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Abstract

The mechanical properties of virus capsids correlate with local conformational dynamics in
the capsid structure. They also reflect the required stability needed to withstand high inter-
nal pressures generated upon genome loading and contribute to the success of important
events in viral infectivity, such as capsid maturation, genome uncoating and receptor bind-
ing. The mechanical properties of biological nanopatrticles are often determined from moni-
toring their dynamic deformations in Atomic Force Microscopy nanoindentation
experiments; but a comprehensive theory describing the full range of observed deformation
behaviors has not previously been described. We present a new theory for modeling
dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian
deformation, resulting from an indenter-particle physical contact, and the bending of curved
elements (beams) modeling the particle structure. The beams’ deformation beyond the criti-
cal point triggers a dynamic transition of the particle to the collapsed state. This extreme
event is accompanied by a catastrophic force drop as observed in the experimental or simu-
lated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra,
including the nonlinear components of the FX-curves, in terms of the Young’s moduli for
Hertzian and bending deformations, and the structural damage dependent beams’ survival
probability, in terms of the maximum strength and the cooperativity parameter. The theory is
exemplified by successfully describing the deformation dynamics of natural nanopatrticles
through comparing theoretical curves with experimental force-deformation spectra for sev-
eral virus particles. This approach provides a comprehensive description of the dynamic
structural transitions in biological and artificial nanoparticles, which is essential for their opti-
mal use in nanotechnology and nanomedicine applications.
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Author Summary

Dynamic force experiments, which have become available to explore the physical proper-
ties of biological assemblies, oftentimes reveal results that are difficult to understand with-
out theoretical framework. We employed a multiscale modeling approach—a combination
of Molecular Dynamics simulations of atomic structures with Langevin simulations of
coarse-grained models of virus shells—to characterize the degrees of freedom defining the
deformation and structural collapse of biological particles tested mechanically. This
enabled us to develop an analytical model that provides meaningful interpretation of
force-deformation spectra available from single-particle nanoindentation experiments.
The Fluctuating Nonlinear Spring (FNS) model of uniaxial particle’s deformation captures
essential features of the force-deformation spectra as observed in nanomanipulations in
vitro and in silico: initial non-linearity, then a subsequent force decrease transition due to
structural collapse. Our theory uniquely combines the elements of continuum mechanics
with the statistics of extremes, enabling one to gather mechanical and statistical character-
istics of nanoparticles, which determine the Hertzian deformation of the particle’s protein
layer, and bending deformation and structural damage to the particle structure. We have
demonstrated how the FNS theory can accurately model the deformation of several viral
shells, showing promising model applications for describing a variety of natural and syn-
thetic nanoparticles.

Introduction

Single-molecule techniques, such as Atomic Force Microscopy (AFM), have become widely
available to explore the physical properties of biological assemblies. These techniques have trig-
gered extensive research efforts to explore the protein shells of plant and animal viruses, and
bacteriophages. A wide spectrum of viruses infect their animal and plant hosts. To do so, these
pathogens employ a diverse range of infection mechanisms. Typically, animal cells utilize a
mechanism involving molecular recognition of the host via specific cell surface receptors. On
the other hand, plant viruses often lack this host infectivity mechanism. In contrast to animal
cells, plant cells are enclosed within a rigid cell wall and cuticle. These features represent signifi-
cant physical barriers to viral infection. Thus, it is thought that physical damage to a plant’s
surface that exposes the underlying cells, often through mechanical stress or as a result of insect
feeding, is a requirement for viral infection to occur. Regardless of these viral infectivity mecha-
nism differences, dynamic structural transitions by the viral capsids appear to be general fea-
tures of most viruses. These infectivity mechanism differences are very likely correlated with
variable virus capsids’ structures, dynamics and energetics-based mechanical properties.
Therefore, understanding viral infectivity represents a clear motivation for investigating cap-
sids’ mechanical and dynamic property differences.

The AFM-based mechanical testing of viral nanoparticles has now become the principal
tool to probe the physico-chemical and materials properties of viruses [1]. In these experi-
ments, an indenter (cantilever tip) approaches a particle and gradually deforms the particle,
while the restoring (indentation) force F from the particle, corresponding to the particle defor-
mation X, is measured. A variety of viruses have been characterized by profiling F as a function
of X (FX-curve), including bacteriophages ®29 and HK97 [2-4], the human viruses Noro
Virus, Hepatitis B Virus, Human Immuno Deficiency Virus (HIV), Adenovirus (AdV) and
Herpes Simplex Virus [5-9], and other eukaryotic cell infecting viruses such as Minute Virus
of Mice, Triatoma Virus (TrV) and plant viruses Cowpea Chlorotic Mottle Virus (CCMV) and
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Brome Mosaic Virus (BMV) [10-14]. The FX-curves reveal valuable information about the
particle spring constant, reversibility of deformation, and forces required to deform or distort
capsid structures tested mechanically.

AFM experiments reveal a surprising diversity of mechanical properties of biological par-
ticles. These properties have been shown to correlate with local conformational dynamics of
the capsid structure and to contribute to events such as receptor binding, genome uncoating
and capsid maturation, all crucial steps in different viral infectious cycles. The main impedi-
ment to gaining further energetic and structural insights into these properties is that experi-
ments reveal results that are difficult to interpret without a comprehensive theoretical
modeling framework that describes the full range of observed mechanical behaviours. For
example, it is not clear why is the initial portion of the FX spectra is weakly non-linear? Why
do the FX spectra for some particles exhibit sudden drops in the deformation force, whereas
the FX curves for other particles show gradual force decreases? What features determine the
mechanical limits of the particle, i.e. the critical forces and critical deformations? Why do
the FX spectra differ from one measurement to another for the same particle, even when it is
indented along the same symmetry axis? The latter property points to the stochastic nature
of deformation and collapse transitions, but what defines the likelihood of structural collapse
at a given force load? Virus particles are often characterized by their spring constants, but
our in silico nanoindentation studies show that the derivative, dF/dX, fluctuates significantly
with X [15]. What is the extent of structure remodeling that gives rise to a non-monotonic
behavior for dF/dX? What types of mechanical excitations corresponding to these structure
alterations contribute to the particle deformation? These questions clearly show the need
for a thorough theoretical framework describing capsid and other types of nanoshell
deformations.

A number of theoretical approaches have been designed to describe the dynamics of virus
particles, including: finite element analysis [16], normal mode analysis [17], elastic network
modeling [18], atomistic MD and coarse-grained simulations [19-22], and other approaches
[23]. Building upon the results from direct MD simulations of mechanical deformation, here
we take a step further to develop a systematic approach for meaningful interpretation of the
force-deformation spectral lineshapes available from single-particle nanomanipulation experi-
ments. In these state-of-the-art experiments, a slowly moving cantilever tip gradually deforms
a biological particle, and multiple nanoindentations are performed to directly probe the parti-
cle’s mechanical response. Using slow indenter velocities is entirely justified biologically. This
view can be seen to align with the kinetics of genome packaging and ejection, which occur on a
second timescale or shorter, as does the associated pressure change occurring inside the parti-
cle. For these reasons, we formulate a theoretical model for a uniaxial particle’s deformation
achieved using slow indenter velocities. The theory links the slope, critical force, and the critical
deformation of the FX-curve with the physical characteristics of the structure, geometry and
overall shape of the particle and indenter. First, we summarize the results of Molecular Dynam-
ics (MD) simulations of mechanical deformation accelerated on Graphics Processing Units
(GPUs) [24, 25], which we refer to as nanoindentation in silico, of the empty CCMV capsid
particle; see S1 Fig [15]. The in-depth analysis of the structure and energy output from MD
simulations for this specific example of a thick-shelled nanoparticle has enabled us to identify
the most important types of mechanical excitations that contribute to the deformation of bio-
logical particles. Next, we formulate the model by analyzing structural evidence from in silico
nanoindentation measurements, which mimic the nanoindentation experiments in vitro.
Finally, we apply the model to characterize the experimental and simulated FX-spectra for sev-
eral specific examples of biological nanoparticles: the protein shells of the viruses CCMV, AdV
and TrV.
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Results
Nanoindentation in silico

We employed the methodology of “nanoindentation in silico” (i.e. computational-based inden-
tation of a nanoparticle; see S2 Fig) [15, 25, 26], which mimics the AFM-based force measure-
ments in vitro. In this approach, the mechanical loading of a biological particle is performed
computationally (Methods and Models section) using MD simulations with experimental con-
ditions of dynamic force application f(t) = r¢t. The significant computational acceleration avail-
able on Graphics Processing Units (GPUs) enables us to apply the experimentally relevant
force-loading rates ry= xvy (x is the cantilever spring constant), which correspond to the canti-
lever base velocity v¢=0.1-1.0 ym/s. Structural transitions can be resolved by examining the
coordinates of amino acid residues, and biomechanical characteristics can be accessed through
analysis of the energy output.

Our in silico experiment provides the complete high resolution simulation view of particle
deformation and collapse described below, where the choice of simulation conditions is entirely
under the control of the investigator. The full control over the system during the nanomanipu-
lations in silico can be used to study deformation at different specific symmetry points on the
particle surface as well as the particle-indenter contact area dependence, and to relate the force
and energy values recorded at any point in the simulation to the specific details observed in the
particle’s structure. This type of precise high resolution control is not possible from nanoinden-
tation carried out experimentally. Furthermore, when a sufficiently slow force loading is uti-
lized our approach to nanoindentation in silico allows the investigator to follow the stochastic
dynamics of mechanical deformation of a biological particle, which is microscopically revers-
ible. In this regime of compressive force application, the rate of force increase is slower than
the rate of system re-equilibration at each point along the deformation reaction path (quasi-
equilibrium). For these reasons, we utilize our nanomanipulations in silico to guide the detailed
modeling and interpretation of experimental results for the deformation dynamics of any bio-
logical nanoparticle being studied.

Motivation for FNS model from MD simulation data

In this section, we will utilize MD simulation data to motivate the FNS model. Rigorous analy-
ses of the structures and energy outputs from MD simulations of mechanical deformation of
viruses [15] and a microtubule [26] showed that the mechanical response of biological nano-
particles, subject to a uniaxial deformation, can be divided into Hertzian and bending contribu-
tions (see Fig 1).

Hertzian and bending deformations. The Hertzian deformation accounts for the local
compression of the protein layer (Fig 1a—1c, S1 Movie), which also results in an increase of the
indenter-particle contact area. The bending deformations account for the evolution of the
remaining portion of the particle structure (Fig 1d-1f, S1 Movie), which leads to the global col-
lapse transition. These are distinctly different, independent excitations (both in the scale and
direction of deformation), which become populated at different levels of mechanical stress. We
separately analyzed the dynamics of Hertzian deformation (xz) and bending deformation (x;),
and found that their dependence on X is similar to the dependence presented in Fig 2. We per-
formed a careful analysis of the initial portion of a large number of experimental and simulated
FX curves for the CCMV, TrV, and AdV particles (S3 and S4 Figs), and found that the weakly-
nonlinear dependence of the indentation force (F) scales with deformation (X) as ~ X" We
also analyzed the dependence of the size of contact area a on X and found, quite in agreement
with the Hertz model, that a scales with X as ~ X"? (not shown).
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(b)

Fig 1. Types of mechanical excitations exemplified using the CCMV shell. (a)-(c) Hertzian deformation x,; with normal displacements uy, and upa-
(scheme on (a)) under the influence of force (vertical arrow). Dashed contour lines show the tip and particle in their undeformed states. Structures in (b)—the
native (left) and partially deformed (right) states show an amplitude of x,; &~ 3 nm. (c) CCMV shell profile showing parts of the structure with high potential
energy (>3 kcal/mol per residue; red) and low potential energy (blue). (d)-(f) Bending deformation. The side portion of the structure (barrel) is partitioned into
curved beams (top-side view on (d)). Structures in (e)—the partially deformed (left) and pre-collapse (middle and right) states reveal the amplitude of x, ~ 4.3
nm. (f) CCMV shell profile under Hertzian and bending deformations showing the potential energy distribution.

doi:10.1371/journal.pcbi.1004729.9001

Parallel curved beams. To model bending deformations of the side-portion of the parti-
cle’s structure, we adopted the physical picture of coupled parallel beams undergoing mechani-
cal deformations. First, all the biological particles studied have discrete structures. For example,
the CCMYV shell is formed by the structural integration of monomer protein assemblies termed
pentamer and hexamer capsomers (S1 Fig); our previous studies revealed the uneven tension
distribution in the pentamers and hexamers (Fig. S6 in the Supporting Information to
Ref. [15]). Second, our simulations showed that mechanical loading is asymmetric, that is, at
the onset of the transition to the collapsed state, certain structural elements of the “capsid bar-
rel” are more loaded and, hence, yield sooner than others (SI Movie). This can be gleaned from
Fig le, which displays the results of a particular MD simulation trajectory (simulation run) of
deformation and collapse of the CCMYV shell. We see that due to fluctuations in the capsid
structure, in this trajectory the “right beam” bends more than the “left beam”. This asymmetry
grows with time and results in the beams undergoing sequential collapse transitions, which
implies that some of the structural elements yield to force sooner than others. Therefore,
microscopically various structural portions of the CCMV capsid collapse, but not all at the
same time. Fig le also shows that the curvature change occurs in the side-portion of the shell
where bending deformation develops along the beams’ contour length. These observations
have led us to the physical picture of a collection of mechanically coupled beams.

Out-of-plane bending versus in-plane stretching. We focused on the out-of-plain bend-
ing of beams because our previous essential components analysis showed that this is the domi-
nant mode, responsible for ~ 85% of deformation dynamics (see Fig. S5 in Ref. [15]).
However, the in-plane stretching modes can potentially contribute somewhat to deformation
of protein domains forming the protein shell layer (e.g. in-plane deformation of pentamer/hex-
amer capsomers forming the virus capsid structure). To assess the relative importance of the
“out-of-plane” bending mode as compared to the “in-plane” stretching mode of deformation,
here we computed the distribution of the Cauchy stress tensor using the results of MD
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Fig 2. Dynamic evolution of mechanical degrees of freedom and survival probability for CCMV shell.
Panel (a) exemplifies the dynamics of Hertzian deformation x; and beam-bending deformation x,, vs. X in the
Hertzian regime | and in the transition regime Il. Model calculations are performed using parameter values
obtained from the fit of theoretical FX-curves to the simulated average FX-spectra for CCMV nanoindentation
along the 2-fold symmetry axis (Table 1). The solid curves correspond to the exact method of parameter
estimation; the dashed and dashed-dotted curves are for the (piece-wise) approximate method of estimation.
Snapshots exemplify the local flattening of CCMV structure under the tip for X =1 nm and 5 nm deformation.
Panel (b) displays the results of overlap function y-based estimation of the survival probability s(X) from
simulations of CCMV nanoindentation (v¢= 1.0 um/s, R;, = 20 nm, and k = 0.05 N/m; S3a Fig) along the 2-fold
(red), quasi-3-fold (blue), and quasi-2-fold symmetry axes (green). The theoretical profiles of s(X) (solid
curves; see Eq (16)) are compared with the simulated profiles of x(X) (data points; see Eq (15)). The model
parameters are summarized in Table 1. The values of x]/** are obtained using Lagrange multipliers and the
approximate method of parameter estimation (see Discussion).

doi:10.1371/journal.pcbi.1004729.9002
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simulations for the CCMV particle. The Cauchy stress tensor per amino acid residue can be
calculated using the formula:

B
= 1 0 Usop Tl

DTN AN, P (1)
i ij

y

where 7" is the Cauchy stress tensor for the i-th amino acid, Usep is the potential energy of the
biological particle given by Eq. SI (S1 Text), r;; is the distance between the i-th and j-th parti-
cles, @ and 8 denote coordinates x, y and z [27], Q, = 47/3a? is the average volume of the i-th
amino acid, and g; is the average size of the i-th amino acid [28]. The normal stress component,
corresponding to the “out-of-plane” bending, was calculated using the formula:

o} = Z a’n'n’, (2)
«f

where n is the normal vector of indentation. The shear (tangential) stress component, corre-
sponding to the “in-plane” stretching, was calculated using the formula:

o =\[>,, o — (o) (3)

The results of calculation of the normal and shear stress components displayed in Fig 3
clearly show that the contribution to deformation dynamics from the “in-plane” stretching is
small compared to that from the “out-of-plane” deformation. For this reason, the FNS model

accounts only for the “out-of-plane” motions, which are far more significant to deformation
dynamics than the “in-plane” motions.

Identification of mechanical degrees of freedom for FNS model

In this section, we exemplify the FNS model in terms of the mechanical degrees of freedom
that we identify to be most relevant to the uniaxial type of deformation. In dynamic force-
ramp f(t) = xv¢t, an indenter (cantilever tip) compresses a particle (Fig 1 and S2 Fig), thus cre-
ating a physical contact between them. The force loads the particle mechanically over time ¢
with the force-loading rate kv (x and vyare the respective cantilever spring constant and veloc-
ity). For small force, the mechanical energy is localized to the particle surface under the tip,
and the tip and particle undergo normal displacements u,;, and u,,, corresponding to the
deformation X = Usip+ilpa,. Since Uy, <Ktlpay, Xp = Upar- The force gradually loads the particle,
stressing the side portions of the structure undergoing bending deformations x;, (Fig 1). Force-
ramp conditions project the complex dynamics of the particle deformation in the direction per-
pendicular to the particle surface. During nanomanipulations in vitro and in silico, the defor-
mation force F, the mechanical response of the particle, is measured as a function of the total
deformation X = xp+x;, (reaction coordinate). Therefore, we focus here on the computation of
the force-deformation (or FX) lineshape. We quantified xz and x;, directly using the simulation
output for the CCMYV particle and found these to be independent, small-amplitude deforma-
tions. For example, the maximum values of x;; and x;, for the CCMV shell are 3 nm and 4.3
nm, respectively (Fig 1b and 1le).

Analysis of the experimental FX-spectra and structure snapshots from the MD simulations
showed that the Hertz model [29, 30] properly accounts for the force F due to the observed
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stress for out-of-plane stress for in-plane
bending stretching

X =7.0nm
F =0.65 nN

X =14.0 nm
F=0.6 nN

0.0 28.0 56.0 84.0 112.0 140.0
GPa

Fig 3. Stress distribution on CCMV shell surface. Map of the Cauchy stress tensor projections along the
direction of out-of-plane bending deformation (left) and tangential in-plane stretching (right) for different
deformation X of the CCMV shell and corresponding indentation force F (indentation along the 2-fold
symmetry axis with Ry, = 20 nm and v¢= 1.0 um/s). For each amino acid residue (C,-particle), the stress
components are averaged over amino acids within a sphere of radius R = 15 A (color denotation is
presented in the graph). Also shown are formation and subsequent evolution of microscopic cracks in the
side portion (particle barrel) of CCMV structure (shown in red circle/ellipse).

doi:10.1371/journal.pcbi.1004729.9003
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local curvature change of the particle under the tip (Fig la),

1 [R.R,
F _ = DT s 4
) = oo\ [ (4)

where R, and Ry;, are the radii of the particle and the tip, respectively. The term Dy, is given

by
3(1—-¢2 1-2
D, =~ £y — =2 5
f 4( E, g (5)

tip

where Ej; and E;, are the Young’s moduli and oy and 0y, are the Poisson’s ratios for the parti-
cle and the tip, respectively. Since E;,>>Ey, D, = 0.75(1 — 03,) /E,,.

To describe the bending deformations F,(x;), we discretize the side portion of the particle
structure (barrel) into curved vertical beams of length L (Fig 1d). The results of comparison of
the out-of-plane bending and the in-plane stretching modes of deformation (Fig 3) showed
that the effect of in-plane stretching on the total particle deformation is indeed negligible (see
previous section). Hence, we can safely assume that the length of vertical beams L does not
change with total deformation X. In view of the observations described above, our discretiza-
tion of the particle barrel into curved vertical beams is fully justified. For a spherical particle of
thickness 7, the total number of beams is N = 2nR,,,,/r. For small beam deformation x; (Fig 1),
the potential energy change is given by the integral Ej, I/2 [ (x(xp, [)—ko)” dl [29, 31], where &,
and x(x;, [) are the initial and instantaneous beam curvatures (0<I<R,,;,—x;/2) and E;, I is its
flexural rigidity, given by the product of the Young’s modulus for bending E, and the moment
of inertia I. With the beam shape function

a5, 1) = (R, +32) \/ 1- ﬁ (6)

par

the curvature is given by

(%, 1)

K(x,,1) = 1 NTE
ol 1+ (q(x, D))"

(7)

where g’ and q” are the first and second derivatives of g with respect to I. By performing the
integration we obtain the expression for the bending energy, which upon differentiation with
respect to x, gives the bending force. Expanding the resulting expression in Taylor series in
powers of x;, and retaining the linear term in the expansion, we obtain:
9E, In
X)) 2 ——x 8
.fh( b) SR3 b ( )

par

Combining the contributions from all N coupled elements (beams) and adding Eqs (4) and (8)
together, we obtain the deformation force F (x,,, x,) = kyx/” + Nk,x,, where k;; = (Rpar Reip!
(RpartRip)) /Dy is the “Hertzian spring constant” and k, = 9E, I/ (8R;,,) is the beam spring
constant. In agreement with in silico indentations of CCMV shell (Figs 2 and 4) and recent
experiments on thick-shelled particles [11], F predicts that the initial portion of FX-curves is
weakly nonlinear, but fails to capture the force drop (Fig 4) because the theory lacks a descrip-
tion of structural damage (see next section).
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Fig 4. Compressive force-induced deformation of CCMV shell in silico. The average simulated FX-
spectra (data points), obtained from nanoindentations in silico (vs= 1.0 um/s, Ry, = 20 nm, and k = 0.05 N/m;
S3a Fig) along the 2-fold (red), quasi-3-fold (blue), and quasi-2-fold (green) symmetry axes, are compared
with the theoretical FX-curves obtained using the FNS model (solid lines). Snapshots on the left show the
native CCMV structure in the intact state; the circled bolded X shows the locations of force application. We
used MD simulations accelerated on GPUs [24, 25] and nanoindentations in silico to generate the average
FX-spectra for the CCMV capsid (see also S1, S2, and S6 Figs). Computer simulation data are taken from
Ref. [15]. Structures above the force maxima depict the capsid transitioning from the state right before the
collapse (left) to the collapsed state (right). The inset shows a schematic for piece-wise spectrum modeling: in
regime |, X~xy, and F(X)~F; in regime Il, X = x+x, and F(X) = Fy+Fp.

doi:10.1371/journal.pcbi.1004729.9g004

Fluctuating Nonlinear Spring model

As we pointed out, owing to the discrete arrangements of capsomers forming the CCMYV shell,
structural elements fail but not all at the same time. To reflect the discrete nature of micro-
scopic transitions, we represent a particle by a collection of N identical coupled elements
(beams) interacting with an indenter through a Hertzian cushion (Fig 1). Each i-th beam
undergoes the elastic deformation x;,; = x;, with the spring constant k;, until it fails mechanically
when the load on the beam reaches some critical value f;; (see snapshots in Fig 4). The spherical
geometry of a virus particle dictates the parallel arrangement with the spring

K, = > k,, = Nk,. At any given time, there are 1 (or N-1) beams that have failed (or sur-
vived), and the actual bending force is given by

Fy(x,) = k,(N — n)x, = K,x, (1 - %) )

We define the probability of damage d = n/N and survival s = (N-n)/N = 1-d of the collection
of beams, which in the continuous limit are described by the probability density function (pdf)

g(Fp), ie.
d(F,) = Prob(F,) = / g(F})dF, (10)

and s(F},) = 1-d(F,,) (Fp = K}, xp). With the structural damage accounted for, the deformation
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force becomes:
F(xy,x,) = ka}‘f + K, x,5(x;) (11)

Our rationale for using the survival probability measure s(x;) is based on the in-depth analy-
sis of structures from the MD simulations of mechanical deformation of the CCMV virus [15]
and microtubule polymers [26]. Both systems clearly demonstrate that soft biological particles
accumulate structural damage. Fig 3 shows formation of small cracks in the CCMV shell,
whereas Fig le provides a global view of the extent of structural damage in the CCMV particle,
accumulated in the course of deformation.

The transition to the collapsed state occurs when all beams have failed, and so, the longest
lasting beam determines the collapse onset at the critical deformation X*”’ when tension
exceeds the critical force F°. Hence, the statistics of the maximum (extreme) force determines
the beams’ failure. For these reasons, we used the two-parameter Weibull distribution [32]

woml Q][]

with the cooperativity parameter , and the scale parameter F;. The meaning of F; can be

understood by using the condition of maximum force, dF,/dx; = 0, from which we obtain:
F; = K,x; {/m where x; is the critical beam deformation. By substituting F; into the expression
for Fj,(x;), we obtain the bending force threshold

col __ F; — Kbe

= 13
V== e (13)

Finally, by substituting Eq (12) for s(x;) in Eq (11), we obtain one of the main results of the paper:

F(xy,%,) = kyx;[” + Kyx, exp {_ (K;jfb> ] (14)
b
The Fluctuating Nonlinear Spring (FNS) model describes the nonlinear deformation as a

superposition of the weakly nonlinear deformation (Hertzian cushion) and the elastic deforma-
tion (particle barrel; Fig 1) of varying stiffness that is gradually degraded with X. Consequently,
Eq (14) shows that the uniaxial deformation and structural collapse of a biological particle can be
represented by the mechanical evolution of a fluctuating weakly nonlinear spring. This behavior
led us to propose the name of the model. The beams’ bending starts as elastic (Nk;), but becomes
increasingly more stochastic near the collapse transition, thus explaining the variability of F*
and X° in the experimental and simulated FX-spectra (see Figs 4 and 5; see also S3 and $4 Figs).

Discussion
Application of FNS model

The FNS model can be understood by adopting a picture of “a particle as barrel” under the Hert-
zian cushion. Then, Eq (14) can be viewed as the complex mechanical response function to
describe a biological particle whose stiffness is degraded exponentially with x;, as

K, exp [—(K,x,/F;)"]. The latter quantity can be taken as the “effective stiffness” as compared
to the native state stiffness of the particle K. If we multiply the number of beams N = 2nR,,,,,/r
by ky, (given by the prefactor in Eq (8)), we obtain K, = Nk, = 9E,In® /AR’ r, which carries
information about the “particle barrel” (no information about beams). Also, in Eq (14), the
shape parameter m can be interpreted as a cooperativity parameter that takes into account
dynamic coupling among the beams. When m = 1 the beams are independent, which
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corresponds to the exponential distribution for the survival probability s(x,) = exp [-K,x,/F;].
When m # 1, the structural elements behave cooperatively to withstand the stress.

In the FNS model, the main quantity F is a bivariate function (Eq (14)), but in the experi-
ment F is measured as a function of the sum X = x+x;,. To resolve x;; and x;, for each value of
X we use the following considerations. A particular realization of the deformation process (FX-
trajectory) is a stochastic path on the 2D surface F(xy;, x;,) displayed in Fig 5. For slow loading,
when the particle structure equilibrates on a timescale faster than the rate of force change, the
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=
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Fig 5. AFM-based compressive force-induced deformation of biological particles. Shown are the
experimental results for empty CCMV shell, TrV shell and TrV particle with ssRNA (panel (a)), and AdV
particle with dsDNA (panel (b)); see also S3b and S4a—S4c Figs. Experimental data are from Refs. [8, 12].
Please, see these publications for exact experimental procedures and results. The average experimental
spectra (data points) are compared with (solid) theoretical FX-curves obtained using the FNS model. In panel
(a), the inset shows the 2D-surface F(x, Xp) (Eq (14)) constructed using the model parameters from the fit of
theoretical FX-curves to simulated FX-spectra obtained for CCMV indentation in silico along the 2-fold
symmetry axis (Fig 4; Table 1). The red curve on the surface F(xy, Xp) represents the equilibrium average
path with the points formed by the intersection of F(xy, x;) surface with line x,, = X-x,, (shown using gray
vertical plane for X =5, 7 and 9 nm). The noisy black curves are particular realizations of the stochastic FX-
path (i.e. individual FX-spectra). In panel (b), the dashed curves show a schematic for piece-wise modeling of
the average experimental FX-spectrum for AdV particle deformation along the 2-fold symmetry.

doi:10.1371/journal.pcbi.1004729.9005
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dominant path is the equilibrium deformation path. Utilizing slow cantilever velocities (vy=
0.06-1.0 ym/s) allows us to use this quasi-equilibrium argument. Importantly, our recent study
of the dynamics of deformation and collapse of microtubule polymers [26] show that in silico
indentation experiments reported here are carried out under near-equilibrium conditions of
compressive force application. Then, the equilibrium force can be determined from the
requirement that the deformation force (and deformation energy) attains the minimum.
Hence, finding the minimum force for each value of X is equivalent to finding x;; and x;, which
minimize F(xy, x;,) subject to the constraint, X = xy+x;,. This can be solved using the method
of Lagrange multipliers summarized in the S2 Text.

The average simulated spectra for the CCMV particle are compared with the theoretical
curves in Fig 4 (simulated spectra for CCMV are accumulated in S3a Fig). To find the best fit,
we employed two methods. The exact method is based on Eq (14) and uses Lagrange multipli-
ers to find x;; and x;, subject to the constraint X = xy+x;,. This approach can be used to model
the average force-deformation spectra. The application of this method to describing the experi-
mental or simulated force-deformation spectra requires solving the nonlinear equation for
beam-bending deformation x;: a,x,” + a,x;" + a,x;" + a,x] + a.x, + a5 = 0, where
a, = mPKE(K,/F)"™, 0, = —2m(L+ m)K2(K, /F})™" a, = (1 + dm + m2)K3 (K, /E})",

a, = —2(1+m)K}(K,/F;)", a; = 9/4k}, and a; = K} — 9/4k X are constant coefficients.
Then, x; is obtained as xp = X—x;. In the piece-wise approximate method (see inset in Fig 4), a
spectrum is divided into the Hertzian-deformation-dominated initial regime I: X~x; (x;, = 0)
and FaFy, = ki; X*'% and the transition regime II (corresponding to the non-monotonic part of
the FX-curve): X~x;, and F~F), = K;, Xs(X). We calculate Fy in regime I for X ~ x,, < x//*,
where x};** is obtained using Lagrange multipliers and setting s(x;) = 1. In regime II, we use
F(xj™,x,) = kH(xZux)g/z + K, (x, — x*) exp [ (K, (x, — x33™) /F;)"] for X ~ x, > xj**. This
method can be used to model individual FX-spectra (displayed in S3 and S4 Figs) in order to
access the entire distributions of a particle’s mechanical and statistical characteristics and to
probe the variability of these properties due to the intrinsically stochastic nature of mechanical
deformation and collapse of biological particles.

Mechanical properties of CCMV, AdV, and TrV patrticles

We applied the FNS model-based theory to describe FX curves for the CCMYV particle. The
agreement between the simulated force-deformation spectra and theoretical FX-curves for the
CCMV particle is very good (Fig 4). The FX-spectra presented in Fig 4 also fully agree with the
FX-spectra for the CCMV particle discussed extensively in our previous study [15] in terms of
the critical force F*%, critical deformation X°*, and the slope dF/dX. Simulated FX-curves show
smaller variability as compared to the experimental FX-spectra, because in experiments not
only are 2-fold, 3-fold, and 5-fold icosahedral orientations probed, but also various intermedi-
ate orientations. Less sharp force peaks due to slower force decrease observed in simulations
can be attributed to overstabilizing the inter-chain interactions and neglecting the hydrody-
namic interactions in the SOP model of the CCMV shell (work in progress). The values of
model parameters obtained using both methods of estimation of the contributions x and x;,
are very close (Table 1). For all symmetry types, the Hertzian excitation is softer than the bend-
ing (ky < K3), implying smaller Young’s modulus, E;; < Ep, which is why the Hertzian degree
of freedom is excited first (regime I; see Fig 1). After the Hertzian force reached the maximum
Fie =k (xg“x)3/ *at X & x,; = x", a subsequent force increase excites the beam-bending
degrees of freedom (regime II) and xp (x,) decreases (increases); see Fig 2a. Hence, the physical
properties of the particle are dynamic (rather than static) since the nature of its mechanical
response changes with increasing X from Hertzian-type to beam-bending deformation. The
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Table 1. Deformation and collapse of biological particles—CCMV, TrV, and AdV. Accumulated are the Young’s moduli for Hertzian £, and bending E,,
deformations, the beam strength F; and the cooperativity parameter m. The first (second) entries correspond to the exact (approximate) methods of parame-
ter estimation. The model predictions for F°°' are compared with the peak forces (in parenthesis) from the spectra (Figs 4 and 5). For TrV and AdV particles,
the shell thickness was estimated as described in the S3 Text.

System

CCMV (2-fold symmetry; in silico)
CCMV (quasi-2-fold symmetry; in silico)
CCMV (quasi-3-fold symmetry; in silico)
empty CCMV (average; in vitro)

empty TrV (average; in vitro)

full TrV (average; in vitro)

full AdV (2-fold symmetry; in vitro)

full AdV (3-fold symmetry; in vitro)

full AdV (5-fold symmetry; in vitro)

doi:10.1371/journal.pcbi.1004729.1001

En, GPa Ep, GPa F;, nN m F°°, nN

0.013/0.012 0.50/0.50 1.70/1.25 1.71.5 0.67/0.69 (0.68)
0.011/0.011 0.37/0.35 1.50/1.25 1.4/1.6 0.58/0.64 (0.68)
0.012/0.012 0.52/0.46 1.75/1.33 1.4/1.6 0.58/0.64 (0.68)
0.019/0.023 0.85/0.81 1.90/1.00 1.2/1.3 0.56/0.78 (0.71)
0.030/0.036 0.94/0.81 1.90/1.1 1.11.2 0.70/1.02 (0.69)
0.140/0.140 0.95/0.84 8.10/5.5 1.1/1.0 2.91/3.78 (3.00)
0.037/0.040 0.35/0.29 10.0/5.0 1.2/1.4 2.58/4.05 (3.80)
0.018/0.019 0.20/0.18 11.0/5.0 1.311.7 3.04/4.15 (4.30)
0.021/0.023 0.14/0.13 5.10/3.7 1.1/1.0 2.03/2.35 (1.90)

gradual decrease in xp is somewhat counter-intuitive as one expects that x (and Fy) remains
constant after it has reached the maximum x}}* (and F};*). This is because the actual stiffness
of beams is not constant but is degraded with increasing x;, due to the consecutive beam failure
events (and accumulated damage). Therefore, in the transition regime II, the beam-bending x;
increases not only due to the continuing mechanical loading, but also as a result of stress redis-
tribution to intact beams.

The ENS model also explains why the mechanical response of biological particles depends
on the structure of the particle-indenter contact and the particle and indenter geometries [15].
The parameter obtained from the model for different symmetries show that the mechanical
response of CCMV varies with the location of compressive force application (Table 1). As all
virus shells reflect the discrete symmetry of their specific capsomer arrangements, these results
imply that the mechanical properties of virus particles are local (i.e. location-specific) charac-
teristics of their structure. Furthermore, we found in our previous studies of near-spherical
virus particles [15] and cylinder-shaped microtubule polymers [26] that the deformation force
depends on the indenter size. The FNS model fully accounts for this finding. In the FNS model,
the information about the particle and indenter geometries is contained in the Hertzian spring
constant ky. Hence, the model predicts that the geometric effects are important only in the ini-
tial Hertzian-deformation dominated regime (regime I; see Fig 4). Application of the FNS
model to several nanoscale biological particles (CCMV, AdV, and TrV virus shells) revealed
that all exhibit m>1, which means that the structural elements forming the side-portion of the
biological particle structure are mechanically coupled. For example, for the CCMV particle we
found that for all indentation locations, the range of values was 1.8<m<2.1 (Table 1). There-
fore, positive cooperativity is exhibited by the side-portion of the particle’s structure (beams),
regardless of the point of indentation. Interestingly, the beams do not just fail when F > F},
but begin to fail under smaller force F;"' = F; / {/em. For example, for m ~ 2, we obtain
Fel ~ 0.43F;.

The AFM-based measurements for the empty CCMYV shell, empty TrV capsid, full TrV
virion (with encapsulated ssRNA molecule) and full AdV virion (with encapsulated dsDNA)
are presented in S3b and S4 Figs. Theoretical fits to the experimental average FX-curves shows
that their deformations are well described by the FNS model (Fig 5). The obtained Young’s
moduli for Hertzian deformation are uniformly smaller (~ 10-100 MPa) than the Young’s
moduli for bending deformation (Giga-Pascal range; Table 1). There are small variations in
the model parameters for the AdV virion due to force application at locations with different
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symmetry axes. This correlates with our similar findings for the CCMV shell, implying that
the symmetry of local arrangements of capsomer repeats at the point of indentation influences
its mechanics [15]. The values of cooperativity parameter are found to be greater than unity
(m > 1), representing positive cooperativity, for all the systems studied. Parameters for empty
and ssRNA-loaded TrV capsids indicate that the difference in particle stiffness is largely due to
an increase in the Young’s modulus for Hertzian deformation Ey; = 0.03 GPa (empty TrV) vs
0.14 GPa (full TrV), which suggests that local indentations are resisted in ssRNA-filled parti-
cles. These results fit with the previously observed deformation of RNA-filled TrV into an
oblate sphere to maximize the volume available to pack the genome [12]. Hence, confining the
large ssSRNA genome inside the small particle volume builds internal pressure resisting local
indentation. This behavior is in agreement with the general property of bacterial and higher
organism viruses that have evolved to achieve maximum nucleic acid packing into the avail-
able virion volume, often exhibiting significant internal pressures in the mature packaged
state. It is known that genomic material is one of many factors that influence nanoparticles’
mechanics, as described, in one example, in our previous study of TrV [12]. In full accord with
this notion, the FNS model predicts that the presence of the genome defines the stability and
physical properties of native virus particles. The biochemical properties of the nanoparticle
shell are defined by the intra- and intersubunit protein interactions, and these non-covalent
interactions are fully reflected in the SOP-model and they show up in the simulated FX-
curves.

Previously, the 3D Young’s modulus of the capsid material was estimated by investigators
using a thin shell theory [1, 11, 12, 29]. This assumption is valid for some bacteriophage cap-
sids, but is not so in the case of CCMV and TrV capsids where the shell thickness cannot be
neglected with respect to the virion radius. The FNS model properly accounts for compression
of the protein layer under the tip. In the FNS model, the beam-bending modulus (E}) is roughly
equivalent to the 3D Young’s modulus in the thin shell theory. It is estimated at ~0.85 GPa
(experiment) and ~0.4-0.5 GPa (simulations) for the empty CCMV capsid (Table 1). These
are similar to yet larger than the values of 0.15-0.30 GPa obtained with thin shell theory [1, 11]
and 0.28-0.36 GPa from finite-element analysis ( ~ 0.25 GPa) [33], but they disagree with the
estimates from several computer modeling studies (0.08-0.09 GPa) [22, 23]. In the modeling
study based on spherical harmonics [23], multiple deformation modes have also been observed,
corresponding to equilibrium deformations of the polar regions (tip-surface contact area in
FNS model) and the side wall (beams in FNS model) of the shell. For the empty TrV capsid, we
obtain Ej, ~ 0.9 GPa (Table 1) whereas the thin shell theory gives ~ 0.5 GPa. The lower previ-
ous estimates of the 3D Young’s modulus result from attributing the softer Hertzian deforma-
tion mode to bending of the capsid shell in the thin shell theory. Indeed, for CCMV and TrV,
the thin shell theory estimates of 0.15-0.30 GPa and 0.5 GPa are between the values of E; =
0.02-0.03 GPa and E;, = 0.85-0.95 GPa from the FNS-model based modeling (Table 1).

Structure-based interpretation of survival probability

One of the novel aspects of the FNS model is that it allows one to interpret the survival proba-
bility s(x,) = exp[—(K,x,/F;)"] (Eq (12)) using the concept of structural similarity quantified
by the structure overlap function y(x;,). In silico, s(x;) can be directly accessed by calculating
the structural similarity y between a given (current) structure (corresponding to beam-bending
deformation x;) and the native (reference) state, using the formula:

1) = 2MM = 1))y~ O(Jr,(x,) = 1,(0)] = r,(0)) (15)

In Eq (15), M is the total number of amino acid residues comprising the particle’s structure
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(system size), and in the Heaviside step function ©(x), defined as © = 0 for x<0 and © =1 for
x>0, r;j(x;) and 7;4(0) are the distances between the i-th and j-th amino acids in the given and
native structures, respectively (8 = 0.2 is the tolerance for distance change).

Since Hertzian deformation is local, i.e. it is limited only to the protein domains in and
around the indenter-particle contact area (see Fig la—1c), this type of deformation does not sig-
nificantly affect the global particle structure, and so y(X)~y(x). Indeed, the X-dependent pro-
files of y show that the structure overlap decreases at large values of X only when mechanical
loading starts deforming the beams (Fig 2b). On the other hand, s(x;) decreases only after the
Hertzian deformation has reached the maximum x,; = x;**. At this point, a subsequent
increase in X loads the beams, resulting in the increase of x;, and decrease of s(x;,) (Fig 2a).
Hence, the dependence of s on X can be approximately described as

s(X) ~ 5O (™ — X) + s(X = x5™)O(X — ™) (16)

In Eq (16), so = 1 represents the initial values of s(X) in the Hertzian deformation regime I, and
the second term on the right describes the dependence of s(X) in the beam-bending regime II
(see Fig 2 and the inset to Fig 4). Because the structure overlap y ranges from y = 1 (identical
structures) to y = 0 (completely dissimilar structures), structural alterations and, hence,
changes in y can be translated to changes in s, i.e.

s(X) = 1(X) (17)

Therefore, as Eq (17) implies, the survival probability s(X) can also be modeled using the struc-
ture data from nanoindentation simulations.

To confirm the above conclusion, we estimated s(X) using the structure output from in silico
nanoindentations of the CCMV particle. The structure overlap y-based estimation of s(X)
(data points; Eq (17)) and theoretical profiles of s(X) (curves; Eq (16)) are directly compared in
Fig 2b. The results of comparison fully confirm this conclusion, and also demonstrate that the
survival probability s(X) has a well-defined interpretation in terms of the particle’s structure.
Stated differently, this probability measure is not some intermediate variable used to formulate
the theory, but rather, it is an important ingredient of the FNS model. Hence, in the theoretical
framework of the FNS model, the survival probability s(X) provides a direct link between the
dynamic structural changes observed in biological particles and the intrinsically stochastic
nature of their deformation and transition to the collapsed state. In a sense, the FNS is also a
structure-based model. In this regard, the structure overlap function y(X) can be utilized in
conjunction with the structure output from nanoindentations in silico to guide the modeling
efforts in order to resolve s(X).

FNS model predictions

The proof of a theory is in its predictive power. First, we used parameters of the FNS model
(Table 1) to calculate the position X' and the amplitude of the force peak (force maximum)
F! for the average FX-spectra (Figs 4 and 5), and to predict the critical force for collapse:
ol . . col . col (+ sz, KX
X =xy +x, and F* = F, (x;) + F7(x;) = ky () +W (18)

Remarkably, the obtained theoretical values of F”' (Table 1) agree well with their counterparts
extracted from the average FX-curves, which validates the model.

Second, individual FX-curves display large variability of critical deformations and critical
forces (see S3b and S4 Figs). In the FNS model, this information is implicitly contained in the
survival probability s(x;) and damage probability d(x;). The width of the transition region, in
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which s(x;) (d(x,)) decrease (increase) to zero (unity), defines the range of critical deformations
AXe! Upon rescaling, K, x,—Fy, s(x;) and d(x;,) are transformed into the force probabilities
s(Fp) and d(F,), and the width of the transition region for s(F;,) and d(F;) defines the range of
critical forces AF”". As an example, we estimated AX“' by analyzing the transition range for the
survival probability s(X) given by Eq (16). We used the FNS model parameters obtained for
experimentally tested empty CCMV particle from Table 1 (Fig 5a; see also S3b Fig for individ-
ual FX-curves). The results of estimation of the transition range for the CCMV shell using s(X)
are displayed in S5 Fig. We obtained AX ~ 8.0 nm (shaded area in S5 Fig) which compares well
with the experimental value AX”’ = 6 nm. The corresponding range of critical forces, AF =
KyAx;, = K,AX = 0.24 nN/nm x 8 nm =~ 1.9 nN, compares well with the experimental range
AF°' = 0.7 nN. Clearly, the experimental ranges for both AX“”’ and AF*”’ are shorter than the
theoretical widths AX and AF due to a limited number of experimental measurements (7 runs;
see S3b Fig).

We have demonstrated that the FNS model based theory: (i) correctly predicts the location
of the force peaks X’ and amplitude of peak forces F**' extracted from the average FX-spectra,
and (ii) describes the variability of critical deformations and critical forces around their average
values (X' and F*'). About half of all known viruses possess icosahedral symmetry [34] and,
therefore, here we focused on examples of virus particles with this symmetry. However, the
model can be applied much more widely to characterize a range of biological nanoparticles, for
which the FX-spectra are already available, including plant and animal viruses and bacterio-
phage, cellular nanocompartments, cytoskeletal polymers, etc. Although the FNS model is tai-
lored to treat small deformations, it can be used to account for large deformations as well. This
would require the extension of Eq (8) to include the higher order terms in x;,. Also, the Hertz
model could be improved to account for the non-local deformations.

The FNS model can be used to interpret the FX-curves for biological particles of different reg-
ular geometries, including cylindrical or ellipsoidal shapes, as long as the particles are subjected
to a uniaxial compressive force induced by a spherical-like indenter. Extension of the FNS model
to other indenter geometries is also possible. In this paper, however, we used the “Hertzian spring
constant” ky; to treat the sphere-sphere interaction, because our goal was to explore the mechani-
cal deformation of virus particles, which are nearly spherically-shaped, and because the cantilever
tips used in AFM experiments can be approximated by a sphere. Also, when nanoindentation
measurements are performed using a smaller tip compared to the size of the biological particle
(which is a typical situation realized in AFM experiments), the tip-particle contact area is roughly
circular. For these reasons, in this paper we treated the simplest case of near-circular contact
area. We will discuss these geometry-related aspects of the FNS model in future work, including
a more general case of elliptic particle-indenter contact area (manuscript in preparation).

Conclusions

Living organisms have evolved with hierarchical supramolecular systems playing key roles in
their biological functions. The dynamic properties of spontaneous assembly, disassembly, and
self-repair exhibited by supramolecular assemblies explains their central importance. Prime
examples of hierarchical supramolecular assemblies are the easily studied plant and animal
viruses and bacteriophages. Although well studied, it remains a challenge to elucidate the struc-
tural origins of their unique physico-chemical properties as well as to resolve the specific mech-
anisms of their response to a wide variety of both biochemical molecules and external
mechanical factors. In conjunction with single-molecule techniques, like AFM, dynamic force
spectroscopy has become a nearly routine discovery tool for understanding the physical prop-
erties of intact biological particles [1]. However, the results of such experimentation remain
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difficult to interpret. In a number of our recent studies, we have developed an approach to
nanoindentation in silico that involves multiscale modeling [15, 26]. The value in this novel
approach is that it provides a toolbox for the computational interrogation of biomechanical
properties that characterize large-size biological assemblies.

As a result of this recent progress in experimental and computational studies on forced
indentation of biological nanoparticles, there is a growing need for a simple theoretical
approach to quantitatively describe force-deformation curves. We developed the analytically
tractable FNS model which uniquely combines the elements of continuum mechanics and sta-
tistics of extremes to accurately describe the uniaxial mechanical deformation and structural
collapse (beyond buckling) in biological nanoparticles. The FNS model is based on a clear
microscopic picture resulting from the multiscale modeling efforts, which involve direct atom-
istic and coarse-grained simulations of virus particles. However, it is important to note an
application of the FNS model does not require the results of MD simulations as an input, and,
hence, the FNS model can be applied widely to any regular geometry nanoparticle. To formu-
late the model, here we used: (i) virus deformation simulation data which agreed with experi-
ment [15], (ii) data gathered at the nanometer scale (<1 nm), and (iii) experimentally relevant
force-loading conditions. Due to the limited resolution of the AFM-based experimental tech-
nique, the only direct structural evidence is currently available from in silico experiments (Figs
1 and 2), which we have utilized in this paper to guide our modeling efforts.

We have demonstrated how the FNS theory can accurately model the deformation of viral
nanoparticles, showing promising applications of this theory to describing the physics and
mechanochemistry of a wide variety of both natural as well as synthetic nanoparticles. In the
FNS theory, cooperativity parameter m may be of particular value. It allows for the direct com-
parison of energetic cooperativity magnitude differences between related nanoparticles that
might be undergoing rationale design by investigators. As such, it could represent an important
evaluation tool for structural alterations made with the aim to ultimately achieve optimal
mechanical and energetic properties of natural and synthetic nanocompartments. In the case of
natural viral nanoparticles, FNS theory may aid in revealing how mechanical properties corre-
late with local conformational dynamics of the capsid structure to contribute to crucial steps in
the viral infectious cycle, such as receptor binding, genome uncoating and capsid maturation.

Methods and Models
Multiscale modeling approach

In our MD simulation studies, we employed multiscale modeling, which combines the simula-
tions of atomic structural models [35] with amino acid residue (C,-atom) based Self Organized
Polymer (SOP) model of biological particles [24, 25, 36, 37]. In this approach, we first use the
all-atom Molecular Dynamics simulations of atomic structural models of a biological particle
in question in implicit water using the Solvent Accessible Surface Area (SASA) model and Gen-
eralized Born (GB) model of implicit solvation. These equilibrium MD simulations are carried
out in order to obtain an accurate parameterization of the SOP model, as described in the S4
Text. The atomic-level details that determine the type and number of residue-residue contacts
between amino acids and their energies are then ported to the SOP model of the particle
structure.

Nanoindentation in silico method

In dynamic force measurements in silico, the cantilever base is represented by the virtual parti-
cle, connected to the spherical bead of radius R;;,, mimicking the cantilever tip (indenter), by a
harmonic spring (S2 Fig). The tip interacts with the particles via the repulsive Lennard-Jones
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potential:

N g 6
U. = Y L — 19
N ®

tipl

thereby producing an indentation on the particle’s outer surface. In Eq (19), r; and r;, are coor-
dinates of the i-th particle and the center of the tip, respectively, &, = 4.18 kJ/mol, and oy;, =
1.0 A are parameters of interaction, and the summation is performed over all the particles
under the tip. For the cantilever tip (sphere in S2 Fig), we solve numerically the following Lan-
gevin equation of motion:

dr, U, (r,)

tip

1 dt or

+1((rgy = vt) = 1) (20)
tip

where rgp is the initial position of spherical tip center (vyis the cantilever base velocity; « is the
cantilever spring constant), and the friction coefficient 7 = 7.0 x 10° pN ps/nm. To generate the
dynamics of the biological particle of interest tested mechanically, we solve numerically Eqs.
(S1)—(S5) for the particle (see S1 Text) and Eqs (19) and (20) for the indenter (spherical tip).

The cantilever base moving with constant velocity (vy) (52 Fig, SI Movie) exerts (through
the tip) the time-dependent force (force-ramp) f{¢) = f(¢)n in the direction n perpendicular
to the particle outer surface. The force magnitude, f(t) = r¢t, exerted on the particle increases
linearly in time ¢ with the force-loading rate r= kv In the simulations of “forward indenta-
tion”, the cantilever base (and spherical tip) is moving towards the virus capsid. We control the
piezo (cantilever base) displacement Z, and the cantilever tip position X, which defines the
indentation depth (deformation). The resisting force of deformation F from the virus particle,
which corresponds to the experimentally measured indentation force is calculated using the
energy output from simulations. To prevent the capsid from rolling, we constrain the bottom
portion of the particle by fixing selected C,-atoms contacting the substrate surface.

AFM-based forced indentation experiments

The experimental FZ-spectra were obtained as described in our previous studies [8, 12, 38]. In
short, hydrophobic glass slides were treated with an alkylsilane [2]. The viral samples were kept
under liquid conditions at all times; all the experiments were performed at room temperature.
Capsid solutions were incubated for ~ 30 minutes on the hydrophobic glass slides prior to the
indentation experiments. Olympus OMCL-RC800PSA rectangular, silicon nitride cantilevers
(nominal tip radius <20 nm and spring constant of 0.05 N/m) were calibrated in air yielding a
spring constant of x = 0.0524+0.002 N/m. Viral imaging [39] and nanoindentation [1] were
performed on a Nanotec Electronica AFM (Tres Cantos, Spain). For empty CCMV, v¢= 0.06
pm/s, Ry, = 20 nm, and x = 0.05 N/m. For empty TrV, vs= 0.06 um/s, R, = 15 nm, and x =
0.056 N/m. For TrV with ssRNA, vy= 0.06 um/s, Ry, = 15 nm, and x = 0.1 N/m. For full AdV
with dsDNA, v¢=0.055 ym/s, R, = 15 nm, and x = 0.0524 N/m. The indentation data were
analyzed using a home-written Labview program (National Instruments) as described else-
where [38]. To obtain force-deformation spectra (FX-curves) from the experimental output
(FZ-curves), we employed the coordinate transformation from the Z-representation (FZ-
curves) to the X-representation (FX-curves), i.e. X = Z—F/k [40].

Supporting Information

S1 Text. Self Organized Polymer (SOP) model of a virus particle.
(PDF)
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S2 Text. Method of Lagrange multipliers.
(PDF)

§3 Text. Estimation of the thickness of TrV and AdV with encapsulated genome.
(PDF)

$4 Text. SOP model parameterization for CCMYV shell.
(PDF)

S1 Fig. The structure of the Cowpea Chlorotic Mottle Virus (CCMV) (PDB code: 1ICWP).
The side view of the CCMYV shell is shown on the right. The protein domains forming penta-
mers are in blue, while the same protein domains in hexamers are in red and orange. The
hexamers and pentamers, composed of six and five copies of the same protein chain (circled
in the black ellipse), are displayed on the left. The CCMV capsid is a ~2.8 nm thick shell
with a ~26 nm diameter.

(TIFF)

S2 Fig. Schematic of the setup used in nanoindentations in silico. The biological particle
(virus shell) is placed on the substrate. The cantilever base (virtual sphere) is moving in the
direction perpendicular to the surface of the particle with the constant velocity v, (force-ramp),
which creates a compressive force. The force is transmitted to the cantilever tip (sphere of radius
Ry;,) through the harmonic spring with the spring constant «. The force exerted on a particle f(t)
= r¢t (large vertical arrow) ramps up linearly in magnitude with time with the force-loading rate
r¢= kv5 which mechanically loads the particle. The mechanical response of the particle can be
probed by profiling the deformation force (indentation force) F as a function of the cantilever
base (piezo-) displacement Z (FZ curve) or as a function of the indentation depth X (FX curve).
(TIFF)

$3 Fig. Nanoindentation of the empty CCMYV particle in silico (a) and in vitro (b). Shown in
different colors for clarity are the FX curves obtained using the cantilever tip velocity v;= 0.06
pm/s (experiment) and v¢= 1.0 um/s (simulations). In the AFM-based experiments and in sim-
ulations of nanoindentation of CCMV, we used the cantilever tip with radius Ry;, = 20 nm and
the spring constant x = 0.05 N/m. In panel (a), structural snapshots from the left to the right,
which correspond to the FX curve shown in blue, display the progress of forced deformation
from the native un-deformed state (leftmost structure), to the partially deformed state (middle
structures), and finally to the globally collapsed state (rightmost structure). In nanoindentation
measurements in silico and in vitro, the cantilever tip indents the capsid in the direction per-
pendicular to the capsid outer surface (shown by a large vertical arrow). Simulation and experi-
mental data are from Ref. [15] in the main text, please see this publication for exact
experimental procedures and results.

(TIFF)

S4 Fig. AFM-based nanoindentation of the empty TrV particle (a), full TrV particle (encap-
sulating the single-stranded RNA genome; (b)) and full AdV particle (encapsulating the
DNA genome, (c)). Shown in different colors for clarity are the representative force-deforma-
tion spectra. The FX curves for the empty TrV particle were obtained using the cantilever tip
velocity v¢= 0.06 um/s, tip radius Ry;, = 15 nm, and spring constant x = 0.056 N/m. The FX
curves for the full TrV particle were obtained using vs= 0.06 um/s, R, = 15 nm, and x = 0.1 N/
m. The FX curves for the full AdV particle were obtained using vy= 0.055 um/s, R;;, = 15 nm,
and k = 0.0524 N/m. Experimental data are from Refs. [8, 12] in the main text, please see these
publications for exact experimental procedures and results.

(TTF)
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S5 Fig. Theoretical profile of the beam survival probability. Shown is the curve of s(X)
obtained using Eq (16) with FNS model parameters for the empty CCMV particle tested exper-
imentally (see Table 1 in the main text). The shaded area represents the width of the transition
range AX ~ 8.0 nm, which compares well with the experimental value of the same quantity
AX® = 6 nm from statistical analysis of critical deformations (S3b Fig).

(TIF)

S6 Fig. Graphical illustration of the coarse-graining procedure involved in construction of
a SOP model of a polypeptide chain (see S1 Text). Panel (a) shows coarse-graining of the
atomic structure of the protein subunit forming pentamers and capsomers of the CCMV shell
(S1 Fig). Each amino acid residue is represented by a spherical bead of an appropriate radius
with the coordinates of the C,-atom (black circles). The protein backbone is replaced by a col-
lection of the C,-C,, covalent bonds with 3.8 A bond distance. The potential energy function
(see Eq. S1in S1 Text) describes the interactions between amino acids stabilizing the native
state of the protein chain, and the chain connectivity, elongation due to stretching, and self-
avoidance. The coarse-graining procedure preserves the secondary structure: a-helices (pink),
B-strands and sheets (blue), and random coil and turns (gray). Panel (b) shows the results of
coarse-graining of a hexamer. Six identical copies of the same protein monomer (coarse-
grained in (a)) form a C,-based model of the hexamer subunit. The hexamers and pentamers
are combined to form a coarse-grained reconstruction of the full CCMYV shell. The SOP model
describes well the geometry and 3D shape of the biological particle.

(TIF)

$1 Movie. Dynamic force spectroscopy in silico: Forced indentation of CCMV capsid along
the 2-fold symmetry axis. The movie shows the forced indentation experiment ix silico on the
CCMYV shell, in which a compressive force is applied along the 2-fold symmetry axis (side view).
The CCMV capsid is positioned on a solid mica surface (small gray colored beads). The cantile-
ver base is moving with the velocity v;= 1.0 um/s perpendicular to the surface of the CCMV
shell. As a result, the cantilever tip (large gray colored sphere of radius R;;, = 20 nm) exerts pres-
sure onto the outer surface of the CCMV shell, which undergoes a series of transformations:
Heartzian deformation at the early stage of indentation is followed by the bending deformation
of the shell side portions, leading to the structural collapse of the capsid. The beams forming the
“capsid barrel” fail but not all the same time, which demonstrates the stochastic nature of col-
lapse transitions in vertical beams. Also, formation of small cracks gradually developing into
structural damage is clearly observed. The movie stops when the indentation depth X reaches

X =20 nm. The duration of the indentation experiment is ~40 ms and the length of the movie
is ~ 33 s (the movie is played ~ 825 times slower than the experiment).

(MPEG)
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