report making a direct comparison of characteristics between
MANF and CDNF in Drosophila [24], we performed a comparative investigation focusing on
their secretory mechanisms using western blot analysis and a NanoLuc-based assay. The results
obtained in this study are described as follows: (i) CDNF was transported by the COPII-medi-
ated pathway in a similar fashion as MANF [26, 29]; (ii) the secretion of wild-type MANF and
CDNF was regulated by ER- or Golgi apparatus-resident proteins, GRP78 and KDEL-R1 in the
same manner [20, 26, 29, 34]. However, the GRP78-overexpression attenuated the secretion of
SP-NL-CDNF to a much lesser extent (by only 28%) compared with that of SP-NL-MANF. On
the other hand, the KDEL-R1 co-expression affected the secretion of SP-NL-MANF or
SP-NL-CDNF to the same degree; (iii) mouse CDNF hardly affected the secretion of CRELD2
in contrast to mouse MANF; (iv) the composition of the four C-terminal KDEL-like motifs in

Table 2. The relative amounts of SP-NL-MANF and SP-NL-CDNF from HEK293 cells co-transfected with mock or GRP78.

% release Medium Lysate

mock GRP78 mock GRP78 mock GRP78

MANF 100.0 ± 0.9 24.0 ± 1.2 100.0 ± 5.1 24.4 ± 3.5 100.0 ± 5.1 110.8 ± 11.4

CDNF 100.0 ± 1.9 72.5 ± 3.2 100.0 ± 5.4 72.9 ± 2.2 100.0 ± 2.3 114.6 ± 6.2

Values show the relative luciferase activities represented in Fig 3B. The relative amounts of secreted SP-NL-MANF and SP-NL-CDNF in each case (Fig

3B a, d) were calculated from the extracellular (Fig 3B b, e) and intracellular (Fig 3B c, f) activities of SP-NL-MANF and SP-NL-CDNF, respectively. Each

value represents the mean ± SEM from six independent cultures and was expressed as a percentage of mock cells.

doi:10.1371/journal.pone.0146923.t002
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Fig 4. Effects of KDEL receptor1 co-expression on the secretion of MANF and CDNF from HEK293 cells. (A) After the transfection of wtMANF or
ΔCMANF (A-a) and wtCDNF or ΔCCDNF (A-b) with KDEL-R1 or the empty vector (mock) into HEK293 cells, the expression of indicated proteins was detected
as described Fig 2. Representative data of three independent cultures were shown. (B) Twenty-four hours after the transfection of SP-NL-MANF (a, b, c) or
SP-NL-CDNF (d, e, f) with KDEL-R1 or the empty vector (mock), the luciferase activity in each sample was measured and calculated as described in Fig 2.
The values represent the mean ± SEM from six independent cultures. The data were analyzed by Student’s t-test to evaluate the effects of the co-expression
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MANF and CDNF plays a important role in regulating the CRELD2 secretion; and (v) MANF
and CDNF showed similar distribution, suggesting that the difference in ability of CRELD2
secretion was not merely associated with their localization. These findings seem to produce
valuable information for clarifying physiological functions of MANF and CDNF.

In this study, we found that the secretion of CDNF was regulated in a similar manner to
that of MANF [26, 29, 34]. Many ER-resident proteins have a KDEL-like motif at their C-ter-
minus [32]. KDEL-R recognizes the KDEL-like motif and mediates their trafficking from the
Golgi apparatus back to the ER [32, 37, 40]. It is well known that the C-terminal Lys-Asp-Glu-
Leu sequence is a canonical KDEL motif that aids in high-affinity binding to the KDEL-R, but
a variety of KDEL-like motifs have weaker affinity for this receptor than the KDEL sequence
[32]. In parallel with these findings, Glembotski et al. first hypothesized that the secretion of
MANF was regulated by competition with GRP78 against the KDEL-Rs in the cis-Golgi [36],
and further demonstrated that MANF retention in the ER was mediated by dual mechanisms,
KDEL-R-dependent manner and Ca2+-dependent binding to GRP78 [20]. According to this
model, MANF is constantly sent back to the ER via a KDEL-R mediated fashion and the retro-
graded MANF is retained by Ca2+-dependent association with GRP78 under conditions of nor-
mal Ca2+ concentration in the ER. On the contrary, under Ca2+-depleted conditions in the ER,
the dissociation of the MANF-GRP78 complex is increased followed by the facilitation of
MANF secretion. In our experiment using epitope-tagged constructs of SP-Flag-MANF and
SP-Flag-CDNF, we showed that the relative amount of secretion of MANF was almost equiva-
lent to that of CDNF. In addition, our present data comparing their secretory regulation by
mutant Sar1, KDEL-R1 and wtGRP78 suggest that most of the mechanisms for regulating the
secretion of MANF and CDNF could be similar. Like previous studies showing that the overex-
pression of GRP78 [20, 29] and KDEL-Rs [34] attenuated the secretion of wtMANF, the
wtCDNF secretion was also decreased by overexpression of each of the proteins. Similar phe-
nomena were also observed in the cells expressing ΔCMANF, ΔCCDNF, SP-NL-MANF and
SP-NL-CDNF. However, Henderson et al. reported that the overexpression of KDEL-Rs
reduced the secretion of GFP-tagged MANF but not GFP-tagged MANF lacking the C-termi-
nal RTDL [34]. Although it is unclear why the results were controversial, the GFP-tag at the N-
terminus of MANF might cause this discrepancy. The NanoLuc used in this study is a slightly
smaller protein than GFP [25]; however, it is likely to influence the secretion of MANF and
CDNF to some extent. The secretory profiles of the Flag-epitope (8 aa) tagged MANF and
CDNF was almost the same level as those of the wild-types, but SP-NL-CDNF, including
NanoLuc, was spontaneously secreted into the medium in greater amounts than

of KDEL-R1 on the luciferase activity. The values marked with an asterisk are significantly different from the value of the mock-transfected cells, respectively
(p < 0.05).

doi:10.1371/journal.pone.0146923.g004

Table 3. The relative amounts of SP-NL-MANF and SP-NL-CDNF from HEK293 cells co-transfected with mock or KDEL-R1.

% release Medium Lysate

mock KDEL-R1 mock KDEL-R1 mock KDEL-R1

MANF 100.0 ± 2.3 43.6 ± 1.8 100.0 ± 3.8 50.8 ± 7.4 100.0 ± 2.4 123.5 ± 16.4

CDNF 100.0 ± 1.8 59.1 ± 1.4 100.0 ± 4.6 70.0 ± 1.5 100.0 ± 2.1 141.9 ± 5.0

Values show the relative luciferase activities represented in Fig 4B. The relative amounts of secreted SP-NL-MANF or SP-NL-CDNF in each case (Fig 4B

a, d) were calculated from the extracellular (Fig 4B b, e) and intracellular (Fig 4B c, f) activities of SP-NL-MANF and SP-NL-CDNF, respectively. Each

value represents the mean ± SEM from six independent cultures and was expressed as a percentage of mock cells.

doi:10.1371/journal.pone.0146923.t003
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SP-NL-MANF. In addition, the attenuated ratio of CDNF secretion affected by GRP78 overex-
pression was almost abrogated by the insertion of NanoLuc into the CDNF construct. How-
ever, our data obtained from the conventional western blot analysis and the sensitive Nanoluc-
based assay suggest the secretory regulations of both factors more profoundly, that is these dif-
ferences obtained from each of the analyses may provide information for the regulatory mecha-
nisms of their secretion. As the KDEL-R1 overexpression attenuated the SP-NL-CDNF
secretion more significantly than GRP78 overexpression, each of over-expressed proteins
might recognize a different part of the CDNF molecule. On the other hand, the effects of
GRP78 overexpression on SP-NL-MANF were comparable to those of KDEL-R1 overexpres-
sion. Therefore, the magnitude of the N-terminal structure of each factor to form a complex
with GRP78 or KDEL-R1 in the ER and/or Golgi apparatus might be different. In addition, we
observed that GRP78 and KDEL-R1 overexpression also down-regulated the secretion of
ΔCMANF and ΔCCDNF lacking the C-terminal KDEL-like motif. These results suggest that ER
chaperones, including GRP78, with the canonical KDEL-motif responsible for ER retention
might form a complex with MANF and CDNF. On the other hand, it is unlikely that KDEL-R1
directly recognizes their four C-terminal amino acids, RTDL and [Q/K]TEL though they are
well conserved among several species. It is considered that the well-conserved KDEL-like
motifs in MANF and CDNF have some functions; however, the recognition of proteins having
KDEL-like motifs by KDEL-Rs might be more complicated. Henderson et al. demonstrated

Fig 5. Intercellular localization of MANF and CDNF in COS7 cells. (A, B) Forty-eight hours after transfection of SP-EGFP-MANF and SP-DsRed2-CDNF
(A) or SP-DsRed2-MANF and SP-EGFP-CDNF (B) into COS7 cells, the cells were fixed and observed as described in Materials and Methods. Scale bar is
10 μm.

doi:10.1371/journal.pone.0146923.g005
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Fig 6. Effects of mouse MANF and CDNF co-expression on the CRELD2 secretion from HEK293 cells. (A) Schematic representation of the mouse
MANF and CDNF expression constructs used in this study. SP indicates a signal peptide at the N-terminus of each protein. The cysteines are indicated by
bars. The four or six C-terminal amino acids, RTDL, SARTDL, QTEL, YPQTEL, KTEL and HPKTEL, in each construct are shown in capital letter. After co-
expression of wtCRELD2 with (B) wtMANF, ΔCMANF, wtCDNF or ΔCCDNF, (C) wtMANF, MANFYPQTEL or MANFQTEL, (D) wtCDNF, CDNFSARTDL or
CDNFRTDL, (E) wtMANF, MANFHPKTEL or MANFKTEL, (F) wtCDNF, CDNFHPKTEL or CDNFKTEL, the indicated proteins were detected by western blot analysis
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that the effects of four types of KDEL-Rs on the MANF secretion varied [34]. Therefore, it is
necessary to characterize not only the C-terminal KDEL-like motifs but also other domains of
MANF and CDNF in more detail. Our result concerning the intracellular distribution of
MANF and CDNF using EGFP and DsRed2 showed that both factors co-localized in the ER
and Golgi apparatus as well as in the peri-nuclear region of COS7 cells. Meanwhile, our current
study also implies that KDEL-R1 is unlikely to recognize the C-terminal KDEL-like motifs of
MANF and CDNF. Therefore, we consider that MANF and CDNF may form several types of
transported complexes during bidirectional ER-Golgi transports, although it is unclear whether
MANF and CDNF form a complex with other proteins in the ER and/or Golgi apparatus are
transported by the same cargos.

We performed further study of the molecular features of mouse MANF and CDNF. We
have been investigating the function of CRELD2, which was previously identified as a new ER
stress-inducible protein under pathophysiological conditions, and very recently reported that
mouse wtMANF but not ΔCMANF increased the secretion of CRELD2 [27, 28, 41]. As wtCDNF
and ΔCCDNF hardly affected the CRELD2 secretion (Fig 6), we considered whether the C-ter-
minal KDEL-like motif in MANF is responsible for the CRELD2 secretion. Therefore, the
KDEL-like motifs of MANF and CDNF were exchanged with each other to make MANFQTEL
and CDNFRTDL. As a result, MANFQTEL increased the CRELD2 secretion by co-expression as
the same level as wtMANF, whereas CDNFRTDL promoted its secretion to a lesser extent. As
Alanen et al. have reported that the six C-terminal amino acids play an important role in deter-
mining the ER localization and recognizing the KDEL-like motifs [39], we tested the effects of
the six C-terminal amino acids of mouse MANF and CDNF on the CRELD2 secretion. How-
ever, the additional 2-amino-acid replacement marginally influenced the CRELD2 secretion
furthermore. On the other hand, effects of the exchange of human CDNF-type C-terminal
motifs (KTEL and HPKTEL) for those of mouse MANF were more remarkable. Co-transfec-
tion of MANFKTEL or MANFHPKTEL almost doubled the CRELD2 secretion compared with
mouse wtMANF, and the increased levels of CRELD2 secretion by CDNFKTEL or CDNFHPKTEL

was comparable with those by mouse wtMANF. In our previous report, we demonstrated that
the mouse MANF having a canonical four C-terminal amino acids (MANFKDEL) markedly ele-
vated the CRELD2 secretion under the same experimental condition [28]. Collectively, the pos-
itive charge such as lysine at the position-4 from the C-terminus could be responsible for
regulating the retention and secretion of ER resident proteins. To support this idea, we
observed that the amount of secreted CRELD2 promoted by human CDNF was comparable
with that by mouse wtMANF (S1 Fig). As the four C-terminal amino acids of CDNF (KTEL) is
conserved among several species including human, chimpanzee and rhesus macaque, this find-
ing seems to be valuable information to uncover the molecular features of CDNF. We therefore
consider that characterization of these differences among several species in addition to analysis
for other domains of MANF, CDNF and CRELD2 proteins might give new insights into under-
standing cytoprotective abilities of MANF and CDNF.

MANF, CDNF and CRELD2 are suggested to contain a PDI-like motif, CXXC, in their C
terminal regions, such as 127CKGC130 in MANF, 132CRAC135 in CDNF and 259CVGC262 in
CRELD2. These proteins are therefore considered to participate in the quality control of pro-
teins in the ER. Indeed, Hartley et. al reported that MANF and CRELD2 had substrate

as described in Fig 2. Representative data of three independent cultures were shown (B, C-a, D-a, E-a, F-a). The broken line represented the boundary line
between the two lanes in the same immunoblotted membrane. (C-F b) Each of bar graphs shows densitometric analyses of the secreted CRELD2 as
described in the Materials and Methods. Each value represents the mean ± SEM from 8 (C), 10 (D), 6 (E), 6 (F)-independent cultures. The values marked
with an asterisk are significantly different from the values of the mock-transfected cells (p<0.05).

doi:10.1371/journal.pone.0146923.g006
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specificity to form a complex with misfolded proteins, but MANF did not possessed the PDI-
like activity in contrast to CRELD2 [42]. However, it might be caused by rapid degradation of
the mutated MANF-bait complex during cell homogenation. Further study is required to deter-
mine whether MANF has PDI-like activity.

In our present study, we showed that mouse CDNF shared secretory regulation with mouse
MANF; however, the mouse CDNF overexpression hardly affected the co-transfected CRELD2
secretion, whereas mouse MANF and human CDNF did. Accordingly, we presume that rela-
tionships of MANF, CDNF and CRELD2 might differ among several species, and it is intrigu-
ing whether changes in each of the expressions and subcellular localizations might co-
operatively influence the ER homeostasis (e.g., a quality control of certain secretory and trans-
membrane proteins) under ER stress conditions. Therefore, clarifying roles of MANF, CDNF
and CRELD2 under some pathophysiological conditions may give us new insight into the pro-
gression of ER stress-related diseases and a new strategy for finding cures for these diseases.

Supporting Information
S1 Fig. Effect of human CDNF co-expression on the CRELD2 secretion from HEK293 cells.
A) Twenty-four hours after the transfection of CRELD2 with human wild-type CDNF (wt
hCDNF) or the empty vector (mock) into HEK293 cells, the culture medium was replaced with
fresh serum-free medium and the cells were cultured for an additional 12 h. The amounts of
the indicated proteins in the cell lysate and culture medium were detected by western blot anal-
ysis as described in the Materials and Methods. Representative data of three independent cul-
tures were shown. The human wild-type CDNF (wt hCDNF) gene was cloned from cDNA
derived from HEK293 cells and inserted into the pcDNA3.1 vector. B) Each of bar graphs
shows densitometric analyses of the secreted CRELD2 as described in the Materials and Meth-
ods. Each value represents the mean ± SEM from six independent cultures. The values marked
with an asterisk are significantly different from the values of the mock-transfected cells
(p<0.05).
(TIF)
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