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Over the past few years, substantial effort has been put into the functional annotation of variation 

in human genome sequence. Such annotations can play a critical role in identifying putatively 

causal variants among the abundant natural variation that occurs at a locus of interest. The main 

challenges in using these various annotations include their large numbers, and their diversity. Here 

we develop an unsupervised approach to integrate these different annotations into one measure of 

functional importance (Eigen), that, unlike most existing methods, is not based on any labeled 

training data. We show that the resulting meta-score has better discriminatory ability using disease 

associated and putatively benign variants from published studies (in both coding and noncoding 

regions) compared with the recently proposed CADD score. Across varied scenarios, the Eigen 
score performs generally better than any single individual annotation, representing a powerful 

single functional score that can be incorporated in fine-mapping studies.

1. Introduction

The tremendous progress in massively parallel sequencing technologies enables investigators 

to efficiently obtain genetic information down to single base resolution on a genome-wide 

scale [1, 2, 3]. This progress has been complemented by numerous efforts to functionally 

annotate both coding and noncoding genomic elements and genetic variants in the human 

genome. Examples include computational tools such as PolyPhen [4] and GERP [5] for 

genetic variant annotation, and large-scale genomic projects such as the Encyclopedia of 

DNA Elements (ENCODE) [6], Ensembl and Roadmap Epigenomics [7] for genomic 

element annotation. Furthermore, the GTEx project is building a massive biospecimen 

repository to identify tissue-specific eQTLs and splicing QTLs using more than 40 tissues 

and over 1000 samples [8]. Hence, we now have available a rich set of functional 

annotations for both coding and noncoding variants, and this set will continue to increase in 

size. These annotations are important since they can help predict the functional effect of a 

variant, and can be further combined with population level genetic data to identify those 

variants at a locus of interest that are more likely to play a causal role in disease [9, 10, 11, 
12]. As is well-known, although there are now many known genome-wide significant loci 

for many complex disorders, for the most part the underlying causal variants are unknown.

There are several difficulties in taking full advantage of these diverse functional annotations. 

One important challenge is that different annotations can measure different properties of a 

variant, such as the degree of evolutionary conservation, or the effect of an amino acid 

change on the protein function or structure in the case of coding variants, or, in the case of 

noncoding variants, the potential effect on regulatory elements. It is not known a priori 

which of the different annotations is more predictive of the most relevant functional effect of 

a particular variant. Another problem is that there is a high degree of correlation among 

annotations of the same type (e.g. evolutionary conservation scores, or regulatory-type 

annotations). Therefore, despite their potential to be useful for identifying functional 

variants, most of these annotations tend to be used in a subjective manner [13, 14, 15].

Recent efforts have been made to employ these diverse annotations in a more principled 

way. In particular, several studies have focused on identifying functional genomic elements 

enriched with or depleted of loci influencing risk to particular complex diseases [16, 17]. 
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Other studies have focused on the integration of many different functional annotations into 

one score of functional importance. For example, Kircher et al. [18] proposed a supervised 

approach (support vector machine or SVM) to train a discriminative model. That is, they 

begin with two sets of variants, one labeled as deleterious and a second one as benign, and 

they fit a model that best separates the two sets. Benign variants are selected by comparing 

the human genome to the inferred genome of the most recent shared human-chimpanzee 

ancestor. Alleles that are not found in the common ancestor and which are fixed in the 

human genome are assumed to be mostly benign. These are compared to de novo variants 

generated randomly based on models of mutation rates across the genome. Although the 

proposed aggregate score, CADD, has notable advantages as described in [18], it has several 

potential limitations. In particular, the quality of the resulting model depends on the quality 

of the labeled data used in the training stage. First of all, the two sets used in the training 

dataset are unlikely to be sharply divided into benign and deleterious variants; specifically, 

the set of simulated de novo variants (labeled as deleterious) likely contains a substantial 

proportion of benign variants. Second, the SVM is trained to distinguish between variants 

that may be under evolutionary constraint and those likely neutral, and hence for disease 

mutations that are under weak evolutionary constraint (such as those influencing risk to 

complex traits), the trained model may not perform that well. Other supervised methods 

include GWAVA for noncoding variants [19], that uses as training dataset the ‘regulatory 

mutations’ from the public release of the Human Gene Mutation Database as deleterious 

variants, and common (minor allele frequency ≥1%) single-nucleotide variants from the 

1000 Genomes Project as benign.

To the best of our knowledge almost all of the existing methods for integrating diverse 

functional annotations are supervised, i.e. they are based on a labeled training set as 

described above. Ideally, the training data would be obtained by sampling variants at random 

and then applying a gold-standard method to determine deleteriousness (or functionality). 

Unfortunately, such a gold-standard approach is currently not practical for a large number of 

variants, and so supervised methods must resort to training data that may be inaccurate or 

biased. Other approaches such as fitCons [20] are based on assessing evolutionary 

conservation, and may be suboptimal for weakly selected (or possibly not selected) disease 

mutations for complex traits.

Here we introduce an unsupervised spectral approach (Eigen) for scoring variants which 

does not make use of labeled training data. As such, its performance is not sensitive to a 

particular labeling of the training dataset. Instead, the approach we introduce in this paper is 

based on training using a large set of variants with a diverse set of annotations for each of 

these variants, but no label as to their functional status (Supplementary Table 1). We assume 

that the variants can be partitioned into two distinct groups, functional and non-functional 

(although the partition is unknown to us), and that for each annotation the distribution is a 

two-component mixture, corresponding to the two groups. The key assumption in the Eigen 
approach is that of blockwise conditional independence between annotations given the true 

state of a variant (either functional or non-functional). This last assumption implies that any 

correlation between annotations in different blocks is due to differences in the annotation 

means between functional and non-functional variants (Methods section). Because of this, 
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the correlation structure among the different functional annotations (Figure 1 and 

Supplementary Figure 1) can be used to determine how well each annotation separates 

functional and non-functional variants (i.e. the predictive accuracy of each annotation). 

Subsequently we construct a weighted linear combination of annotations, based on these 

estimated accuracies. We illustrate the discriminatory ability of the proposed meta-score 

using numerous examples of disease associated variants and putatively benign variants from 

the literature. In addition we consider a related, but conceptually simpler meta-score, Eigen-
PC, which is based on the eigendecomposition of the annotation covariance matrix, and 

using the lead eigenvector to weight the individual annotations.

2. Results

Non-synonymous Variants

Training Data—For the coding set all variants with a match in the dbNSFP database [21], 

a database of all potentially non-synonymous SNVs in the human genome, were included. 

Note that this excludes synonymous variants which fall in coding regions but do not alter 

protein sequences. Annotations for non-synonymous variants are derived from several 

sources. In particular, the protein function scores (SIFT, PolyPhen - Div and Var scores, 

Mutation Assessor or MA) are all taken from dbNSFP v2.7. Evolutionary conservation 

scores (GERP_NR, GERP_RS, PhyloP - primate, placental mammal and vertebrate scores, 

PhastCons - primate, placental mammal and vertebrate scores) were obtained from the 

UCSC genome browser (November 2014). Allele frequencies in four populations (African 

or AFR, European or EUR, East Asian or ASN, Ad Mixed American or AMR) were 

obtained from the 1000 Genomes project (November 2014). Note that allele frequencies are 

only used in the training stage, and are not used in calculating the meta-score for specific 

variants due to high missing rates. Using the training data on ≈ 81.4 million coding non-

synonymous variants, we calculate the weights for the different annotations (Supplementary 

Table 2). As shown, for Eigen several protein function scores (PolyPhenDiv, PolyPhenVar, 

and MA) have the highest weights, consistent with the expectation for coding non-

synonymous variants, followed by evolutionary conservation scores and alternate allele 

frequencies. For Eigen-PC, evolutionary conservation scores get higher weights than the 

protein function scores. Since the evolutionary conservation block is large compared with 

the other blocks (Supplementary Figure 1), the evolutionary conservation block dominates 

the first principal component of the covariance matrix, increasing the weights in this block.

Once we derive the weights for individual functional scores, we can compute the meta-

scores for variants of interest. We show below applications to possible pathogenic and 

benign variants from disease studies in the literature.

ClinVar Pathogenic vs. ClinVar Benign—The pathogenic and benign variant sets used 

for validation were obtained from the ClinVar database. Variants on chromosomes 1–22 that 

were categorized as one of “benign”, “likely benign”, “pathogenic”, or “likely pathogenic” 

were selected for the validation set. These were subdivided into a non-synonymous coding 

set, and a synonymous coding and noncoding set. The non-synonymous coding set consisted 

of all variants which matched an entry in dbNSFP, which included missense, nonsense, and 
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splice-site variants. This set is intended to capture all variants that alter protein structure. 

The coding synonymous and noncoding set (discussed in the next section) consists of 

variants that do not have a match in dbNSFP.

The AUC values for discriminating between non-synonymous pathogenic (n = 16,545) and 

benign (n = 3,482) variants using different functional scores (including the Eigen and 

Eigen-PC scores, v1.0 and v1.1 of the CADD-score (see Supplementary Material for a 

discussion of the differences between the two versions), and the individual functional scores) 

are reported in Supplementary Table 3. As shown, for missense variants PolyPhenDiv has 

the highest discrimination power (AUC=0.903), while the proposed Eigen score has an AUC 

of 0.864, and CADD-score v1.0 has an AUC of 0.837.

Mutations in genes for Mendelian diseases—MLL2, CFTR, BRCA1 and BRCA2 
are four well-known genes carrying pathogenic mutations for Kabuki Syndrome, Cystic 

Fibrosis, and breast cancer, respectively. We selected reported disease mutations (namely 

“pathogenic” or “likely pathogenic” single nucleotide variants reported in the ClinVar 

database) in the MLL2 (n = 108 with 31 missense), CFTR (n = 160 with 92 missense), 

BRCA1 (n =125 with 28 missense) and BRCA2 (n =110 with 13 missense) genes. P values 

from the Wilcoxon rank-sum test when comparing with benign variants in the ClinVar 

database are shown in Table 1. Overall results are highly significant for all the different 

methods, with the Eigen score performing better than the Eigen-PC and the CADD-score in 

most of the cases. In particular for missense variants in MLL2, the p value for Eigen is 

3.1E-13, 5.1E-13 for Eigen-PC, whereas for the two versions of CADD-score the p values 

are 2.8E-02 (v1.0) and 2.8E-06 (v1.1). Note that since only a small proportion of the 

pathogenic SNVs in MLL2, BRCA1, and BRCA2 are missense (most of them are 

nonsense), when we restrict consideration to missense variants, the differences between 

scores for pathogenic and benign variants become far less significant. For CFTR mutations, 

since they cause a recessive disease (cystic fibrosis), a larger proportion of them are 

missense compared to the other three genes (MLL2, BRCA1, BRCA2) which lead to 

diseases inherited in an autosomal dominant pattern. We also report the best performing 

individual annotation for each gene in Table 1. Overall, no single annotation performs best, 

although the best performing annotation in each case is a protein function score (SIFT, MA 

or PolyPhenVar). Results for each individual functional score are reported in Supplementary 

Table 4.

De novo mutations reported in ASD, SCZ, EPI and ID studies—We identified all 

autism (ASD), schizophrenia (SCZ), epileptic encephalopathies (EPI) and intellectual 

disability (ID) de novo mutations from published studies, along with de novo mutations 

identified in controls (CTRL) in those studies. We selected only those mutations with entries 

in the dbNSFP database. In total for ASD, we have n = 2,027 such mutations among which 

1, 753 are missense [22, 23, 24, 25, 26]. For SCZ, we have n =636 mutations of which 571 

are missense [27, 28, 29, 30, 31]. For EPI we identify n =210 mutations with 184 missense 

[32], and for ID we have n =114 mutations with 99 missense [33, 34]. For CTRL, we have n 
=1,310 mutations, of which 1,157 are missense [23, 25, 26, 28, 31, 34]. For ASD we also 

performed an analysis based only on those de novo mutations that fall into genes encoding 
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FMRP targets, as it has been shown that de novo ASD mutations are enriched among genes 

encoding FMRP targets [35, 36]. Results for the comparison of Eigen scores for mutations 

in different diseases and controls are shown in Figure 2. De novo mutations in ID and ASD-

FMRP have the highest Eigen scores, followed by EPI, ASD, SCZ and CTRL mutations. P 

values from the Wilcoxon rank-sum test comparing scores for de novo mutations in cases vs. 

controls are reported in Table 2. The Eigen-PC score performs similar to the proposed 

Eigen score, and much better than the CADD-score, especially for EPI and ASD, with the p 

values being orders of magnitude smaller for the Eigen and Eigen-PC scores. Notably, 

when we consider the small subset of de novo variants in ASD that fall into genes encoding 

FMRP targets, the results become much more significant (even though the number of 

variants is reduced 15-fold), and in particular, for missense variants, the p value for the 

Eigen score is 3.2E-04, 9.4E-05 for Eigen-PC vs. 4.2E-02 for CADD-score v1.0 and 

1.7E-02 for CADD-score v1.1. We also report the best performing individual annotation for 

each dataset, and as before no single annotation is best in all cases, although the best ones 

are again protein function scores. Results for each individual functional score are reported in 

Supplementary Table 5.

Noncoding and Synonymous Coding Variants

Training Data—For noncoding and synonymous coding variants, we use a suite of 

evolutionary conservation annotations and many regulatory annotations from the ENCODE 

project [6]. ENCODE histone modification, transcription factor binding and open chromatin 

data were downloaded from the UCSC genome browser (January 2015). A full list of 

functional genomic scores is given in the Supplementary Material (Supplementary Table 1). 

For the training dataset all variants in the 1000 Genomes Project dataset without a match in 

dbNSFP and within 500bp 5′ of the gene start site were included, for a total of 1,604,525 

variants. In Supplementary Table 6 we report the estimated weights for individual 

annotations; as reported, evolutionary conservation scores tend to have the highest weights 

for the Eigen score, whereas regulatory annotations get the highest weights for Eigen-PC. 

Note that the regulatory block is large (Figure 1), containing over half the annotations used 

for calculating the weights. Therefore the regulatory block dominates the first principal 

component of the covariance matrix, increasing the weights in this block.

Below we show results of applications to possible pathogenic and benign noncoding and 

synonymous coding variants from disease studies in the literature. In addition to the two 

versions of CADD-score we also compare with another supervised method, GWAVA [19], 

specifically designed for noncoding variants.

ClinVar Noncoding and Synonymous Coding Variants—We have selected 

noncoding and synonymous coding variants from the ClinVar database. The selected 

variants include 3′UTR, upstream, downstream, intergenic, noncoding change, intronic, and 

synonymous coding variants. We have identified 111 such pathogenic mutations. For 

controls we selected a set of 111 benign variants from ClinVar matched for functional class 

(i.e. see Supplementary Material for more details) to the pathogenic variants. The AUC for 

several aggregate scores, and individual functional scores are given in Supplementary Table 

3. As shown several conservation scores (GERP_RS, PhyloPla and PhyloVer) perform best, 
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followed closely by the Eigen score. Eigen-PC and GWAVA perform rather poorly for this 

dataset, similar to the regulatory annotations.

Genome-wide significant Single Nucleotide Polymorphisms (SNPs)—We 

computed scores for 14, 915 GWAS index SNPs that have been found genome-wide 

significant and reported in the NHGRI GWAS catalog. We note here that only a small 

proportion of the GWAS index SNPs are expected to be causal (estimated at 5% in [37]), 

with most of them being in linkage disequilibrium with the true causal SNPs.

Eigen score distribution for variants in different functional classes (e.g. regulatory, 

upstream, downstream, intergenic, intronic) are shown in Supplementary Figure 2A. GWAS 

variants hitting a known regulatory element (2, 115 variants) have the highest Eigen scores, 

as expected. We used the Genome Variation Server (GVS) to extract tag SNPs that have an 

r2 of at least 0.8 with each GWAS index SNP. GVS divides the SNPs in an LD bin into “tag 

SNPs” and “other SNPs”. This latter group consists of all the SNPs for which the r2 value 

with any other SNP in the bin is below the 0.8 threshold. We construct two types of control 

sets, one consisting of “tag SNPs”, and another one consisting of “other SNPs”, all hitting a 

known regulatory element. We compare the various scores (Eigen, Eigen-PC, the two 

versions of CADD-score, GWAVA) for GWAS index SNPs and these control variants. We 

generate 20 such matched control sets, and in Table 3 we report the median p values from 

the Wilcoxon rank-sum test across these 20 comparisons. As shown both the Eigen and the 

Eigen-PC scores perform substantially better than the CADD-score. Furthermore the Eigen-
PC tends to perform best, outperforming all the other meta-scores and the best performing 

individual functional annotations.

In addition, we have generated control sets matched for frequency, functional class (i.e. 

regulatory, 3′UTR, upstream, downstream, intergenic, noncoding change, intronic, and 

synonymous coding; see Supplementary Material for more details), and GWAS chip 

presence. We matched on SNP presence on four of the most commonly used GWAS 

platforms (Affymetrix Genome-Wide Human SNP Array 6.0, Illumina Human610-Quad 

BeadChip, Illumina OmniExpress, Illumina Human1M BeadChip). The matched control 

SNPs are chosen to be within ±100 kb of each index SNP. We generate 20 such matched 

control sets (due to the various constraints on the control sets, the number of SNPs in these 

matched sets, for both GWAS SNPs and control SNPs, is 10,718), and in Table 3 we report 

the median p values from the Wilcoxon rank-sum test across these 20 comparisons. As 

before, Eigen-PC outperforms all the other scores. In Supplementary Table 7 we report 

results for all the individual functional scores. As shown, the best performing individual 

annotations all belong to the regulatory block.

eQTLs—We selected a list of 3, 259 gene eQTLs identified using 373 European samples in 

Lappalainen et al. [38]. As with GWAS SNPs, eQTL variants hitting a known regulatory 

element (676 eQTLs) have the highest Eigen scores (Supplementary Figure 2B). We have 

constructed similar control sets to GWAS, based on “tag SNPs” and “other SNPs”. The p 

values from the Wilcoxon rank-sum test are reported in Table 3. As shown, the Eigen and 

Eigen-PC scores lead to more significant results compared with both the CADD-score and 
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the GWAVA score. In Supplementary Table 7 we report results for all the individual 

functional scores.

Noncoding Cancer mutations from the COSMIC Database—We also compared 

scores for recurrent vs. non-recurrent somatic noncoding mutations in the COSMIC database 

[39] (the GWAVA scores are only available for a small number of the COSMIC variants, 

namely those that have been reported in dbSNP; therefore we omit the comparison with 

GWAVA for this dataset). The p values from the Wilcoxon rank-sum test for variants in 

different functional classes are reported in Table 4 (Supplementary Table 8 contains results 

for individual annotations). The p values for the Eigen and Eigen-PC scores are orders of 

magnitude smaller than those for the CADD-score, across different groups of variants. In 

Figure 3 we show the Eigen score distribution for variants in different functional classes. As 

shown, regulatory, 5′ UTR and 3′ UTR variants have the highest scores, while intergenic 

variants have the lowest scores, as expected.

3. Discussion

The Eigen score proposed here represents both a quantitative improvement in predictive 

power compared to existing methods, and a qualitative difference in the predictive model. 

The shift from supervised (CADD, GWAVA) to unsupervised algorithms as discussed here 

reduces the dependence on existing databases of observed variants, previously characterized 

elements and existing models of mutation, and allows extensions to cell type/tissue specific 

scores [16, 17, 37, 40, 41, 42]. Although supervised learning is preferable to unsupervised 

learning if a large, representative, and correctly labeled training set is available, 

unsupervised methods may have an advantage when labeled data is limited. We have shown 

that Eigen performs well compared to existing methods in both coding and noncoding 

regions. We have also shown that compared to individual annotations, the proposed meta-

score performs favorably, with Eigen being close to optimal across a wide range of scenarios 

(Supplementary Tables 9 and 10). However Eigen should be viewed as complementary to 

the individual annotations; when possible, modeling each annotation’s importance to a 

particular disease can be very informative [16].

In addition we have studied the performance of a related score Eigen-PC, based on the 

eigendecomposition of the annotation covariance matrix, and using the lead eigenvector to 

weight the individual annotations. In our experiments, Eigen-PC performs well across many 

scenarios, although, as we discuss in the Supplementary Material, it is more sensitive than 

Eigen to the component annotations and possible confounding factors; therefore Eigen is a 

more robust approach at this point. Although we have only experimented with the first 

principal component, it is possible that the second principal component is also informative 

(Supplementary Tables 19, 20, 21). Further work is needed to investigate how to incorporate 

the information in this second principal component.

Results for Eigen and Eigen-PC are similar for coding variants, with Eigen performing 

slightly better. In contrast, Eigen-PC has a considerable advantage over Eigen for the 

noncoding variants. The regulatory block is more than twice the size of the evolutionary 

conservation block. This causes the regulatory block to dominate the first principal 
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component of the covariance matrix, increasing the weights in this block. With the current 

set of annotations, the strong weights placed on the regulatory annotations improve Eigen-
PC’s ability to discriminate between the different datasets for noncoding variants used here. 

Changing the set of annotations could disrupt this behavior.

Eigen can incorporate a large number of correlated functional annotations that are being 

generated by high-throughput projects such as ENCODE and Roadmap Epigenomics, if they 

fit the assumed block-structured correlation. We note that the set of annotations used by 

Eigen is a proper subset of the set used by the CADD-score. In particular, we have excluded 

several non-numerical annotations. To verify that Eigen’s improvement over CADD is not 

due to this difference in annotation sets, we have re-trained CADD on the same set of 

annotations used by Eigen and have shown that this new version of CADD performs 

similarly to the full CADD scores (Supplementary Material). As an additional experiment, 

we have also considered including CADD as one of the component annotations. The 

resulting score tends to perform worse than the original Eigen score, largely due to the fact 

that including CADD violates our assumption of conditional independence for annotations 

in different blocks (Supplementary Material).

Although for mutations in Mendelian diseases these aggregate scores can be very sensitive, 

for the majority of disease risk variant in complex diseases, these scores are expected to be 

mostly useful when combined with additional population level genetic data (Supplementary 

Figure 6).

Currently the Eigen score is defined separately on coding and noncoding variants, because 

different types of annotations are relevant to the two types of variants. In principle, these 

could be integrated into a score that encompasses both types. Given that Eigen is based on a 

two-component mixture model, this could be accomplished by converting the scores to 

posterior component probabilities, which would have the additional advantage of improving 

the interpretability of the scores.

Although indels represent only a small proportion of sequence variants [43], they represent a 

class of mutations that are likely to be functionally important, particularly when they cause 

frameshifts. However it is currently difficult to detect indels with high accuracy from short 

read sequence data [44, 45]. As methods to improve indel detection become more mature 

[46], we will take advantage of these new developments in future extensions of the Eigen 
and Eigen-PC scores.

Precomputed Eigen and Eigen-PC scores for every possible variant in the human genome 

are available for download at our website.

4. Methods

We assume that we have a set of randomly selected variants from the human genome, 

together with a diverse set of annotations, but no label as to their functional status. We 

assume that the variants can be partitioned into two distinct groups, functional and 

nonfunctional (although the partition is unknown to us), and that for each annotation the 

distribution is a two-component mixture, corresponding to the two groups.
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Estimating the accuracy of individual functional annotation scores

Our approach is inspired by a recent paper by Parisi et al. [47] which considered the problem 

of combining multiple binary classifiers of unknown reliability, and which are conditionally 

independent (given the true status). The resulting meta-classifier is shown to be more 

accurate than most classifiers considered. Here we propose generalizations to cover 

prediction scores with arbitrary continuous distributions, as appropriate for many functional 

genomics scores. Generalizations to the case of blockwise conditional independence for 

functional scores are also considered.

Conditional independence among individual functional scores

We start with a dataset consisting of a large number of variants and their functional 

annotations. For simplicity, we first assume conditional independence among the individual 

functional scores. Supplementary Table 22 contains a description of the main variables used 

in this section for ease of reference. Let m be the number of variants, and k be the number of 

functional predictors (e.g. PolyPhen, GERP, etc). Let Zi = (Zi1, …, Zik) be i.i.d. vectors of k 
functional impact scores for variants i=1,…, m. It is assumed that the scores have been 

standardized so that for every score j we have μj = E[Zij] = 0 and . Let C = 

(C1, …, Cm) be indicator variables for the true status of the variants, with Ci = 1 if variant i 
is functional and Ci = 0 otherwise. Let Fj be the distribution of scores Zij for functional score 

j. The general idea is to treat the scores as belonging to a two-component mixture 

distribution, where the components correspond to a variant either being functional or not. In 

Parisi et al. the restriction of the predictors to binary outcomes yields a parametric family for 

the mixture component distributions. For continuous scores we make use of non-parametric 

mixture models. We have:

where π : P[Ci = 1], and Fj1, Fj0 are the conditional distributions of Zij given Ci = 1 and Ci = 

0 respectively. Define μjl = E[Zij|Ci = l] for score j and l =0,1. Note that

(1)

It is easy to show that the covariance of any two scores j1 and j2 can be expressed as

(2)

This can be expressed in matrix form as
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(3)

where Q = [qij] is the covariance matrix for Z, Σ1, Σ0, are the component specific covariance 

matrices, and

(4)

where μ0 = (μ10, …, μk0).

Therefore if the scores are conditionally independent given the true functional status for a 

variant (Ci) then we get that the covariance of any two scores j1 and j2 can be written as:

(5)

Therefore under the assumption of conditional independence, the off diagonal entries in the 

covariance matrix are equal to those of the rank one matrix R. We are interested in μ0 as the 

entries in μ0 can be used to rank the scores since the accuracy of the score depends in part on 

how far apart the means of the conditional distributions are (i.e. ). Normally 

we do not know μ0, but the values of μ0 can be estimated by first estimating the diagonal 

entries of R (see below) and then computing the leading eigenvector.

The assumption of conditional independence is important since it implies that the off 

diagonal elements of the covariance matrix Q = [qij] equal the off diagonal elements of R, 

thereby allowing for the estimation of the rank one matrix R. Using the change of variable |

rij| = |qij| = etietj, the elements of R can be estimated by first solving the system of equations 

given by log|qij| = ti + tj for i ≠ j. This gives a system of k(k − 1)/2 equations with k 
unknowns. Since in practice the population covariance matrix Q of the functional scores is 

not known, the sample covariance matrix is used to estimate the population covariance 

matrix, and so least squares is used to estimate the solution. Then the diagonal elements can 

be estimated by . In the next section we handle the case of blockwise conditional 

independence.

Note—We note that if the within component variances are small compared to the means, it 

follows from eq. (3) that Q ≈ R. A simple approach then is to take the first principal 

component of matrix Q as an approximation of μ0, without the need to estimate the rank one 

matrix R. However, this approach may fail if the within component variances are not all 

small. We refer to this approach as Eigen-PC, while the main approach that assumes 

(blockwise) conditional independence is referred to as Eigen.
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Blockwise conditional independence among individual functional scores

The assumption of conditional independence may not be appropriate in the case of 

functional genomics annotations. For instance, protein functional predictors that use similar 

information for prediction (e.g. multiple sequence alignments and protein 3D-structures) are 

likely to be correlated even given the true functional status for a variant. On the other hand it 

is more plausible that predictors of different types, such as protein function scores and 

regulatory effect scores, would be independent given the true functional status of a variant. 

This motivates using the less strict assumption of blockwise conditional independence. 

Under this assumption the scores can be divided into disjoint, exhaustive blocks, such that 

predictors from different blocks are conditionally independent, while predictors within a 

block are still allowed to be conditionally dependent. In Figure 1, we show the correlation 

structure for 29 different functional annotations using the set of noncoding variants on 

chromosome 1 from the training dataset (see also the Results section; similarly, 

Supplementary Figure 1 shows the corresponding correlation structure based on the coding 

variants on chromosome 1 from the training set). A clear block structure can be seen, with 

different types of annotations forming distinct blocks, with stronger correlations within 

blocks than between them. The three distinct blocks are: an evolutionary conservation block 

(including several conservation scores such as GERP and PhyloP), a regulatory information 

block (including open chromatin measures, transcription factor binding, histone 

modifications), and an allele frequency block.

Under the assumption of blockwise conditional independence, we show that as long as there 

are at least three conditionally independent blocks we can still solve uniquely the system of 

equations above, and are able to estimate the rank one matrix R, and its leading eigenvector. 

More precisely, we prove the following lemma:

Lemma 1—Let qij be the ijth entry of the covariance matrix Q. Suppose that Q has a block 
structure, with three or more disjoint, exhaustive blocks, denoted by B1, B2, B3 etc., that are 
conditionally independent. Then there is a unique solution for the variables t1, … tk in the 
system of equations given by log|qij| = ti + tj, for i,j corresponding to different blocks.

Proof: See Supplementary Material.

We estimate rij with i and j in the same block by . We calculate the leading 

eigenvector of R̂ As discussed previously, the entries in the eigenvector for the rank one 

matrix R are proportional to the accuracies of the individual predictors, and can be used to 

rank the various predictors. Next, we discuss how we may use these estimates of accuracies 

to combine the different predictors into one meta-score.

4.2. Meta-predictors

Once the blockwise division is chosen, the rank one matrix R can be estimated and the 

leading eigenvector determined. As discussed above, the entries in the eigenvector can be 

used to rank and combine annotations. Larger values for the components of the eigenvector 

indicate greater accuracy for the corresponding annotations, and the component values can 

be used as weights for combining annotations in a linear combination. This way we give 
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more weight to the more accurate annotations. If (e1, …, ek) is the eigenvector for the matrix 

R, and (Zi1, …, Zik) are the functional scores for variant i, then the meta-score for variant i is 

given by

We refer to this method as Eigen. For Eigen-PC we use as weights the lead eigenvector of 

the covariance matrix Q.

Algorithm Outline—For ease of reference, we summarize here the complete approaches 

Eigen and Eigen-PC described above. For Eigen:

1. Rescale the functional scores to have mean zero, and variance one.

2. Calculate the covariance matrix, Q.

3. Designate the block structure for the set of annotations. In our setting, for non-

synonymous coding variants we have three different blocks: one block with protein 

function scores, a second block with evolutionary conservation annotations, and a 

third block with allele frequencies. For noncoding and synonymous coding 

variants, we have one block with evolutionary conservation annotations, a second 

block with regulatory annotations, and a third block with allele frequencies.

4. Using the entries qij of Q corresponding to between block correlations, solve the 

system of equations given by log|qij| = ti + tj and use the variables t1, … tk to 

construct a rank one matrix R.

5. Take the eigendecomposition of R.

6. Calculate the scores as the weighted sum of the annotations, with the vector of 

weights equal to the eigenvector from the previous step.

Note that if the Eigen-PC method is used, the outline is similar. Steps 3. and 4. will be 

omitted, since the covariance matrix Q is used directly. In step 5. the eigendecomposition is 

applied to Q and in step 6. the lead eigenvector, the one with the greatest eigenvalue, is used 

(it was not necessary to specify this previously since R by construction has only one 

eigenvector).

Missing Annotations—Not all annotations are available at every variant. In particular, 

some annotations are only defined for specific classes of variants. For example, protein 

function scores are only defined in coding regions (for missense variants). This raises the 

question of how to calculate the meta-score for a variant when one or more annotations for 

this variant are missing or undefined. We calculate the meta-scores of coding missense, 

nonsense, and splice site variants, and of the remaining variants (including noncoding, and 

synonymous coding) separately. When an annotation is not defined for a type of variant, 

then we do not use it. When a variant is missing a value for an annotation (that is normally 

defined for that type of variant), we use mean imputation. The exception to this is where 
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protein function scores, such as SIFT, PolyPhen and MA scores, are missing at nonsense and 

splice site variants. In these cases, imputing the mean value will tend to underestimate the 

severity of these mutations. For SIFT a value of 0 is imputed, for PolyPhen a value of 1 is 

imputed, while for MA a value of 5.37 is imputed (the maximum values for those 

annotations). Note that we do not perform any imputation in the training stage when we 

learn the weights for the different annotations; the covariance matrix used to calculate the 

weights is based on pair-wise correlations, which allows variants with missing values for 

some annotations to be used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation among different functional annotations for the noncoding variants on 

chromosome 1 in the training dataset. Supplementary Figure 1 contains the correlation plot 

for non-synonymous coding variants.
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Figure 2. 
Violin plots for Eigen scores for de novo mutations in ID, EPI, ASD-FMRP, ASD, SCZ and 

CTRL. The horizontal line corresponds to the median Eigen score for de novo CTRL 

mutations (the lowest scoring set).
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Figure 3. 
Violin plots for Eigen scores for noncoding variants in the COSMIC database that reside in 

different functional categories. The horizontal line corresponds to the median Eigen score 

for intergenic variants (the lowest scoring class).
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Table 1

P values (Wilcoxon rank-sum test) for MLL2, CFTR, BRCA1, BRCA2, contrasting pathogenic variants with 

benign variants in the ClinVar database. The best performing individual annotation is also reported (for 

missense variants only).

Gene n Variant type Score P value

Eigen-PC 1.6E-50

CADD-score v1.0 1.2E-42

CADD-score v1.1 1.3E-49

31 Missense Eigen 3.1E-13

Eigen-PC 5.1E-13

CADD-score v1.0 2.8E-02

CADD-score v1.1 2.8E-06

SIFT 6.8E-15

CFTR 160 Missense and Nonsense Eigen 1.3E-69

Eigen-PC 8.2E-65

CADD-score v1.0 1.1E-65

CADD-score v1.1 3.1E-39

92 Missense Eigen 2.8E-37

Eigen-PC 9.6E-37

CADD-score v1.0 7.9E-35

CADD-score v1.1 1.7E-21

PolyPhenVar 4.8E-36

BRCA1 125 Missense and Nonsense Eigen 2.5E-38

Eigen-PC 6.0E-25

CADD-score v1.0 2.2E-28

CADD-score v1.1 1.3E-22

28 Missense Eigen 4.0E-03

Eigen-PC 1.6E-02

CADD-score v1.0 5.0E-03

CADD-score v1.1 1.4E-03

SIFT 1.0E-05

BRCA2 110 Missense and Nonsense Eigen 9.8E-28

Eigen-PC 3.3E-14

CADD-score v1.0 1.5E-46

CADD-score v1.1 7.7E-40

13 Missense Eigen 2.3E-01

Eigen-PC 3.5E-01

CADD-score v1.0 3.6E-01

CADD-score v1.1 1.8E-02

MA 9.5E-03
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Table 2

P values (Wilcoxon rank-sum test) for de novo mutations in ASD, EPI, ID, and SCZ studies. ASD-FMRP 

analyses are based on de novo mutations in ASD cases that hit FMRP targets. The best performing individual 

annotation is also reported (for missense variants only).

Disease n Variant type Score P value

ASD 2,027 Missense and Nonsense Eigen 6.0E-03

Eigen-PC 1.6E-02

CADD-score v1.0 8.4E-02

CADD-score v1.1 3.2E-01

1,753 Missense only Eigen 9.0E-02

Eigen-PC 1.5E-01

CADD-score v1.0 7.4E-01

CADD-score v1.1 5.8E-01

PolyPhenDiv 5.4E-02

ASD-FMRP 132 Missense and Nonsense Eigen 4.2E-05

Eigen-PC 9.4E-06

CADD-score v1.0 5.5E-03

CADD-score v1.1 4.7E-03

113 Missense only Eigen 3.2E-04

Eigen-PC 9.4E-05

CADD-score v1.0 4.2E-02

CADD-score v1.1 1.7E-02

MA 1.0E-04

EPI 210 Missense and Nonsense Eigen 3.1E-03

Eigen-PC 5.0E-03

CADD-score v1.0 4.0E-02

CADD-score v1.1 2.0E-01

184 Missense only Eigen 6.0E-03

Eigen-PC 1.3E-02

CADD-score v1.0 8.1E-02

CADD-score v1.1 1.7E-01

PolyPhenVar 3.0E-03

ID 114 Missense and Nonsense Eigen 1.7E-06

Eigen-PC 1.1E-06

CADD-score v1.0 3.7E-06

CADD-score v1.1 9.5E-03

99 Missense only Eigen 6.7E-05

Eigen-PC 6.0E-05

CADD-score v1.0 3.5E-05

CADD-score v1.1 3.3E-02

MA 1.0E-04
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Disease n Variant type Score P value

SCZ 636 Missense and Nonsense Eigen 9.9E-01

Eigen-PC 9.8E-01

CADD-score v1.0 1.5E-01

CADD-score v1.1 1.8E-01

573 Missense only Eigen 6.3E-01

Eigen-PC 5.8E-01

CADD-score v1.0 9.8E-01

CADD-score v1.1 2.8E-02

PhastPri 9.5E-02
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Table 3

P values (Wilcoxon rank-sum test) for GWAS SNPs and eQTLs. Comparisons are shown between GWAS 

index SNPs and tag SNPs hitting regulatory elements. Also shown are comparisons between GWAS index 

SNPs and control SNPs matched for frequency, functional consequence, and GWAS array availability. 

Additionally, comparisons between eQTLs and tag SNPs hitting regulatory elements are shown. The best 

performing individual annotation is also reported.

Dataset n Comparison Score P value

GWAS 2,115 Regulatory GWAS vs. Tag SNPs Eigen 1.2E-05

Eigen-PC 4.0E-06

CADD-score v1.0 5.9E-04

CADD-score v1.1 2.0E-04

GWAVA (TSS) 4.1E-06

TFBS num 4.9E-05

GWAS 2,115 Regulatory GWAS vs. Other SNPs Eigen 1.6E-09

Eigen-PC 2.0E-13

CADD-score v1.0 2.0E-06

CADD-score v1.1 8.6E-07

GWAVA (TSS) 7.4E-13

TFBS sum 5.6E-09

GWAS 10,718 GWAS vs. Matched Controls Eigen 6.9E-08

Eigen-PC 3.5E-13

CADD-score v1.0 1.0E-04

CADD-score v1.1 5.2E-07

GWAVA (TSS) 2.5E-09

H3K4Me1 4.0E-11

eQTLs 676 Regulatory eQTLs vs. Tag SNPs Eigen 1.8E-10

Eigen-PC 7.0E-23

CADD-score v1.0 3.1E-04

CADD-score v1.1 4.3E-05

GWAVA (TSS) 1.3E-03

H3K4Me3 2.2E-24

eQTLs 676 Regulatory eQTLs vs. Other SNPs Eigen 5.9E-13

Eigen-PC 2.6E-27

CADD-score v1.0 2.8E-04

CADD-score v1.1 2.1E-05

GWAVA (TSS) 7.3E-08

H3K4Me3 3.8E-25
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