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Abstract
There is considerable disparity in the published apparent 
diffusion coefficient (ADC) values across different 
anatomies. Institutions are increasingly assessing rep-
eatability and reproducibility of the derived ADC to 
determine its variation, which could potentially be used 
as an indicator in determining tumour aggressiveness or 
assessing tumour response. In this manuscript, a review 
of selected articles published to date in healthy extra-
cranial body diffusion-weighted magnetic resonance 
imaging is presented, detailing reported ADC values 
and discussing their variation across different studies. 
In total 115 studies were selected including 28 for liver 
parenchyma, 15 for kidney (renal parenchyma), 14 for 
spleen, 13 for pancreatic body, 6 for gallbladder, 13 for 
prostate, 13 for uterus (endometrium, myometrium, 
cervix) and 13 for fibroglandular breast tissue. Median 
ADC values in selected studies were found to be 1.28 
× 10-3 mm2/s in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 
× 10-3 mm2/s in pancreatic body, 0.85 × 10-3 mm2/s in 
spleen, 2.73 × 10-3 mm2/s in gallbladder, 1.64 × 10-3 
mm2/s and 1.31 × 10-3 mm2/s in prostate peripheral 
zone and central gland respectively (combined median 
value of 1.54×10-3 mm2/s), 1.44 × 10-3 mm2/s in 
endometrium, 1.53 × 10-3 mm2/s in myometrium, 1.71 
× 10-3 mm2/s in cervix and 1.92 × 10-3 mm2/s in breast. 
In addition, six phantom studies and thirteen in vivo  
studies were summarized to compare repeatability 
and reproducibility of the measured ADC. All selected 
phantom studies demonstrated lower intra-scanner 
and inter-scanner variation compared to in vivo  
studies. Based on the findings of this manuscript, it 
is recommended that protocols need to be optimised 
for the body part studied and that system-induced 
variability must be established using a standardized 
phantom in any clinical study. Reproducibility of the 
measured ADC must also be assessed in a volunteer 
population, as variations are far more significant in vivo 
compared with phantom studies. 
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Core tip: Diffusion-weighted magnetic resonance imaging 
was highlighted as a potential cancer imaging biomarker 
by a team of experts in a report published in 2009. We 
review the variability of published diffusion values in the 
major extra-cranial organs and focus on the validation 
literature, both in vivo and in vitro . A total of 115 studies 
were selected including for liver parenchyma, kidney, 
pancreatic body, spleen, gallbladder, prostate, uterus 
(endometrium, myometrium, cervix) and breast. We 
also look in detail at the published repeatability and 
reproducibility studies, both in vivo and in phantoms. A 
series of recommendations based on our findings are 
given at the end of this review.

Jafar MM, Parsai A, Miquel ME. Diffusion-weighted magnetic 
resonance imaging in cancer: Reported apparent diffusion 
coefficients, in vitro and in vivo reproducibility. World J Radiol 
2016; 8(1): 21-49  Available from: URL: http://www.wjgnet.
com/1949-8470/full/v8/i1/21.htm  DOI: http://dx.doi.org/10.4329/
wjr.v8.i1.21

INTRODUCTION
Diffusion-weighted magnetic resonance imaging (DW-
MRI) was first implemented clinically in 1986[1] to 
study neurologic disorders. It has since developed into 
a mature technique for many brain applications[2]. In 
cancer imaging, DW-MRI has seen a great interest in 
both clinical and pre-clinical research during the past 20 
years (with more than 106000 entries in Google Scholar 
for diffusion + mri + cancer). The concept of using DW 
imaging for the detection of malignant lesions started 
in early 1980s[3] but was not fully utilized until the late 
1990s when a series of innovations in echo-planar 
imaging, high gradient amplitudes, multi-channel coils 
and parallel imaging made it possible to translate it to 
clinical settings[4]. DW-MRI was highlighted as a potential 
cancer imaging biomarker by a team of experts and 
stakeholders in a meeting report published in 2009[5]. In 
this report, it was also concluded that baseline patient 
reproducibility studies should be part of the study de-
signs. After an introduction on the physics of diffusion 
weighted imaging, the article looks in more detail at 
what is actually measured in vivo and in particular the 
effect of perfusion as it has clear implications on the 
values measured using MRI. The article then reviews 
the variability of published diffusion values in the major 
extra-cranial organs and focuses on the validation 
literature, both in vivo and in vitro. Finally, DW-MRI 

reproducibility studies are summarized both using 
phantoms (6 studies) and in vivo (13 studies).

BASIC PRINCIPLES OF PULSED FIELD 
GRADIENT DW IMAGING
Diffusion is a Brownian motion of molecules in a medium[6]. 
At room temperature (298 K), a sample containing a small 
molecule, such as water, has a self-diffusion coefficient 
of about 2.3 × 10-3 mm2/s[7]. In biologic tissues, diffusion 
coefficients are lower due to viscosity and restricted diffu-
sion effects, which enables one to differentiate between 
different tissue structures[8]. Cellular tissues such as 
tumours often return lower diffusion values compared to 
healthy tissues, which facilitates their detection. In the 
presence of a magnetic field gradient, diffusion of water 
molecules causes a phase dispersion of the transverse 
magnetization, which results in the attenuation of the 
MRI signal[8]. In DW-MRI, image contrast is derived 
based on differences in the mobility of protons between 
tissues, which is reflected by the attenuation of the MRI 
signal. To increase the sensitivity to diffusion, all diffusion 
imaging pulse sequences contain a diffusion-weighting 
gradient. 

Diffusion measurements are usually performed using 
a pulsed field gradient (PFG) pulse sequence. A spin-echo 
sequence is preferred as the 180° radio-frequency pulse 
refocuses chemical shifts and the frequency dispersion 
due to the residual B0 inhomogeneity and susceptibility 
effects whilst a gradient echo only refocuses phase 
dispersion resulting from the gradient pulses[9]. Stejskal[10] 
and Tanner[11] introduced a PFG diffusion measurement 
method that uses two large gradient pulses with a short 
duration δ and separated by a variable time interval Δ 
as shown in Figure 1. In the presence of diffusion and 
gradient pulses, the attenuation due to relaxation and 
the attenuation due to diffusion and the applied gradient 
pulses are independent. This is expressed in equation 
(1.1).

                                           Sb/S0 = e-bD                                                (1.1)  

where Sb and S0 are the voxel signal intensity with and 
without diffusion respectively and b-value controls the 
degree of diffusion weighting in an image and b = γ 2G2δ 2 
(Δ - δ /3) where γ  is the gyromagnetic ratio and G is the 
amplitude of the diffusion gradients in mT/m.

Other pulse sequences, have been suggested to 
achieve diffusion-weighting, for example stimulated echo-
based sequences[11,12] and steady-state free precession 
sequences[13-15].

Quantitative DW imaging is based on at least two 
DW images, each acquired at the same location but with 
a different b-value. A mono-exponential fit between 
the natural logarithm of the signal intensity of the 
tissue against the b-value is performed on a pixel-by-
pixel basis and the slope of the linear regression yields 
the apparent diffusion coefficient (ADC) displayed in a 
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quantitative map. The calculated diffusion coefficient can 
be influenced by tissue perfusion and other experimental 
errors. Therefore, they are often referred to as ADCs. 
In practice, measurements in three orthogonal gradient 
directions are often obtained and the signals averaged, 
producing the corresponding b-value trace images[16]. 
Trace image SD can be computed using a geometric 
average[17] of the DW images acquired in three ortho-
gonal directions as expressed in equation (1.2). This is to 
average out the effects of anisotropy. The trace image is 
rotationally invariant which implies that image intensity is 
independent of patient orientation. 

      <SD> = (Sx.Sy.Sz)1/3                                     (1.2)

Where <SD> denotes the averaging process and Sx, Sy 

and Sz are the diffusion sensitizations acquired in three 
orthogonal directions. ADC maps are then computed 
from the isotropic diffusion image SD and the baseline 
image S0 (obtained without diffusion gradients) on a 
pixel-by-pixel basis using the relationship D = -ln (SD/
S0)/b. This results in improvements in the signal to noise 
ratio of calculated ADC maps. The slope of the line that 
describes this relationship in each voxel represents the 
ADC. Despite using different scanner-specific techniques 
and image scaling methods to compute ADC maps, it 
was demonstrated that ADC measurements provided 
by different vendors were within 3% of the true value[18] 

using the diffusion coefficient of water at 0 ℃ as a 
reference.

DW IMAGING IN BIOLOGICAL TISSUE
In biological tissue, the DW signal is derived from the 
molecular diffusion of water and microcirculation of 
blood in the capillary network. In 1986, Le Bihan et al[1] 
proposed the principles of intravoxel incoherent motion 
(IVIM) to describe the microscopic translational motions 
that occur in each image voxel in DW imaging. The 
fraction of water diffusing and flowing in the capillaries 
of a given voxel involves only a fraction of total water 
content of the voxel[1,8]. This fractional volume is often 
referred to as the perfusion factor f. In all cases a 
biological tissue includes a volume fraction f of perfusion 
and a volume fraction 1 - f of diffusing water. 

Hence equation (1.1) can be re-expressed as[1]:

        Sb/S0  = (1 - f)e-bD + fe-b (D + D*)                         (1.3)

where D is the diffusion coefficient of water molecules 
in the tissue and D* is the fast pseudo-diffusion coe-
fficient due to the incoherent flow of blood-water in the 
randomly oriented micro-vascular network. Microcir-
culatory perfusion of blood within capillaries depends 
on the velocity of the flowing blood and the vascular 
structure. Signal attenuation resulting from IVIM is typi-
cally an order of magnitude greater than tissue diffusion 
because of the larger distances of proton displacement 
during the application of the PFG pulses[19]. Therefore 
at higher b-values, IVIM accounts only for a small 
proportion of the measured signal in each imaging voxel. 
Experimental and clinical data indicate a bi-exponential 
behaviour of signal attenuation in body tissues using 
DW-MRI and this indicates that the signal attenuation 
observed at low b-values (< 100 s/mm2) is related to 
tissue perfusion[1,5]. Other mathematical models have 
been suggested to describe quantitative DW-MRI namely 
stretched exponential[20], Gaussian[21] and Kurtosis[22]. 

A typical DW-MRI study in a patient whereby dif-
ferent images with multiple b-values are produced is 
shown in Figure 2. The range of b-values depends on 
investigator preferences and varies according to the 
anatomical region in the prospective study. The concept 
of a bi-exponential fit is also demonstrated in this figure.

The signal intensity from protons with larger diffusion 
distances per unit time such as blood flow is attenuated 
with small b-values (< 100 s/mm2)[23]. This is in contrast 
to cellular tumours containing protons with shorter dif-
fusion distances where there is usually less signal atte-
nuation and hence higher b-values are required (> 500 
s/mm2)[23]. It has been shown that signal attenuation 
in liver DW-MRI is non-linear with increasing b-value 
due to microcapillary perfusion[24,25]. This can be seen 
clearly in Figure 2 where a bi-exponential fit (using the 
Levenberg-Marquardt algorithm) to the regions-of-
interest (ROI) drawn on the DW-MR data acquired with 
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Figure 1  Schematic representation of the pulsed field gradient pulse 
sequence. In this description we assume that we start the sequence with a 
sample containing only four in-phase spins labelled with 1, 2, 3 and 4. In the 
absence of diffusion, the first gradient pulse causes dephasing of the spins. The 
180° radio-frequency pulse reverses the sign of the phase angle and thus after 
the second gradient pulse all spins are in phase which gives a maximum echo 
signal. In the presence of diffusion, spins go through a random walk process 
resulting in a distribution of phases. This in turn results in poorer refocusing of 
the spins and thus, a smaller echo signal. 
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multiple b-values is shown. Whilst this is true for liver, in 
prostate DW-MRI a mono-exponential fit is sufficient to 
discriminate prostate cancer from normal tissue using 

b-values ranging from 0-800 s/mm2[26] and that the 
perfusion component must be excluded in diagnosis, 
prognosis and treatment response[27]. Understanding the 
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b  = 0 b  = 10 b  = 30

b  = 50 b  = 100 b  = 300

b  = 500 b  = 1000 ADC low

ADC high

Figure 2  Diffusion-weighted magnetic resonance images of the abdomen of a healthy 25-year-old male volunteer at different b-values of 0, 10, 30, 50, 
100, 300, 500, 1000 s/mm2. An ROI placed over a non-heterogeneous region in the liver is shown on the b = 0 s/mm2 image. A bi-exponential fit to the ROI drawn 
on the diffusion-weighted-magnetic resonance data acquired with b-values of 0, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 750, 1000 and 1300 s/mm2 is 
also shown where the slopes of the exponents represent the fast diffusion component (which includes perfusion) and the slower diffusion component. Quantitative 
apparent diffusion coefficients maps are also shown where ADC low was computed with b-values ≤ 100 s/mm2 and ADC high was computed with b-values ≥ 150 
s/mm2. ROI: Region-of-interest; ADC: Apparent diffusion coefficient.
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IVIM[1,8] phenomenon is important because the choice 
of b-values determine the extent to which the computed 
ADC maybe influenced by tissue perfusion at low 
b-values. This explains why ADCs reported in abdominal 
studies using b-values (< 100 s/mm2)[25,28-31] are higher 
than those obtained by using higher or a wide range of 
b-values[29,31-34].

“The signal intensity observed on the diffusion image 
is dependent on both water proton diffusivity and the 
tissue T2-relaxation time”[23]. This means that a lesion 
may appear to show restricted diffusion on high b-value 
images due to long T2-relaxation time rather than the 
limited mobility of water protons and are therefore diffi-
cult to characterize with visual assessment of DW-MR 
images[35]. This phenomenon is called T2 shine-through 
effect and was first observed in brain diffusion imaging[36]. 
“The presence of T2 shine-through is recognized by 
correlating high b-value images with the ADC map” 
whereby areas demonstrating T2 shine-through rather 
than restricted diffusion will show “high diffusivity on the 
ADC map and high ADC values”[23].

“Water motion can occur preferentially in some direc-
tions in anisotropic tissues due to presence of obstacles 
that limit molecular movement in some directions”[23]. 
This anisotropic behaviour “can be detected by observing 
differences in diffusivity by using diffusion gradients in at 
least six directions”. Diffusion tensor imaging has been 
used predominantly for brain imaging[37,38] with limited 
data for body imaging of liver[39,40], kidneys[41-43], breast[44] 
and prostate[45].

VARIABILITY OF PUBLISHED ADC 
VALUES IN NORMAL TISSUE
Most DW-MRI studies have been conducted using 1.5T 
MR systems although 3.0T systems are increasingly 
being used due to increased availability and potential for 
improved image quality[33,46-58]. The following sections are 
by no means a comprehensive review of all the published 
literature to-date but it is rather intended to give an 
overview of the variation in the published ADC values 
in clinical extra-cranial studies (in vivo) and provide the 
readers median values for the different organs. A total of 
115 studies, were used in this review including for liver 
parenchyma, kidney (renal parenchyma), pancreatic 
body, spleen, gallbladder, prostate, uterus (endometrium, 
myometrium, cervix) and breast. These studies were 
selected using Google as the search engine where selec-
tion was based on highly cited detailed articles in the 
relevant anatomy. Healthy tissue investigator reports in 
anatomies such as uterus and gallbladder are noticeably 
less compared with that of liver and therefore studies 
with a low number of citations were also included. 
Recent reports (those published in 2015) were selected 
using Google Scholar by applying the date filter. In 
the selection of all of these studies, different magnet 
field strengths from different vendors, a wide range of 
b-values, a number of different diffusion sequences and 
different human populations from different regions and 

continents were included. This was to remove vendor-
specific, sequence-specific and population-specific bias. 
Box and whisker plots for the different organs are shown 
in Figure 3. Details of the studies are provided in, Tables 
1-8. 

Liver
In DW-MR literature, no organ in the abdomen has 
received more attention than the liver[46]. Several inves-
tigators have reported the usefulness of DW-MRI for 
detection of malignant liver lesions[24,28,47]. Ichikawa 
et al[28] found that DW-MR differentiated between 
hemangiomas, hepatocellular carcinomas (HCCs) and 
metastases and that their respective mean ADC values 
were significantly greater than the mean ADC values of 
the normal liver. Liver DW-MRI is routinely performed 
by using tri-directional diffusion gradients along each 
of the x, y and z directions[23]. Reported ADC values in 
healthy liver parenchyma (Table 1) vary between 0.81 
± 0.09 × 10-3 mm2/s[48] to 2.4 ± 0.5 × 10-3 mm2/s[49] 
leading to a median value of 1.28 × 10-3 mm2/s. Values 
are reportedly higher in studies where b-values of 
less 100 s/mm2 were solely used in the computation 
of the ADC[28,29] due to perfusion effects. Insignificant 
differences in ADC values between the three diffusion 
gradient directions were observed[47], proving the iso-
tropic structure of liver parenchyma. Because of the 
relatively short T2-relaxation time of the normal liver 
parenchyma, 46 ± 6 ms at 1.5T and 34 ± 4 ms at 3.0T[50], 
the b-values used in clinical imaging are typically no 
higher than 1000 s/mm2[23] although some studies did 
use b-values of up to 1300 s/mm2[32]. To generate higher 
b-values longer PFG pulses with longer echo times are 
needed and therefore loss of signal from T2 decay. The 
ideal TE in DW-imaging of extra-cranial organs should 
approximately be the T2-relaxation time of the organ 
undergoing the study. Some studies looking at DW 
imaging of the liver used TE values significantly higher 
than the T2-relaxation time[24,47]. In liver DW-MRI, only 
few studies are known that have used a TE of less than 
50 ms[33,51]. Taouli and Koh[23] suggested a minimum 
echo time of 71 ms to reduce shine-through effect, 
which should be kept fixed for all b-values used in the 
study. They also recommended b-values of less than 
500 s/mm2 for breath-hold acquisitions and less than 
1000 s/mm2 for free breathing or respiratory triggered 
acquisitions. DW-MR combined with T1-weighted and T2-
weighted imaging was shown to perform equally as well 
as Gadolinium-MR in the diagnosis of liver metastases[52]. 
Guo et al[53] found that a correlation exists between 
ADC values and the histological grade of HCCs although 
some HCCs were poorly differentiated due to overlap of 
ADC values with those of normal liver. These findings 
were contrary to the report by Nasu et al[54] whereby 
no correlation was found between ADC values and the 
histological grade of HCCs. This discrepancy in findings 
could be attributed to the placement of ROIs where the 
investigators in[54] defined ROIs encompassing HCCs in 
their entirety whereas necrotic and hemorrhagic areas 
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were deliberately avoided by the investigators in[53]. 

Kidney
The major role of the kidneys is water reabsorption and 
concentration-dilution functions[41] and, therefore, DW-
MRI may provide useful insights into the mechanisms of 
various renal diseases. The majority of published values 
in renal parenchyma DW-MRI (Table 2) report an ADC 
estimate for two tissue types, renal cortex (outer portion 
of the kidney) and renal medulla (innermost part of the 
kidney)[30,31,55,56]. Some studies reported ADC values for 
the left and right kidneys with statistically insignificant 
difference between the two values[57,58]. Few studies 
reported anisotropic diffusion in the kidney particularly 
in the renal medulla due to the radial orientation of the 
renal vessels and the collecting system[41,59]. The T2-
relaxation time in renal cortex and renal medulla are 
87 ± 4 ms and 85 ± 11 ms at 1.5T and 76 ± 7 ms and 
81 ± 8 ms at 3.0T respectively[50]. The highest ADC 
estimate across the entire kidney (3.54 ± 0.47 × 10-3 
mm2/s) was reported in[60] where the authors used an 
echo time of 18 ms achieved by having a stimulated-
echo DW-MR sequence and b-values of less than 400 
s/mm2. Other authors[29,31] did report ADC estimates of 
higher than 3.70 × 10-3 mm2/s but the b-values used 
in the computation were less than 150 s/mm2 and 
therefore, perfusion effects led to an increase in the 
computed ADC value. ADC values in selected studies 
varied between 1.50 × 10-3 mm2/s [31] and 3.54 × 10-3 
mm2/s[60] leading to a median value of 1.94 × 10-3 mm2/s.

Spleen
Normal spleen as well as accessory spleens, have the 

greatest degree of non-pathological restricted diffusion 
of all solid abdominal organs[61]. In DW-MRI of healthy 
spleen tissue (Table 3), the highest computed ADC in 
the selected studies was 1.28 ± 0.39 × 10-3 mm2/s[49] 
using b-values of ≤ 400 s/mm2 while the lowest was 
0.59 ± 0.04 × 10-3[32] using b-values of ≤ 1300 s/mm2 
leading to a median value of 0.85 × 10-3 mm2/s. 
Several authors have proposed to use the spleen as 
a reference organ for ADC measurements of liver 
parenchyma[29,62] in order to decrease variability of liver 
ADC measurements despite the fact that patients with 
cirrhosis and portal hypertension frequently suffer from 
splenomegaly (enlargement of the spleen)[63]. Klasen 
et al[63] demonstrated that patients with liver cirrhosis 
and portal hypertension had significantly higher spleen 
ADCs. Spleen T2-relaxation times are 79 ± 15 ms and 
61 ± 9 ms at 1.5T and 3.0T respectively[50] and some 
studies[24,64] did use echo times significantly higher than 
the T2-relaxation time.

Pancreas
Evaluation of solid lesions in the pancreas lies mainly in 
the discrimination between benign mass-forming focal 
pancreatitis and pancreatic carcinoma[65]. Unfortunately 
differentiating between benign mass-forming focal 
pancreatitis and pancreatic ductal adenocarcinoma is 
extremely difficult as they both show similar histologic 
and radiologic patterns[66-68]. Multimodality approaches 
such as ultrasound, computed tomography and different 
MR techniques have been suggested to differentiate 
between benign mass-forming focal pancreatitis and 
pancreatic carcinoma[66]. Healthy pancreatic tissue ADC 
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likelihood of prostate cancer in the prostate imaging 
reporting and data system[81]. The majority of prostate 
cancer arises in the peripheral zone (68%)[82]. Although 
studies have demonstrated improved sensitivity and 
specificity in prostate cancer detection using DW-MRI, 
tumours smaller than 5 mm are difficult to detect[83]. 
Prostate transition zone is the site of benign prostatic 
hyperplastic nodules, which can have low ADC values 
and hence mimic tumour[83]. Post-biopsy haemorrhage 
in the prostate gland may cause susceptibility artefact[84] 
and add further uncertainty in the computed ADC map 
as it presents itself as a region of low signal intensity 
and hence mimic tumour[83]. Nevertheless, DW-MRI in 
combination with T2-weighted imaging has been shown 
to be significantly better than T2-weighted imaging alone 
in the detection of significant cancer within the peripheral 
zone of the prostate[80].

Gynaecologic sites
Gynaecologic DW-MRI comprises five main categories: 
Ovaries or fallopian tubes, endometrium, myometrium, 
cervix and vulva[85,86]. Gynaecologic healthy tissue ADC 
estimates are not often reported and only thirteen 
studies were included (Table 7) for normal endometrium 
(5), myometrium (3) and cervix (7). Range of reported 
ADCs for endometrium, myometrium and cervix in the 
selected publications are respectively (1.27 ± 0.22[87] 
- 1.53 ± 0.10[88]), (1.50 ± 0.20[87] - 1.62 ± 0.11[89]) 
and (1.41 ± 0.10[90] - 2.09 ± 0.46[91]) × 10-3 mm2/s, 
leading to median values of 1.44, 1.53 and 1.71 × 10-3 
mm2/s respectively. Of the three anatomies, cervix 
has the greatest variation in ADC values, which could 

be attributed to its anatomical location. The air-tissue 
interface causes greater susceptibility-induced artefact in 
the acquired DW-MR images and the ADC estimate may 
vary considerably across studies due to the placement of 
the ROI. Average T2-relaxation times for endometrium, 
myometrium and cervix are significantly different: 101 
± 21, 117 ± 14 and 58 ± 20 ms at 1.5T and 59 ± 1, 
79 ± 10 and 83 ± 7 ms at 3.0T respectively[50]. DW-
MRI can provide useful information in differentiating 
uterine endometrial cancer from benign lesions[88,92]. 
Tamai et al[88] demonstrated that there was no overlap 
between ADC values in normal endometrium and endo-
metrial cancers. Nougaret et al[93] found a significant 
difference in the ADC values of grade 3 endometrial 
tumours compared to those of grade 1 and 2. However, 
in adjacent myometrium differentiating between benign 
and malignant disease based on ADC values alone is 
difficult[94]. In the ovaries, the majority of prior studies 
reported ADC values of benign and malignant lesions. 
Katayama et al[95] concluded that ADCs might not provide 
additional information in differentiating benign from 
malignant ovarian lesions, as there was a significant 
overlap[95-97] between ADCs in benign and malignant 
solid tumours. In the cervix, ADC values could play a 
role in the diagnosis[98] and as a surrogate biomarker of 
treatment response[99]. Luomaranta et al[100] concluded 
that DW-MRI is more reliable in the radiological staging 
of endometrial carcinoma compared with contrast-
enhanced MRI.

Breast
Mammography is the modality of choice in breast scre-

Ref. System Field strength (T) Sequence TR/TE (ms/ms) No. of patients/ b -values Mean ADC (SD)

mean age (SD) (yr) (s/mm2) (× 10-3 mm2/s)
Yamada et al[24],
1999

Siemens Vision      1.5 SS SE EPI, 
BH, FS

NR/123 62 0, 30, 300, 900, 
1100

2.81 (0.36)

Yoshikawa et al[57],
2006

Philips Intera      1.5 SS SE EPI, 
BH, SPIR

1500/66 151 0, 600 3.50 (0.51)

1Saremi et al[161],
2011

a. SiemensAvanto
b. SiemensTrio

a. 1.5
b. 3.0

SS SE EPI, FS
(1) BH, no PI

(2) BH, PI
(3) FB, PI 

(1) 150/75
(2) 144/72
(3) 174/87

13 (2F, 11M)/46 (13) 50, 400, 1000 a. 2.6 (0.4)
b. 2.6 (0.3)

Miquel et al[34],
2012

Philips Achieva      1.5 SS SE EPI, FB (5300-5800)/62 10 (7F, 3M)/32.3 
(4.6)

100, 200, 500, 
750, 1000

V1: 2.93 (0.20)
V2: 2.91 (0.21)

Corona-Villalobos 
et al[58], 2013

Siemens Avanto      1.5 SS SE EPI, BH (1) 3000/(69-79)
(2) 2500/(76-95)

100 (36F, 64M)/60.4 
(14.3)

(1) 0, 750
(2) 0, 50, 100, 
200, 300, 450, 

600, 750

(1) 3.01 (0.33)
(2) 2.74 (0.37)

Donati et al[56],
2014

(1) Siemens Sonata
(2) Siemens Trio

     1.5
     3.0

SS SE EPI, FB, 
FS

(5000-6225)/(36-76) 10 (10M)/36.6 (7.7) 0, 1000 (1) 2.585 (0.354)
(2) 2.506 (0.223)

(3) Philips Achieva      1.5 (3) 2.657 (0.229)
(4) Philips Achieva      3.0 (4) 2.718 (0.327)

(5) GE Signa      1.5 (5) 2.670 (0.312)
(6) GE Discovery      3.0 (6) 2.785 (0.477)

Table 5  Estimates of apparent diffusion coefficient values reported in human gallbladder using a mono-exponential fit 

Some studies were carried out with more b-values than specified in the following table to compute intravoxel incoherent motion-specific parameters. 
1Mean ADC of the three sequences reported in the paper. ADC: Apparent diffusion coefficient; F: Female; M: Male; NR: Not reported; SS: Single shot; SE: 
Spin echo; EPI: Echo planar imaging; RF: Radiofrequency; RT: Respiratory triggered; NC: Navigator controlled; FB: Free breathing; BH: Breath-hold; BHI: 
Breath-hold end inspiratory; BHE: Breath-hold end expiratory; SPIR: Spectral pre-saturation with inversion recovery; PI: Parallel imaging.
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ening but is less effective in women with very dense 
breasts (higher content of fibroglandular tissue compared 
to fatty adipose tissue) and those with BRCA1 genetic 
predisposition and MRI screening may offer added 
benefit[101-103]. Increasingly the added value of DW-MRI to 
the normal MRI screening particularly in dense breasts is 
being examined[104]. Normal fibroglandular breast tissue 
ADC estimates from selected studies are summarized 
in Table 8. The highest ADC estimate for normal fibro-
glandular breast tissue in selected studies was 2.37 ± 0.27 
× 10-3 mm2/s[105] and the lowest reported was 1.51 ± 0.29 
× 10-3 mm2/s[182] leading to a median value of 1.92 × 10-3 
mm2/s. The majority of DW-MR studies in the breast 
investigated lesion detection and characterisation[105-107]. 
Some focused on the measured ADC values during 
different weeks of the menstrual cycle[17,108] while others 
focused on the significance of pre- and post-menopausal 

ADC values[109]. Average T2-relaxation times of breast 
fibroglandular tissue and that of fatty adipose tissue at 
1.5T field strength were reported as 40 ± 10 ms and 
130 ± 10 ms/380 ± 30 ms (two values corresponding to 
the dominant lipid peaks) respectively[110]. This relatively 
short T2-relaxation time of normal fibroglandular breast 
tissue must be considered when optimizing b-values for 
DW-MRI studies.

Suppression of lipid signal in DW-MRI of the breast 
is essential to reduce image artefacts and to increase 
lesion detection[111]. Different fat suppression techniques 
were compared in few studies[112-114] whereby significant 
differences in the computed ADC values were observed 
between spectral fat suppression (SPAIR) and short-time 
inversion recovery (STIR) techniques[112] and a larger 
overlap in ADC values between tumour and benign tissue 
was detected using STIR[112]. However, the authors in[113] 

Ref. System Field strength (T) Sequence TR/TE (ms/ms) No. of patients/
mean age (SD)

b -values (s/
mm2)

Mean ADC (SD)
(× 10-3 mm2/s)

1Gibbs et al[77], 2001 GE 1.5 SS SE EPI       4000/110     8/29 0, 720      CG: 1.17 (0.18)
      PZ: 1.25 (0.23)

Issa[169], 2002 GE 1.5 SS SE EPI        4000/120     7/29 64, 144, 257, 
401, 578, 786

     CG: 1.63 (0.30)
      PZ: 1.91 (0.46)

Sato et al[79], 2005 Siemens 
Symphony

1.5 SS SE EPI      2700/96 6 0, 300, 600      CG: 1.68 (0.26)
      PZ: 1.93 (0.24)

Pickles et al[170], 2006 GE Signa 3.0 SS SE EPI         4000/65.7     9/32 0, 500      CG: 1.27 (0.14)
     PZ: 1.60 (0.25)

Kumar et al[78], 2006 Siemens 
Avanto

1.5 SS SE EPI      3000/96           7/31.4 (3.6) 0, 250, 500, 750, 
1000

 CG: 0.9 (0.1)
  PZ: 1.5 (0.2)

Gibbs et al[171], 2007 GE Excite 3.0 SS SE EPI         4000/65.7     8/35 0, 500        CG: 1.212, 1.263

        PZ: 1.562, 1.633

Ren et al[172], 2008 Philips Intera 1.5 SS SE EPI      3000/63      16/37.9 0, 500          CG: 1.352 (0.052)
          PZ: 1.829 (0.071)

Kozlowski et al[76], 2008 GE Signa 1.5 (1) SS FSE   (1) 8000/87.5 (1) 14 0, 600     (1) CG: 1.373 (0.179)
(2) SS EPI   (2) 8000/87.5 (2) 15           PZ: 1.573 (0.270)

   (2) CG: 1.518 (0.126)
          PZ: 1.992 (0.208)

Tamada et al[173], 2008 GE Signa 1.5 SS SE EPI         5500/67.7 114/55
(1) 20 ≤ age ≤ 39 

(n = 11)
(2) 40 ≤ age ≤ 59 

(n = 62)
(3) 60 ≤ age ≤ 89 

(n = 41)

0, 1000 (1) CG: 1.22 (0.10)
      PZ: 1.37 (0.18)
(2) CG: 1.27 (0.12)
      PZ: 1.63 (0.26)
(3) CG: 1.27 (0.12)
      PZ: 1.74 (0.25)

Riches et al[27], 2009 Philips Intera 1.5 SS SE EPI      2500/69 50/66 (6) 0, 800      CG: 1.72 (0.35)
      PZ: 1.66 (0.34)

Liu et al[174], 2013 GE Signa 3.0 SS SE EPI        4000/71.9 102 0, 1000 n = 69, 
     CG: 1.36 (0.12)

n = 74, 
      PZ: 1.69 (0.28)

Emad-Eldin et al[74], 2014 Philips Intera 1.5 SS SE EPI       3600/110 12 0, 500, 800           CG: 1.469 (0.239)
          PZ: 1.839 (0.233)

4Peng et al[175], 2014 Philips 
Achieva

1.5 SS SE EPI, 
FB

(1) 
(2948-8191)/(71-79)

(2) 
(3854-8616)/(83-85)

(1) 26/61.1 (7.2)
(2) 25/62.0 (6.4)

(1) 0, 1000
(2) 0, 50, 200, 

1500, 2000

             PZ: (1) 1.75 (0.3) E
                    (2) 1.33 (0.1) E

Table 6  Estimates of apparent diffusion coefficient values reported in human prostate using a mono-exponential fit

Some studies were carried out with more b-values than specified in the following table to compute intravoxel incoherent motion-specific parameters. 1In 
this study 6 more b-values within the range were used; 2Mean ADC over a short-term period of a few minutes between first scan and second scan; 3Mean 
ADC over a medium-term of a month between first scan and second scan; 4These authors reported the median values. ADC: Apparent diffusion coefficient; 
F: Female; M: Male; NR: Not reported; SS: Single shot; SE: Spin echo; EPI: Echo planar imaging; FSE: Fast spin echo; RF: Radiofrequency; RT: Respiratory 
triggered; NC: Navigator controlled; FB: Free breathing; BH: Breathhold; BHI: Breathhold end inspiratory; BHE: Breathhold end expiratory; SPIR: Spectral 
pre-saturation with inversion recovery; PZ: Peripheral zone; CG: Central gland; n: Number of patients; E: Estimate from the chart.
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found that the computed ADC values using SPAIR and 
STIR fat suppression techniques were very similar. In 
another study[114] four types of STIR, SPAIR, spectrally 
adiabatic inversion recovery and water excitation were 
compared of which water excitation yielded the highest 
signal-to-noise. Regardless of the choice of the fat 
suppression technique, multi-centre studies are required 
to standardise DW-MRI parameters and to establish the 
clinical utility of DW-MRI and ADC values of malignant 
and benign disease[111].

Cancer vs normal tissue
DW MRI is already being incorporated into general onco-
logic imaging practice. One of its main advantageous 
is that it does not require intravenous contrast media 
enabling its use in patients with reduced renal function[5]. 
Increase in tumour cellularity and architectural distortion 
contribute to decreased ADC values. In tissues that are 
highly cellular, tortuosity of the extracellular space and the 
higher density of hydrophobic cellular membranes restrict 
the apparent diffusion of water protons[23,115,116]. Therefore 
it is expected that ADC values would correlate with 
tumour cellularity and grade as it has been shown in[117]. 
In Table 9 reported ADC values of malignant vs normal 
tissue from selected studies in different anatomical 
regions are shown. In the majority of oncologic studies, 
a significant change in ADC has been detected between 

each of the malignant disease, benign and normal 
tissue. Radiologists use increased tumour cellularity as a 
biomarker of malignancy using DW-MRI to differentiate 
between benign and malignant disease[47,28,118]. How-
ever, tumour necrosis and nuclear atypia can account 
for imperfect correlations between ADC values and 
cellularity with necrosis being an intrinsic component 
of poorly differentiated tumours as it increases ADC 
values[16]. Other clinical oncologic uses include monitoring 
treatment response after chemotherapy or radiation, 
differentiating post-therapeutic changes from residual 
active tumour and detecting recurrent cancer[5]. Potential 
future applications include predicting treatment outcomes 
before and after therapy, tumour staging and detecting 
lymph node involvement by cancer[5]. There is much con-
tention about these potential applications of DW-MRI 
and its potential role in differentiating between tumour 
grades. Unsubstantiated claims have been made in the 
literature about tumour staging. The authors in[119] staged 
breast tumour grades based on statistically insignificant 
changes in the median ADC (grade 1 ADC 1.11 mm2/s, 
grade 2 ADC 1.10 mm2/s and grade 3 ADC 1.06 mm2/s). 
This is in contrast to the study conducted in[117] where 
there was a statistically significant change in the mean 
ADC between a high-grade glioma (ADC 1.2 mm2/s) 
and a low-grade glioma (ADC 2.7 mm2/s). The authors 
in[120] also differentiated between endometrial tumour 

Ref. System Field strength 
(T)

Sequence TR/TE (ms/ms) No. of patients/
mean age (SD)

b -values 
(s/mm2)

Mean ADC (SD) (× 10-3 
mm2/s)

Naganawa et al[99], 2005 Siemens 
Symphony

1.5 SS SE EPI 2500/96    10/46.6 0, 300, 600 Cervix, 1.79 (0.24)

Tamai et al[88], 2007 Siemens 
Symphony

1.5 SS SE EPI, FS         4400/(74-99) 12/49 0, 500, 100 Endometrium, 1.53 (0.10)

Zhang et al[176], 2007 Philips Intera 1.5 SS SE EPI 6800/70 (9 + 7V)/34 
median

0, 800 Cervix, 1.71 (0.14)

McVeigh et al[91], 2008 GE Signa 1.5 SS SE EPI 4000/68 30/47 0, 600 Cervix n = 26, 2.09 (0.46)
Shen et al[92], 2008 GE Excite 1.5 SS SE EPI 8000/83      7/45.2 0, 500, 800, 

1000
Endometrium, 1.277 (0.219)

Fujii et al[177], 2008 Siemens 
Symphony

1.5 SS SE EPI, 
STIR FS, FB

(9500-9800)/(73-78) 26/53 0, 1000 Endometrium n = 25, 1.44 (0.34)

Tamai et al[89], 2008 Siemens 
Symphony

1.5 SS SE EPI, FS (2700-4400)/(78-90) 43/48 0, 500, 1000 Myometrium, 1.62 (0.11)

Inada et al[178], 2009 GE Signa 1.5 SS SE EPI, FB (3400-7500)/68 31/44.9 (12.7) 0, 800 Endometrium, 1.52 (0.20)
Myometrium, 1.53 (0.25)

Liu et al[179], 2009 GE Excite 1.5 SS EPI    4000/58.5 57 0, 1000 Cervix, 1.50 (0.16)
Payne et al[180], 2010 Philips Intera 1.5 SS SE EPI 4500/80 62/38 0, 100, 300, 

500, 800
Cervix n = 43, 1.769 (0.239)

Chen et al[98], 2010 Philips Intera 1.5 SS SE EPI, 
STIR FS

6800/70    20/34.4 0, 800 Cervix, 1.593 (0.151)

Cao et al[87], 2012 GE Signa 1.5 SS SE EPI, FB     NR/NR    64/55.4 0, 1000   Endometrium, 1.267 (0.221)
   Myometrium, 1.496 (0.196)
Junctional zone, 1.126 (0.190)

Kuang et al[90], 2013 Siemens Trio 3.0 SS SE EPI, FS      AX: 7000/71, 67 (1) 0, 600 Cervix, (1) 1.55 (0.28)
 SAG: 1800/76 (2) 0, 1000               (2) 1.41 (0.10)

Table 7  Estimates of apparent diffusion coefficient values reported in human Uterus (endometrium, myometrium and cervix) using 
a mono-exponential fit

Some studies were carried out with more b-values than specified in the following table to compute intravoxel incoherent motion-specific parameters. ADC: 
Apparent diffusion coefficient; NR: Not reported; SS: Single shot; SE: Spin echo; EPI: Echo planar imaging; RF: Radiofrequency; RT: Respiratory triggered; 
NC: Navigator controlled; FB: Free breathing; BH: Breath-hold; BHI: Breath-hold end inspiratory; BHE: Breath-hold end expiratory; n: Number of patients; 
STIR: Short TI inversion recovery; FS: Fat suppression; NA: Not available; AX: Axial; SAG: Sagittal; W: Week; V: Volunteer.
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grades based on statistically insignificant changes in 
the mean ADCs, however, they were confidently able to 
differentiate between benign and malignant disease. The 
utility of ADC was also investigated in ultrasound-guided 
biopsies in the detection and localization of prostate 
cancer. In a large-scale cohort study of 1448 patients[121] 
who underwent systematic biopsies (890 patients with 
low-ADC lesions underwent additional targeted biopsies), 
the authors demonstrated that targeted biopsy strategy 
based on ADC maps can be useful in the patient selection 
for subsequent prostate biopsies and in the detection and 
localization of prostate cancer to high accuracy.

REPRODUCIBILITY OF ADC VALUES 
In this section a literature survey of the repeatability 
and reproducibility of ADC values both in phantoms 

and in vivo is provided. Repeatability refers to test 
conditions that are as constant as possible, where the 
same operator using the same equipment within a 
“short time interval” obtains independent test results 
with the same method on identical items in the same 
laboratory[122]. On the other hand, “reproducibility refers 
to test conditions under which results are obtained with 
the same method on identical test items but in different 
laboratories with different operators using equipment”[122]. 
Therefore repeatability informs on equipment variation 
while reproducibility informs on observer/experimental 
variation[5]. 

Bland-Altman plots[123] are frequently used to show 
any trends in the variability of ADC measurements 
over the measuring interval. Bland-Altman plots help 
to illustrate the bias-variance relationship and limits of 
agreement[124]. The basis for estimates of repeatability 

Ref. System Field strength 
(T)

Sequence TR/TE (ms/ms) No. of patients/
mean age (SD)

b -values (s/mm2) Mean ADC (SD) (× 
10-3 mm2/s)

Englander et al[181], 1997 GE Signa 1.5 SE (2 or 3)HB/100 4/32 (2.6) 12.48, 611.31, 
199.61, 449.12, 
77.97, 311.89, 

112.28

1.64 (0.19)

Partridge et al[17], 2001 GE Signa 1.5 SS FSE 8000/86 8/27 0, 578 n = 6,
W1: 1.72 (0.23)
W2: 1.61 (0.22)
W3: 1.66 (0.17)
W4: 1.75 (0.17)

Sinha et al[105], 2002 GE Signa 1.5 SS EPI 5000/72 16 0, 269, 537, 806, 
1074

2.37 (0.27)

Woodhamset al[106], 2005 GE Signa 1.5 SS SE EPI    5000/61.8      190/53 0, 750, 1000 2.09 (0.27)
Park et al[182], 2007 GE Signa 1.5 SS EPI 6000/75           41/53.1 0, 1000 1.51 (0.29)
Yoshikawa et al[107], 2008 Philips Intera 1.5 SS SE EPI 6238/90 27 0, 200, 400, 600, 

800
1.96 (0.21)

Kim et al[119], 2009 GE Signa 1.5 SS SE EPI 6000/75        67/54 0, 1000 1.59 (0.27)
Baron et al[114], 2010 Siemens 

Avanto
1.5 SS SE EPI, 

(1) FS 
(2) STIR 

(3) SPAIR 
(4) WaterExcitation

3000/93             7/26.6 0, 20, 40, 60, 80, 
100, 150, 200, 300, 

400, 500, 600

(1) 1.99
(2) 2.02
(3) 2.03
(4) 2.06

overall 2.03 (0.03)
Partridge et al[44], 2010 GE Signa 1.5 SS SE EPI     7 s/71.5 12/36 (median) 0, 600, 1000 1.95 (0.24)
O’Flynn et al[109], 2012 Philips 

Achieva
3.0 SS SE EPI, SPAIR, 

SSGR
3771/67           31/45.9

13 PRM/36.6
   18 PM/55.2

(1) 0, 100, 150, 200, 
350, 700, 1200

(2) 100, 150, 200, 
350, 700, 1200

PRM, 
(1) 1.84 (0.26)
(2) 1.77 (0.26)

PM, 
(1) 1.46 (0.3)
(2) 1.33 (0.3)

Tagliafico et al[183], 2012 GE Signa 3.0 SS EPI 16675/NR 60/57 (median) 0, 1000 1.92 (0.30)
AlRashidi et al[108], 2012 Philips 

Achieva
3.0 SS SE EPI, SPAIR 9543/50 26 0, 50, 150, 800 MC,

W1: 2.18 (0.38)
W2: 2.20 (0.39)
W3: 2.22 (0.38)
W4: 2.22 (0.33)

McDonald et al[184], 2014 Philips 
Achieva

3.0 SS SE EPI 5336/61 103/47 (11) 0, 800 1.62 (0.30)

Table 8  Estimates of apparent diffusion coefficient values reported in the normal fibroglandular breast tissue using a mono-
exponential fit

Some studies were carried out with more b-values than specified in the following table to compute intravoxel incoherent motion-specific parameters. ADC: 
Apparent diffusion coefficient; F: Female; M: Male; NR: Not reported; SS: Single shot; SE: Spin echo; EPI: Echo planar imaging; FSE: Fast spin echo; RF: 
Radiofrequency; RT: Respiratory triggered; NC: Navigator controlled; FB: Free breathing; BH: Breath-hold; HB: Heart beats; n: Number of patients; SPAIR: 
Spectral selection attenuated inversion recovery; SSGR: Slice selection gradient reversal; FS: Fat suppression; AX: Axial; SAG: Sagittal; MC: Menstrual cycle; 
PM: Post-menopause; PRM: Pre-menopause; W: Week; L: Left; R: Right.
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is the within-subject variance assuming that all other 
factors have been controlled through experimental 
design[124]. Within-subject variance may include biological 
or physiological variability as well as patient repositioning 
and scanner calibrations[124]. Repeated-measures analysis 
of variance (rm-ANOVA) is used to assess differences 
in ADC values measured at each b-value between 
magnetic field strengths[125]. Inter-reader agreement 
regarding ADC measurements is frequently assessed by 
computing the intra-class correlation coefficient (ICC)[5,56]. 
ICC is a measure of repeated measures consistency 
relative to the total variability in the population[124]. The 
within-subject coefficient of variation is often reported 
for repeatability studies to assess repeatability in test-
retest designs[124]. One-way analysis of variance (one-
way ANOVA) is usually used to test discrepancy between 
the highest and lowest values and difference in these 

results among MR scanners[126]. Bonferroni correction 
is typically used to counteract the problem of multiple 
testing[56,125]. Statistical significance is usually assessed at 
P < 0.05[125,126]. 

“A good qualified biomarker should have three 
properties: Biological relevance to the disease process 
under study, sensitivity to the disease process and good 
reproducibility”[127]. In clinical trials questions revolve 
around whether changes in individual patients can 
be measured reliably and reproducibly and whether 
they predict important clinical outcomes in terms of 
monitoring response to therapy[5,128]. Reproducibility 
measurements of DW-MRI data are necessary to unders-
tand the magnitude of variation that can be detected 
confidently. Both the size and the position of lesions are 
known to influence reproducibility, with larger lesions 
being more reproducible[129]. At the time of authoring 

Ref. Anatomical region Journal Tumour and tissue No. of subjects b -values (s/mm2) Mean ADC (SD) (× 10-3 mm2/s)

Kim et al[29], 1999 Liver AJR Malignant
Normal liver

  49
  48

3, 57, 192, 408, 517, 
705, 846

1.01 (0.38)
1.92 (0.32)

1Taouli et al[47], 2003 Liver Radiology Metastatic lesions   15 (1) 0, 500 (1) Lesions 0.94 (0.60)
Normal liver   14 (2) 0, 134, 267, 400 Normal 1.83 (0.36)

(2) Lesions 0.85 (0.51)
Normal 1.51 (0.49)

Sato et al[79], 2005 Prostate JMRI Prostate cancer   23 0, 300, 600 1.11 (0.41)
Normal prostate   23 1.68 (0.40)

Naganawa et al[99], 2005 Cervix European Cervical cancer   12 0, 300, 600 1.09 (0.20)
Radiology Normal cervix   10 1.79 (0.24)

McVeigh et al[91], 2008 Cervix European Cervical cancer   47 0, 600 1.09 (0.20)
Radiology Normal cervix   26 2.09 (0.46)

Yoshikawa et al[107], 2008 Breast Radiation
Medicine

IDC
NIDC

Normal breast

  24
    3
  27

0, 200, 400, 600, 
800

1.07 (0.19)
1.42(0.17)
1.96(0.21)

Kim et al[119], 2009 Breast JMRI Breast cancer   62 0, 1000 1.09 (0.27)
Normal breast   67 1.59 (0.27)

Riches et al[27], 2009 Prostate NMR in Prostate cancer   43 0, 800 1.33 (0.52)
Biomedicine Central gland   50 1.72 (0.35)

Peripheral zone   50 1.66 (0.34)
Fattahi et al[65], 2009 Pancreas JMRI Pancreatic cancer   10 0, 600 1.46 (0.18)

Normal pancreas   14 1.78 (0.07)
Sugita et al[185], 2009 Gallbladder European

Radiology
Gallbladder 
carcinoma

  15 0, 1000 1.28 (0.41)

Gallbladder disease   14 1.92 (0.21)
Taouli et al[186], 2009 Kidney Radiology RCC 64 (28 RCC) 0, 400, 800 1.41 (0.61)

Benign lesions 64 (81 benign 
lesions)

2.23 (0.87)

Wang et al[187], 2010 Kidney Radiology RCC   83 (1) 0, 500 (1) RCC 1.849 (0.399)
RP (2) 0, 800    RP 2.455 (0.238)

(2) RCC 1.698 (0.323)
   RP 2.303 (0.172)

Cao et al[87], 2012 Uterus European Journal 
of Radiology

Endometrial 
carcinoma

  13 0, 1000 1.011 (0.102)

Normal 
endometrium

  64 1.267 (0.221)

Ogawa et al[188], 2012 Gallbladder Journal of 
Gastroenterology

Gallbladder 
carcinoma

  36 0, 1000 1.83 (0.69)

Gallbladder disease 117 2.60 (0.54)

Table 9  Estimates of apparent diffusion coefficient values of cancer vs  normal tissue/benign disease reported in selected studies on 
different anatomical regions using a mono-exponential fit

Some studies were carried out with more b-values than specified in the following table to compute intravoxel incoherent motion-specific parameters. 
1Authors in this study used two different DW sequences. IDC: Invasive ductal carcinoma; NIDC: Noninvasive ductal carcinoma; RCC: Renal carcinoma; RP: 
Renal parenchyma; DW: Diffusion-weighted.

Jafar MM et al . Diffusion-weighted MRI in cancer



38 January 28, 2016|Volume 8|Issue 1|WJR|www.wjgnet.com

this review, 1860 Google Scholar entries were found for 
(ADC + MRI + repeatability) and 8200 for (ADC + MRI 
+ reproducibility). However, the mere use of the word 
repeatability and reproducibility in the entries, does 
not indicate an elaborate study into repeatability and 
reproducibility of ADC values. In a serial single-centre 
study, to establish treatment effect, each subject will 
normally be scanned at the same centre at each time 
point and it is the within-subject variance measured at 
a given centre, over the duration of the study, which 
is important. If the study is to be multi-centre “then 
between-centre variance should also be controlled”[127]. 
The within-centre variance for a subject or repeatability 
is important and it is measured using the Bland-Altman 
analysis method[123]. In single centre studies, “repeated 
measurements are usually made in pairs over a set 
of subjects (typically 5-20) to establish the difference 
between repeats and whether this depends on the mean 
value of the parameter being estimated”[127]. In multi-
centre studies, protocol matching is the simplest method 
of reducing measurement differences[127] although 
“differences in imaging hardware produced by different 
vendors may prevent identical protocols being used at 
every site”. 

ADC maps are quantitative imaging maps, which 
in principle are “independent of the particular imaging 
protocols used”[127] although in reality significant varia-
tions in ADC values of different anatomical regions have 
been reported both in single-centre and in multi-centre 
studies[126].

In the following discussions the words (Philips, 
Siemens, GE and Toshiba) refer to MR system vendors 
Philips (Philips Healthcare, Best, The Netherlands), 
Siemens (Siemens Healthcare, Erlangen, Germany), GE 
(GE Healthcare, Waukesha, WI) and Toshiba (Toshiba 
Medical Systems, Tokyo, Japan).

Reproducibility of ADC values in vitro
Phantoms have three advantages over human control 
subjects. First, phantoms can be scanned repeatedly 
“without any ethical constraints”, second, they have 
“known physical properties” and third, they are “rela-
tively easy to transport between centres”[127]. Potential 
disadvantages include “a lack of realism compared to 
in vivo measurements”, “MR properties of the material 
progressively vary with time” and “the time and 
expertise required to build phantoms are prohibitive at 
some centres”[127]. Some phantoms have been deve-
loped to measure some tissue properties that exist in 
tumours[130]. Phantom measurements have been made 
with alkanes[131] or other organic liquids[132], which have 
ADC values in the range of brain tissue. Other materials 
include sucrose solutions[133,134], iced water[125] and 
gels[135,136].

Chenevert et al[125] (2011) proposed a novel ice-
water phantom for DW-MRI multi-centre trials and 
investigated ADC variability across 20 MR scanners 
from 3 vendors (GE, Philips, Siemens) at 7 institutions 
at both 1.5T and 3.0T field strengths. To assess single-

system repeatability, the phantom was also imaged on 
16 different days over a period of 25 d. Site-specific DW-
MRI protocols were performed as well as a standard 
DW-MRI protocol with b-values of 0, 500, 800, 1000, 
2000 s/mm2. Vendor-independent software was used 
to compute the ADC maps. Magnet field strength was 
not found to have an impact on ADC measurements, 
however, significant differences in ADC measurements 
were observed between vendors. The authors reported 
a ± 5% variation in ADC across all systems and single-
system repeatability was also ± 5%. Malyarenko et al[137] 
(2013) reported a multi-centre study using a variation of 
the ice-water phantom developed by Chenevert et al[125]. 
The authors devised a DW-MRI protocol compatible 
across 35 clinical MRI platforms (GE, Philips, Siemens) 
at 18 institutions at two field strengths of 1.5T and 3.0T. 
Vendor-independent software was used to compute 
the ADC maps. Standard deviation of ADCs measured 
at the magnet’s isocentre was less than 2% for all 35 
platforms. Inter-site reproducibility of ADC at magnet 
isocentre was within 3%. ADC variability increased 
for off-centre measurement consistent with diffusion 
gradient non-linearity. Overall the authors concluded 
that standardization of DW-MRI protocol improved 
reproducibility of ADC measurements and allowed 
identification of non-linearity in the diffusion gradients as 
a source of error in the measured ADC in clinical multi-
centre trials. Kıvrak et al[138] (2013) used an in-house 
phantom consisting of four containers filled with distilled 
water, 0.9% NaCl, 25% NaCl and shampoo placed into 
a plastic container containing tap water. DW-MRI imag-
ing of the phantom was performed using six different 
scanners from four vendors (Toshiba, GE, Philips and 
Siemens) utilizing a multichannel head coil and b-values 
of 0 and 1000 s/mm2 at a room temperature of 21 ℃. 
ADC maps were computed on seven vendor-specific 
workstations. Statistically significant variations in ADC 
values for each fluid of the phantom were recorded 
between some scanners. Intra-vendor variability in ADC 
values was statistically significant for some scanners 
but not others. Overall the authors concluded that 
there were significant intra-vendor and inter-vendor 
variations in the computed ADC values. Giannelli et 
al[139] (2014) used an in-house isotropic water (per 
1000 g distilled water: 1.25 g NiSO4.6H2O + 5 g NaCl) 
phantom made of two cylindrical bottles to resemble 
female breast. DW-MRI of the phantom was perfor-
med using three scanners from three vendors (Philips, 
Siemens, GE) at 1.5T field strength. Two b-values of 0 
and 850 s/mm2 were used to sensitize diffusion and a 
total of 5 acquisitions were repeated for each scanner. 
Vendor-independent software was used to compute the 
ADC maps. ADC values were found to be significantly 
different between scanners. Coefficient of variation for 
repeated measurements was less than 1% while it had 
a mean value of 6.8% across scanners. Overall the 
authors concluded that a specific quality control protocol 
must be devised for DW-MRI of the human breast as 
system-induced variations were found to be substantial. 
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Belli et al[140] (2015) reported extensive assessment of 
ADC variability on 35 MR scanners (1.0T: 2.7%, 1.5T: 
65.7% and 3.0T: 31.6%) from 26 participating centres. 
Standard doped water phantoms were developed at the 
coordinating centre using cylindrical bottles filled with 
an aqueous solution of 2 mmol/L of hexahydrate NiCl2 
and 0.5 g/L NaN3. Two DW-MRI sequences were used 
in this study: First sequence with b-values ranging from 
0 to 1000 s/mm2 in steps of 100 s/mm2 and second 
sequence with b-values ranging from 0 to 3000 s/mm2 
in steps of 500 s/mm2. No parallel imaging technique 
was employed and vendor-independent software was 
used to generate the ADC maps. ADCs were normalized 
to 20 ℃ to assess inter-scanner variability. No statistical 
significance was detected for the ADCs estimated from 
the first DW sequence between 1.5T and 3.0T scanners 
while ADC estimates of the second DW sequence were 
significantly different between the two field strengths. 
Overall ADC measurements were within 5% from the 
nominal value and the highest deviation and overall 
standard deviation were 9.3% and 3.5% respectively. 
The authors carried out a second set of measurements 
on 26 scanners whereby short-term repeatability was 
assessed by repeating the first DW sequence five 
times at 1-min intervals. Short-term repeatability of 
ADC measurement was found to be less than 2.5% for 
26 MR scanners. Doblas et al[141] (2015) reported a 7 
centre multi-vendor study in which the reproducibility 
of ADC values was assessed on preclinical systems at 
field strengths of 4.7T, 7.0T and 9.4T. A miniaturized ice-
water phantom was designed which was adapted from a 
previously reported clinical design[125]. Site-specific post-
processing software packages were used to compute 
the ADC maps in which b-values less than 100 s/mm2 
were excluded from the computation. Inter-site ADC 
reproducibility was 6.3% and no site was identified as 
presenting different measurements than others. Mean 
day-to-day repeatability of ADC measurements was 
2.3%. Between-slice ADC variability was insignificant 
and mean within ROI ADC variability was 5.5%. Overall 
the authors concluded that with the use of standardized 
protocols, ADC values are comparable between sites and 
vendors.

Reproducibility of ADC values in vivo
In MRI studies, human control subjects have three 
advantages over phantoms. First they can be an almost 
complete simulation of the clinical measurement process 
in a multi-centre study, second demands for tem-
perature stabilization are bypassed as homeostasis 
provides inbuilt temperature control and third human 
controls are often more readily available than phan-
toms[127]. Disadvantages include a lack of measurement 
stability over time for tumour-related parameters in 
patients, imaging humans is more demanding of re-
sources compared to imaging phantoms and ethical 
constraints may limit the availability of human sub-
jects[127]. Despite these limitations, a number of DW-MRI 
studies have reported ADC measurement repeatability 

and reproducibility using human subjects. Sasaki et 
al[126] (2008) studied variability of ADC values of grey 
and white matter in 12 healthy volunteers, within a time 
frame of 2 wk, using 10 systems from four different 
vendors (Philips, Siemens, GE, Toshiba) at 1.5T and 3.0T 
field strengths and b-values of 0 and 1000 s/mm2. Three 
different coils (multichannel coil with sensitivity correc-
tion, multichannel coil without sensitivity correction and 
a quadrature detection coil) were used to acquire the 
images and vendor-independent software was used to 
compute the ADC maps using a mono-exponential fit. 
The ADC values for gray and/or white matter of the 
same volunteers varied significantly between systems of 
all the vendors with an inter-vendor variability as high as 
7%. There was also significant intra-system variability of 
up to 8% depending on the coil configuration in certain 
systems. Overall the authors concluded that there was 
significant variability in the ADC values. Braithwaite et 
al[49] (2009) tested the hypothesis that, “there is no 
significant variability in ADCs in the assessment of short- 
and midterm reproducibility of ADC measurements in a 
healthy population“, in five abdominal locations on a 
population of 20 healthy male volunteers at 3.0T using 
b-values of 0 and 400 s/mm2. All 20 volunteers were 
scanned once on the same day using 5 repeated DW-
MRI acquisitions in the abdomen and 16 of the volun-
teers underwent a second scan within a time frame of 
147 ± 20 d using another set of 5 repeated DW-MRI 
acquisitions. Vendor-specific software was used to 
generate the ADC maps and 3 ROIs were drawn for 
each anatomical location. Highly significant differences 
in the mean ADCs between the five anatomical locations 
were observed. No significant differences in the ADCs 
among the various sequence repetitions were observed. 
Between the two imaging sessions, no significant diffe-
rences in mean ADC values were observed. Overall, the 
mean CV for the reproducibility of ADCs over short- and 
midterm was 14% and based on their results the 
authors suggested that ADCs are robust and can serve 
as a reliable quantitative tool over time. However, they 
also concluded that treatment effects of less than 
approximately 27% would not be clinically detectable 
with confidence with one acquisition in a single indi-
vidual. Colagrande et al[142] (2010) compared ADC 
measurement repeatability and reproducibility of a 
phantom to that of abdominal DW-MRI on 30 healthy 
volunteers at 1.5T field strength. For the phantom study 
two DW-MRI sequences were employed: b-values 
ranging 0-200 s/mm2 (steps of 20 s/mm2) and b-values 
ranging from 0-1000 s/mm2 (steps of 100 s/mm2). For 
the volunteer study, b-values of 0 and 1000 s/mm2 were 
used. Vendor-independent software was used to com-
pute the ADC maps. Overall the authors concluded that 
the ADC values were repeatable with an ICC of 0.80 but 
not reproducible (ICCs ≤ 0.45) for all methods. Larger 
ROIs improved reproducibility and the authors advised 
that for larger studies standardized ADC measurements 
using more than two observers are needed. Miquel et 
al[34] (2012) compared repeatability of the ADC measure-
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ments of a phantom containing copper sulphate (CuSO4 
3 mmol/L) and salt (NaCl 34 mmol/L) solution with that 
of the abdomen on 10 healthy volunteers at 1.5T field 
strength using six b-values ranging from 0 to 1000 s/
mm2 (with the exception of zero, all b-values were 
greater than 100 s/mm2). The phantom was imaged 10 
times on two different occasions and also at regular 
intervals over a period of three months at a room 
temperature of 17 ℃± 0.5 ℃. A circular ROI covering 
90% of the cross-section of the phantom bottle was 
selected on each slice. On the first day the CV of the 
ADC was 0.5% for 10 measurements and on day 100 
the CV was 1.0% for 10 measurements. The mean 
intra-slice CV was 3.2% ± 1.4% and the mean sample 
CV was 2.9% ± 1.0%. Repeatability of the volunteer 
population was assessed on two occasions, 5.8 ± 1.9 d 
apart. The authors carried out two sets of analyses: One 
on volumes-of-interest (VOIs) and one on multiple 
smaller ROIs. Both intra-observer and inter-observer 
variability were small. Collectively there was no statistical 
difference in the group mean ADC value between the 
two visits of any organ. The authors concluded that 
larger three-dimensional VOIs result in lower variability 
compared to multiple two-dimensional ROIs, which 
depending on organs changes of over 7%-10% being 
significant, increasing to 20%-28% for ROIs. Bilgili[143] 
(2012) studied repeatability of the ADC measurements 
of the abdomen on 11 healthy volunteers during two 
repeat sessions at 1.5T field strength and using b-values 
of 0 and 500 s/mm2. No significant differences in the 
ADCs for any organ between imaging sessions were 
found. The CV values ranged between 7.3% for the liver 
and 10.4% for the kidney at a b-value of 500 s/mm2. 
Barral (2013) et al[68] evaluated variations in ADC 
measurements in normal pancreatic parenchyma at 1.5T 
and 3.0T field strengths using Siemens scanners. Two 
populations of twenty patients, who were matched for 
gender and age, were examined using a range of 
b-values from 0-800 s/mm2 (6 b-values were less than 
100 s/mm2) with the first population examined at 1.5T 
and the second at 3.0T. Vendor software was used to 
compute the ADC maps using 3 b-values of 0, 400 and 
800 s/mm2. Four pancreatic segments namely head, 
neck, body and tail were evaluated in this study by two 
independent observers. ADCs were measured three 
times by each observer. No significant differences in 
ADCs were found between repeated measurements and 
between ADCs obtained at both field strengths. The 
95% limits of agreements between ADC values ranged 
from 1%-24.2% for intra-observer and from 4.2%-25% 
for inter-observer variability and did not vary substan-
tially at either field strengths. No significant differences 
in ADCs of the four segments were found at either field 
strength. Donati et al[56] (2014) performed DW- MRI on 
10 healthy men to determine the variability of ADC 
values in various anatomical regions in the upper abdo-
men using six systems from three different vendors 
(Philips, Siemens, GE) at 1.5T and 3.0T field strengths. 
In this study, 10 b-values ranging from 0 to 1000 s/mm2 

(five b-values were less than 100 s/mm2) were used 
and vendor-independent software on an independent 
workstation was used to compute the ADC maps. Two 
readers examined the images and they found that the 
inter-reader agreement was excellent with an intra-class 
correlation coefficient of 0.876. Overall, the highest 
coefficient of variations (CV) was observed in the liver 
for both field strengths and the lowest CVs were 
observed in the kidney. CVs ranged from 7.0% for renal 
medulla to 27.1% for left liver lobe. No significant 
differences in mean ADC values measured at 1.5T or 3.0 T 
were found in any of the evaluated anatomical regions. 
However, they concluded that the particular vendor of an 
MR system influences the ADC values to a lesser extent 
at 1.5T than 3.0T. Chen et al[144] (2014) compared ADC 
variability in normal liver parenchyma obtained with 
multiple breath-hold, free-breathing, respiratory-
triggered and navigator-triggered DW-MRI techniques at 
1.5T field strength using b-values of 0, 100 and 500 s/mm2. 
The authors placed ROIs on 9 anatomical liver locations 
and did not observe any significant difference between 
ADCs obtained using different techniques. However, they 
concluded that both anatomical location and DW-MRI 
technique influence the reproducibility of liver ADC 
measurements. Jajamovich et al[145] (2014) investigated 
short-term reproducibility of the measured ADC in 
fasting conditions and after a liquid meal. Thirty 
individuals (11 healthy volunteers and 19 liver disease 
patients) were scanned twice after 6 h of fasting (5 min 
interval between scans) and then a third time 20 min 
after a liquid meal using a GE scanner at 3.0T field 
strength. Sixteen b-values were used in this study with 7 
b-values < 100 s/mm2 and 9 b-values ≤ 800 s/mm2. 
Vendor-independent software was used to compute the 
ADC maps using both a mono-exponential model 
(b-values of 0 and 800 s/mm2) and a bi-exponential 
model (all b-values). Coefficient of variation in the 
fasting condition was found to be 8.2% and 15.2% for 
the mono-exponential model and the bi-exponential 
model respectively. No effect was observed in the 
measured ADC following caloric intake, however, a 
substantial effect was observed in the hepatic portal vein 
flow. Pazahr et al[146] (2014) assessed changes in the 
measured ADC of the liver before and after carbohydrate 
and protein-rich food intake in correlation to hepatic 
portal vein flow quantified using phase contrast imaging. 
Ten healthy volunteers underwent 4 DW-MRI scans 
using a 1.5T field strength GE scanner on two days. 
Scans 1 and 2 on the same day one with at least 8 h of 
fasting and the second 30 min after intake of a protein-
rich drink. On the second date volunteers were first 
scanned after fasting for 8 h and then after intake of a 
carbohydrate-rich meal. Diffusion b-values of 0, 50, 150, 
250, 500, 750 and 1000 s/mm2 were used in this study. 
Vendor-independent software was used to compute the 
ADC maps using a tri-exponential diffusion model with a 
linear fit to logarithmic signal intensities at b-values of 0 
and 50 s/mm2, 50 to 250 s/mm2 and 500 to 1000 s/mm2. 
A phantom filled with an aqueous solution of 770 mg/L 

Jafar MM et al . Diffusion-weighted MRI in cancer



41 January 28, 2016|Volume 8|Issue 1|WJR|www.wjgnet.com

of CuSO4.5H2O was used to assess the DW-MRI sequ-
ence and the post-processing software. ROIs were 
drawn on the right hepatic lobe. No significant statistical 
differences were found between measured ADC values 
after fasting and after protein-rich meal or carbohydrate-
rich meal for the three sets of low, intermediate and high 
b-values. Overall mean CVs for each participant at each 
session were 13.9%, 7.2% and 7.5% for low, inter-
mediate and high b-values respectively. The authors 
concluded that carbohydrate and protein-rich intake 
both resulted in a significant increase in the portal vein 
flow and that there was no correlation between the 
increase in the portal vein flow and the measured ADC 
values. They also recommended that liver molecular 
water diffusion should be quantified using b-values 
greater than 500 s/mm2 only. Kolff-Gart et al[147] (2015) 
investigated variability of ADC values in the head and 
neck tissues on 7 healthy volunteers in 2 institutions 
using 5 MRI systems from three vendors (Philips, 
Siemens, GE) at 3 time points. They used two DW-MRI 
sequences: An EPI and a TSE using 2 b-values of 0 and 
1000 s/mm2 and an additional 6 b-value (two of the 
b-values were less than 100 s/mm2) acquisition for the 
EPI sequence. Vendor-specific software was used to 
compute the ADC maps. Inter-system difference for 
mean ADC values and the influence of the MRI system 
on ADC values among the subjects were statistically 
significant. Mean difference between examinations was 
insignificant. They concluded that the DW EPI with 
6-values was the most reproducible and that ADC values 
varied significantly between MRI systems and se-
quences. Grech-Sollars et al[148] (2015) assessed repro-
ducibility of ADC measurements of brain tissue on eight 
scanners (4 Siemens 1.5T, 4 Philips 3.0T) using an ice-
water phantom and 9 healthy volunteers across five 
institutions. Site-specific clinical protocols were used in 
this study using a range of b-values (0 to 1000 s/mm2) 
with additional b-values acquired at all centres. All scans 
were acquired over a period of 18 mo and a total of 65 
imaging sessions took place across all centres. Vendor-
independent software was used to compute the ADC 
maps. In the phantom, ADC measurements were repro-
ducible with a CV of less than 1.5%. In the volunteer 
population, ADC measurements of white and grey 
matter were reproducible with an inter-scanner CV of 3% 
and 2.4% and an intra-scanner CV of 1.0% and 2.9% 
respectively. Overall the authors concluded that using 
standardized clinical sequences in large multi-centre 
studies is not essential to achieve good reproducibility of 
ADC measurements. Winfield et al[149] (2015) assessed 
the effects of eating and fasting on the measured ADCs 
in livers of 20 healthy volunteers. Four clinical scanners 
at 3 participating sites from three vendors (1 Philips, 2 
Siemens, 1 GE) at 1.5T field strength were used to 
acquire volunteer data (5 volunteers per scanner). 
Diffusion weightings of 100, 500 and 900 s/mm2 were 
used in this study. Each volunteer was scanned four 
times, scans 1 and 2 occurring on the same day one 
with at least four hours of fasting and the other after a 

meal. These scans were repeated for each volunteer 1-7 d 
after. Vendor-independent software was used to 
compute the ADC values at a single site. An ice-water 
phantom[125] was also used to assess accuracy and 
repeatability of ADC estimates. Three volunteers were 
excluded from the final analysis. Coefficient of variation 
was found to be 5.1% when fasted and 4.6% non-
fasted. Between-site CV was found to be 3% using the 
ice-water phantom. The authors concluded that there 
was no significant difference in ADC estimates between 
fasted and non-fasted measurements. 

Need for validation
All of the selected studies evaluating ADC repeatability 
and reproducibility acknowledge that lack of stand-
ardization in data analysis, ADC quantification and 
interpretation is the greatest challenge in the adoption of 
DW-MRI for tumour assessment[4,5,56]. More studies are 
emerging focusing on repeatability and reproducibility 
of ADC measurements across institutions and using MR 
systems from different vendors. Malyarenko et al[150] 
demonstrated that the measured systematic ADC errors 
scaled quadratically with offset from a magnet’s iso-
centre. Nonlinearity in the applied diffusion gradients 
was shown to be a major source of spatial DW bias 
and variability in off-centre ADC measurements. This 
bias was found to be dependant on system design and 
diffusion gradient direction. In the same study, the 
authors concluded that shim, imaging gradients and 
eddy currents had minor contributions in the spatial DW 
bias.

Present post-processing software packages for 
quantitative DW MRI available on scanner consoles are 
mostly basic allowing only a mono-exponential fit and 
some elementary image analysis. Although, the choice 
of the mathematical model depends on the anatomical 
region in the study but it is imperative to have the 
flexibility of using different models as this could influence 
repeatability. In a recent study on primary and secondary 
ovarian cancer, a stretched exponential model showed 
better repeatability over mono-exponential and bi-
exponential models[151]. 

Finally, in any DW-MRI study, system-induced 
variability must be established using a standardized 
phantom as was recommended in the 2009 meeting 
report[5].

DISCUSSION AND CONCLUSION
In this present manuscript ADC values for healthy extra-
cranial organs were summarized. In total 28 studies 
were selected for liver parenchyma, 15 studies for 
kidney (renal parenchyma), 14 studies for spleen, 13 
for pancreatic body, 6 for gallbladder, 13 for prostate, 
13 for uterus (endometrium, myometrium, cervix) and 
13 for fibroglandular breast tissue. Median ADC values 
in selected studies were found to be 1.28 × 10-3 mm2/s 
in liver, 1.94 × 10-3 mm2/s in kidney, 1.60 × 10-3 mm2/s in 
pancreatic body, 0.85 × 10-3 mm2/s in spleen, 2.73 × 10-3 
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mm2/s in gallbladder, 1.64 × 10-3 mm2/s and 1.31 × 
10-3 mm2/s in prostate peripheral zone and central gland 
respectively (combined median value of 1.54 × 10-3 mm2/s), 
1.44 × 10-3 mm2/s in endometrium, 1.53 × 10-3 mm2/s 
in myometrium, 1.71 × 10-3 mm2/s in cervix and 1.92 
× 10-3 mm2/s in breast. Limited studies have assessed 
ADC of normal uterine tissue particularly myometrium 
(only 3 data points) which consequently influenced 
the median ADC value. Differences in reported ADC 
values are largely attributed to differences in acquisition 
sequence particularly the choice of b-values and the 
sequence echo-time. More studies are emerging in DW 
MRI with recommendations on specific b-values and 
protocols that one must adhere to, to interrogate a 
particular anatomical region. Such studies can be named 
for liver[23,149], prostate[152] and pancreas[70]. With these 
organ-specific recommendations, acquisition parameters 
are becoming more comparable across different studies. 
Some historical reports of ADC values such as some 
references in the 1990s and early 2000s must be 
forgone in favour of more recent reports. Reference ADC 
values should be derived from a recent study with a 
recommended set of organ-specific b-values or by taking 
a median of values from multiple studies. Although 
changes in ADC values has proven to be a diagnostic/
prognostic biomarker in differentiating malignant and 
non-malignant lesions, its value for monitoring response 
to drug treatment is less established[128]. Braithwaite et 
al[49] demonstrated that treatment effects of less than 
approximately 27% would not be clinically detectable 
with confidence with one acquisition in a single individual. 
Therefore considerable care must be taken in reporting 
treatment effects based on a single acquisition in a single 
individual.

Six phantom studies and thirteen in vivo studies 
were summarized in sections “Reproducibility of ADC 
values in vitro” and “Reproducibility of ADC values 
in vivo” to compare repeatability and reproducibility 
of the measured ADC. All selected phantom studies 
demonstrated lower intra-scanner and inter-scanner 
variation compared to in vivo studies. To date, very few 
studies have assessed reproducibility of the measured 
ADC in extra-cranial body organs. Hence studies assess-
ing reproducibility of head and neck tissue[126,147,148] were 
also included in this review. Some studies used vendor-
independent post-processing software packages to 
compute the ADC maps[56,125,126,137,140,148] while others 
used site-specific software packages either vendor-
specific or locally developed[68,138,141,147]. Although some 
investigators demonstrated high variability in the 
measured ADC (27.1% for left liver lobe) with vendor-
independent software packages[56], others found less 
variability in the measured ADC using vendor-specific 
software[148]. The majority of investigators found that 
standardized acquisition protocols improve reproducibility. 
ADC measurement variability was shown to be higher in 
vivo compared to phantom studies[34,148]. Reproducibility 
in the measured ADC was also shown to be dependant 
on the specific anatomy being interrogated[34,56,143]. Whilst 

a significant variation in the measured ADC of the left 
hepatic lobe was observed in[56], insignificant variation 
was observed in the right liver lobe[146].

Larger ROIs[142] and volumetric ROIs[34] demonstrated 
better reproducibility. Smaller ROIs are also known to 
suffer from poorer inter- and intra-observer variability[153].

ADC cut-off values are increasingly used in studies 
to differentiate between normal and cancerous tissues 
or even between tumour grades. For the latter, the 
differences between ADC values are often small and, 
although valid in the populations studied, they should not 
be taken as absolute numbers and used for diagnosis 
on a different scanner or with a different imaging pro-
tocol. Although variations in ADC values are far greater 
following treatments one should still be careful when 
using cut-off values for treatment response. However, 
assessing treatment response using ADC measures is 
a promising tool and for example Koh et al[154] demon-
strated that ADC measurements were highly reproducible 
with a coefficient of repeatability of 0.17 in a two-centre 
phase 1 clinical trial setting.

Recommendations
Protocol needs to be optimised for the body part studied.

System-induced variability must be established 
using a standardized phantom in any clinical study. 

Reproducibility of the measured ADC must be ass-
essed in a volunteer population, as variations are far 
more significant in vivo compared with phantom studies. 

Studies need to be assessed properly; acquisition 
parameters across participating sites/scanners must be 
matched as best as possible, in particular b-values, TE 
and bandwidth. 

Evaluation must be organ-specific and ROI size must 
be taken into consideration. 

Recommended statistical tests to assess repeatability 
and reproducibility must be utilized for a credible 
investigator report. 
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