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Abstract

Summary: We present a method to identify approximately independent blocks of linkage disequi-

librium in the human genome. These blocks enable automated analysis of multiple genome-wide

association studies.

Availability and implementation: code: http://bitbucket.org/nygcresearch/ldetect; data: http://bit-

bucket.org/nygcresearch/ldetect-data.

Contact: tberisa@nygenome.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The genome-wide association study (GWAS) is a commonly used

study design for the identification of genetic variants that influence

complex traits. In this type of study, millions of genetic variants are

genotyped on thousands to millions of individuals, and each variant

is tested to see whether an individual’s genotype is predictive of their

phenotypes. Because of linkage disequilibrium (LD) in the genome

(Pritchard and Przeworski, 2001), a single genetic variant with a

causal effect on the phenotype leads to multiple statistical (but non-

causal) associations at nearby variants. One initial analysis goal in a

GWAS is to count the number of independent association signals in

the genome while accounting for LD.

The most commonly used approach to counting independent sin-

gle-nucleotide polymorphisms (SNPs) that influence a trait is to

count ‘peaks’ of association signals—this can be done manually

when the number of peaks is small (e.g. Wellcome Trust Case

Control Consortium 2007) or in a semi-automated way when the

number of peaks is larger (e.g. Jostins et al. 2012). There are also

fully automated methods that use LD patterns estimated from large

reference panels of individuals (Yang et al., 2012). In some contexts

(e.g. when performing identical analysis on multiple GWAS with the

goal of comparing phenotypes), it is useful to define approximately

independent LD blocks a priori rather than letting them vary across

analyses performed on different phenotypes (Loh et al., 2015;

Pickrell, 2014).

To define approximately independent LD blocks, Loh et al.

(2015) used non-overlapping segments of 1 megabase, and Pickrell

(2014) used non-overlapping segments of 5000 SNPs. The break-

points of these segments undoubtedly sometimes fall in regions of

strong LD, thus potentially splitting a single association signal over

two blocks (and leading to over-counting of the number of associ-

ated variants). A better approximation could be obtained by con-

sidering the empirical patterns of LD in a reference panel (e.g.

Anderson and Novembre 2003; Greenspan and Geiger 2004;

Mannila et al. 2003). In the remainder of this article, we present an

efficient signal processing-based heuristic for choosing approximate

segment boundaries.

2 Approach and results

To estimate LD between pairs of SNPs, we use the r2 metric. If a

genetic variant is in LD with another genetic variant that has a

causal influence on disease, then r2 (times the strength of association

at the causal SNP) is proportional to the association statistic at the

non-causal SNP (Pritchard and Przeworski, 2001). For our pur-

poses, we define two sets of SNPs as ‘approximately independent’ if

the pairwise r2 between SNPs in different sets is close to zero.

Our approach is a heuristic for choosing segment boundaries,

given a mean segment size (which is the required input). Let there be

n genetic variants on a chromosome. The method can be broken
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down into the following basic steps (see the Supplementary Material

for details):

1. Calculate the n�n covariance matrix C for all pairs of SNPs

using the shrinkage estimator of C from Wen and Stephens

(2010).

2. Convert the covariance matrix to n�n matrix of squared

Pearson product-moment correlation coefficients P.

3. Convert the matrix P ¼ ðei;jÞ to a ð2n� 1Þ-dimensional vector V

¼ ðvkÞ as follows:

vk ¼
Xk

i¼1

ti;k�iþ1; ti;j ¼
ei;j; if 1�i; j�n

0; otherwise
; ðk ¼ 1; 2; :::; 2n� 1Þ

8<
:

The effect of this step is representing each antidiagonal of P by

the sum of its elements (Fig. 1a and b). This step has similarities to

Bulik-Sullivan et al. (2015), where the authors represent each col-

umn by the sum of its elements. The method presented in this article

uses the antidiagonal to differentiate between neighboring blocks of

similar size.

4. Apply low-pass filters of increasing widths to (i.e. ‘smooth’) V

until the requested number of minima is achieved.

5. Perform a local search in the proximity of each minimum from

Step 4 to fine tune the segment boundaries.

In reality, matrix P turns out to be sparse, approximately banded

and approximately block-diagonal, with sporadically overlapping

blocks (Slatkin, 2008; Wall and Pritchard, 2003; Wen and Stephens,

2010).

To provide intuition for Step 3, Figure 1a shows a simplified ex-

ample of a correlation matrix P, where two SNPs i and j are either

correlated (represented by 1 in element eij of the matrix) or uncorre-

lated (represented by zero, not shown). Representing each antidiago-

nal of P by the sum of its elements results in the vector shown in

Figure 1b and identifying segments representing blocks of LD re-

duces to identifying local (or more stringently, global) minima in

this vector. In reality, the elements eij of P are continuous values

from the interval ½0; 1� and result in an extremely noisy vector V (ex-

ample in blue in Fig. 1c) Therefore, to identify large-scale trends of

LD and reduce high frequency components in the signal, we apply a

signal processing technique dubbed low-pass filtering [utilizing a

Hann window (Blackman and Tukey, 1958)] in Step 4. The result of

applying a low-pass filter (with width¼100) is shown in red in

Figure 1c.

Applying wider and wider filters to vector V in Step 4 allows us

to focus on the large scale structure of LD blocks but also causes the

approach to miss small scale variation around identified minima. To

counteract this effect, Step 5 conducts a local search in the proximity

of each local minimum identified in Step 4 to find the closest SNP l

with min
P

i<l

P
j>l eij.

We applied this method to sequencing data from European,

African and East Asian populations in the 1000 Genomes Phase 1

dataset. We set a mean block size of 10 000 SNPs and used the algo-

rithm to define the block boundaries. As expected, these boundaries

fall in regions with considerably higher recombination rates than the

genome-wide average (Supplementary Fig. S4). In Figure 1d, we

show an example from GWAS results for Crohn’s disease (Jostins et

al., 2012) where using uniformly distributed breakpoints would re-

sult in double-counting of an association signal, whereas the LD-

aware breakpoints avoid stretches of SNPs in LD.

To test whether this approach is useful more generally, we ran

fgwas (Pickrell, 2014) on GWAS of Crohn’s disease (Jostins et al.,

2012) and height (Wood et al., 2014), using both uniformly distrib-

uted breakpoints and LD-aware breakpoints. Using the LD-aware

breakpoints successfully eliminated double-counting of SNPs in

moderate-to-high LD and on opposite sides of uniform breakpoints

(Supplementary Material Section S6).
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