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Abstract
It has been suggested that innovations occur mainly by combination: the more inventions

accumulate, the higher the probability that new inventions are obtained from previous

designs. Additionally, it has been conjectured that the combinatorial nature of innovations

naturally leads to a singularity: at some finite time, the number of innovations should

diverge. Although these ideas are certainly appealing, no general models have been yet

developed to test the conditions under which combinatorial technology should become

explosive. Here we present a generalised model of technological evolution that takes into

account two major properties: the number of previous technologies needed to create a

novel one and how rapidly technology ages. Two different models of combinatorial growth

are considered, involving different forms of ageing. When long-range memory is used and

thus old inventions are available for novel innovations, singularities can emerge under

some conditions with two phases separated by a critical boundary. If the ageing has a char-

acteristic time scale, it is shown that no singularities will be observed. Instead, a “black hole”

of old innovations appears and expands in time, making the rate of invention creation slow

down into a linear regime.

Introduction
Technology is one of the most obvious outcomes of human culture. Technological inventions
have been developing at an accelerated rate since the industrial revolution [1–5] and economist
Brian Arthur conjectured that such rapid growth is a consequence of the underlying dynamics
of combination that drives the process [2]. Specifically, it has been suggested that novelties
arise mainly as a consequence of new forms of interaction between previous artifacts or inven-
tions [2]. Such view connects the pace of man-made evolutionary designs with a basic principle
of biological evolution: the presence of tinkering [6] as a dominant way of generating new
structures [7, 8].
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Systematic studies of technological change are difficult to perform due to a number of prob-
lems. These include the lack of a genome-like description of artifacts and the complex nature
of their design paths. The study (largely naturalistic) of some particular systems, such as cor-
nets [9–10] reveals some interesting similarities, while uncovering deep differences with cul-
tural change. More recent work based on network theory [11, 12] provided a novel quantitative
approach to technological change that defines a formal framework to explore technological
change and the impact of design principles.

One consequence of the combination principle proposed by Arthur is that the growth
dynamics of inventions would be faster than exponential (or super-Malthusian) and should
exhibit a finite-time singularity [13]. The implications of such rapidly accelerating innovation
processes have been discussed in recent years, raising controversial speculations [14]. The
superlinear dynamics of innovations has the potential to, e.g., drive cities to unbounded
growth, which can easily lead to urban collapse due to limitations in resources [15]. However,
our ability to process an abundance of potentially new ideas into usable form may impose sig-
nificant limits to economic or technological growth [16]. Predicting the progress of technologi-
cal change is a timely issue but also a difficult task. Nevertheless, some insights have been
gathered by dedicated study of available databases and appropriate statistical methods [17, 18].

A surrogate of the ways in which innovations take place in time is provided by patent files
[19–21]. Patents are well-defined objects introducing a novel design, method, or solution for a
given problem or set of problems. Existing data bases store multiple levels of patent description
and they can be analyzed in full detail. Additionally, they indicate what previous novelties have
been required to build new ones. An example is given by the U.S. Patent and Trademark Office
(USPTO) patents filed between 1835 and 2010 (information about the US filed patents for the
mentioned period is available at the official website of the USPTO: http://www.uspto.gov/web/
offices/ac/ido/oeip/taf/h_counts.htm). In Fig 1a we display the total number N of filed patents,
which clearly reveals a superlinear trend over time [3, 13]. The dashed line in particular indi-
cates the start of the modern information technology era (around 1950). We also display the
so called spindle diagrams, commonly used in paleobiology and archaeology [22] to provide
a different visualisation of the diversity expansion process. Here the vertical axis represents
time (growing from bottom to top) and the horizontal dimension is associated to diversity: the
radius of the circular slice would be proportional to the number of patents filed at that particu-
lar time.

In [21] a study of the USPTO database was made in search for evidence of combinatorial
evolution. The authors concluded that truly new technological capabilities are slowing down in
their rate of appearance, but nevertheless a great deal of combination is present thus allowing
for a “practically infinite space of technological configurations” [21]. One potential outcome of
this virtually exploding space is a growth dynamics displaying potential singularities, i. e. diver-
gent numbers of inventions would eventually occur as we approach a finite time window. In
this paper we want to address the problem of how to define the conditions for technological
singularities to be expected. Two main components of combinatorial dynamics will be taken
into account: (a) the diversity (number) of potential innovations required to trigger a new one
and (b) the degree of ageing that makes older innovations less likely to be used. As shown
below, two main phases are expected in this diversity-aging space, defining the conditions for
singularities to be present.

Hyperbolic dynamics: minimal model
Using the simplest approximation, we assume a neutral model of innovation based on pairwise
combinations of existing designs. In this model, the set π = {π1, π2, . . ., πN(t)} defines the “design
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universe” at any given time t. Each πj 2 π represents an invention as described, for example, by a
patent file. Here, N(t) is the total number of inventions (patents) at year t. Two given designs

will then combine at a given time t with a given probability: p
i
þ p

j
!mij p

NðtÞþ1
where μij weights

the likelihood of such an event to happen. This defines a second-order (bimolecular) reaction
kinetics [23–25]. Such nonlinear reaction dynamics seems to pervade the super-exponential
growth observed in a number of economic and demographic systems [26–29].

How is this space expanded? We will assume that every element πj 2 π has the same potential
to attach to other existing elements. We can consider a more complex kinetic equation, namely:

dN
dt

¼ mðtÞN1þz ð1Þ

Fig 1. Evolution of technological diversity. The main plot (a) shows the accelerated increase of the total number patents N(t) as provided by the USPTO
dataset. In (b) we show the same data in linear-log form. As an alternative illustration, we also display the spindle diagrams for N(t) associated to (c) the
overall pattern and (d) the early development linked to the Industrial Revolution [corresponding to the period indicated by the open square in (a)].

doi:10.1371/journal.pone.0146180.g001
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where μ(t) is the attachment rate of inventions at a given time. The parameter 0� z� 1 weights
the departure from the linear scenario. For z = 0 the above yields to exponential growth. If a
pure (pairwise) combination scenario were at work, we would see z = 1, since any pair of inven-
tions is likely to interact. By solving eq (1) we obtain

NðtÞ ¼ N�zð0Þ � z
Z t

0

mðtÞdt
� ��

1

z ð2Þ

For the simplest scenario where μ can be considered constant, i. e. m ¼ hmðtÞi ¼ ðR t

0
mðtÞdtÞ=t,

we can write the previous equation as follows:

NðtÞ ¼ ðzmÞ�1=z ts � tð Þ�1=z ð3Þ

where ts is a finite time given by ts ¼ 1=ðzmNz
0Þ withN0 = N(0). A very interesting feature of this

solution is the presence of a singularity: as we approach ts, a divergence occurs in N. For the
pure combination solution with z = 1 we would observe a growth curve following:

NðtÞ ¼ 1

m
1

ts � t

� �
ð4Þ

which provides a prediction of how invention numbers will increase under a neutral model
where all inventions (patents) are equally likely to combine.

The results presented in [21] suggest that an exponential phase is followed by another phase
that deviates from the hyperbolic growth picture when time is used as the horizontal axis. How-
ever, them-order recombination of existing technologies has the potential for accelerating the
appearance of innovations without bounds (see, Fig 2 in [21]). In this paper we aim to develop a
model of technological evolution that takes into account the combinatorial nature of the process
and potential mechanisms of ageing that can slow down the hyperbolic dynamics. The model
does not intend to reproduce the time series provided by the patent data set. Instead, it incorpo-
rates a minimal set of assumptions associated to an abstract set of interacting innovations beyond
the pairwise, second-order reaction metaphor.

Generalized models
Several simplifications have been made in the model above. One is that a limited number of
previous innovations are combined to obtain a new one. Another is that we assumed by default
that all innovations can (in principle) contribute to future technologies, when actually many
will become obsolete. Some type of ageing factor needs to be considered. Such ageing has been
found to be present in different types of growing networks [30–32] including different forms of
collaboration among scientists and links among innovations [20] and will be also studied here.
In this paper we do not consider an explicit network architecture. Instead, we define a so called
mean-field model where links among innovations are implicit.

One way of including multiple innovations is to consider the average number k of inven-
tions that are used to obtain new ones. On the other hand, we need to define the way two ele-
ments might interact. This can be done by considering a generalised integral equation:

dN
dt

¼
Z N

0

k
⃛

Z N

0

Gðt1; . . . ; tkÞdt1. . .dtk ð5Þ

Here the kernel Γ(τ1, . . ., τk) defines the probability that k different patents interact in order to
give a new invention. Note that we have considered the origin as our lower integration bound,
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since (according to our continuous notation) any positive real value of τi could contribute to
recombination. This general expression contains the hyperbolic scenario introduced above as
one special case when all elements can equally interact and thus Γ = μ. To see this, notice that
we have now

dN
dt

¼
Z N

0

Z N

0

mdt1dt2

¼ m
Z N

0

dt1

� � Z N

0

dt2

� �
¼ mN2

ð6Þ

From now on we will assume that the kernel can be factorized: all inventions can interact in
similar ways and thus

Gðt1; :::; tkÞ ¼
Yk
l¼1

GðtlÞ: ð7Þ

In that case, the previous eq (5) reads now:

dN
dt

¼
Z N

0

k
⃛

Z N

0

Yk
l¼1

GðtlÞdt1. . .dtk ð8Þ

and thus our general model to be explored below reads now:

dN
dt

¼
Yk
l¼1

Z N

0

GðtlÞdtl
� �

ð9Þ

Power law aging
The integral eq (10) contains the number of innovations required to further expand the techno-
logical space. Now we need to introduce how ageing affects the range of interactions. One
choice is a power law kernel, namely

GðtlÞ � m1=kðN � tlÞ�g ð10Þ

where the scaling exponent γ� 0 gives a measure of how fast previous innovations become
obsolete and are not incorporated. This kernel has been used in different contexts, including in
the analysis of collaborations among researchers, which is a closely related problem [18]. In
this case, the general model is written as

dN
dt

¼
Yk
l¼1

Z N

0

m1=kðN � tlÞ�gdtl

� �
ð11Þ

If we assume equivalence between all the components of our system, all kernels being equal we
obtain here:

dN
dt

¼
Z NðtÞ

0

m1=kðN � tÞ�gdt
� �k

¼ m

ð1� gÞk N
ð1�gÞk

ð12Þ
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By solving this equation, we can show that the solution reads:

NðtÞ ¼ C0 þ Zðk; nÞt½ �1=ð1�ð1�gÞkÞ ð13Þ

The constants are defined by C0 ¼ N1�ð1�gÞk
0 and

Zðk; nÞ ¼ 1� ð1� gÞk
ð1� gÞk ð14Þ

respectively. This equation will be consistent with a singularity provided that the scaling expo-
nent is negative. This leads to a critical condition:

k > kc ¼
1

1� g
ð15Þ

The phase diagram predicted by this critical boundary is shown in Fig 2, where we plot kc(γ).
The two domains showing or lacking a singularity are separated by this curve. As we can see,
singularities are expected even for γ = 0 provided that k> 1. Similarly, when k = 2 we have the
standard pairwise reaction scheme described above.

Exponential ageing (k = 2)
The power law kernel introduces a long tail and thus long-memory effects. Although links with
old inventions are much rare, they can be established and thus a contribution will always be
expected. What is the impact of using a different type of interaction kernel involving a more
rapid decay that forbids new inventions to “connect” with very old ones? This can be modelled
with an exponential decay of the form e−γ(N−α). As defined, the smaller the value of γ, the longer
the age (namely, N−α) that patents can reach while being still able to generate new inventions.
Indeed, in the limit γ! 0 all the inventions would equally contribute (no matter their age),
recovering again the simple hyperbolic (pairwise) scenario analyzed in section 2.

In order to illustrate the impact of this limited memory, let us consider again the pairwise
(k = 2) scenario. The generation of new patents is now given by

dN
dt

¼ m
Y2
l¼1

Z N

0

e�gðN�tlÞdtl

� �
¼ m0 e�gN � 1½ �2

ð16Þ

where μ0 = μ/γ2. By solving this equation we obtain an implicit form:

N � N0ð Þ þ 1

gggðNÞ �
1

gggðN0Þ
þ

þ 1

g
ln

ggðNÞ
ggðN0Þ

" #
¼ m0 t � t0ð Þ:

ð17Þ

where we used the notation gγ(x)� e−γx − 1. This equation can be numerically solved and the
result shown in Fig 3a for a given set of parameters. We can appreciate from this diagram that
there is a delayed growth phase at the beginning followed by an apparently linear growth in
late stages. In other words, the dynamics has no singularity. Is that the case? Although solving
the general problem can be extremely cumbersome, we can deal with some approximations
that can be applied at different stages of the system.
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The first considers the case γ<< 1 and the initial phase of the expansion. If N is not large
then γN<< 1 and we can use the approximation e−γN ’ 1 − γN on eq (17), leading to:

N � N0 �
1

g2
1

N
� 1

N0

� �
þ

þ 1

g
ln

N
N0

� �
¼ m0 t � t0ð Þ:

ð18Þ

Given the condition γ<< 1, the LHS of the previous equation is governed by the quadratic
terms of γ. Hence, neglecting the first and last terms on the LHS, we obtain the following

Fig 2. Two phases predicted by the generalisedmodel of technological evolution with power law ageing. The white area includes all parameter
combinations allowing a singularity to emerge through a hyperbolic growth process.

doi:10.1371/journal.pone.0146180.g002
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approximate solution for the evolution of N at initial stages of technological evolution:

NðtÞ ¼ 1

g2m0 ts � tð Þ ð19Þ

where ts = 1/(μ0 γ2 N0) + t0. The previous equation predicts a singularity at some time in the
future although such singularity is in conflict with our approximation and the hyperbolic
growth is only a transient phenomenon.

Let us now focus on the long-term (t!1) dynamics of the system. In this case it is sensible
to assume a very large number of existing patents, and hence e−γN ! 0. In this case, we can
rewrite eq (17) as:

N � N0ð Þ � 1

g
þ 1

g2N0

� 1

g
ln gN0½ � ¼ m0 t � t0ð Þ; ð20Þ

where we have used e�gN0 ’ 1� gN0. Thus, from eq (20) it is straightforward to obtain the
long-term solution for the dynamics of N:

NðtÞ ¼ m0 t � t0ð Þ þ ε ð21Þ

with ε = N0 + 1/γ−1/(γ2 N0) + ln[γN0]/γ.
Eq (21) reveals that N exhibits a linear growth dynamics when large values of t are consid-

ered. Note that this long-term dynamics is notably different from the hyperbolic dynamics
predicted for initial stages of evolution (see the explanation above). In Fig 3 we show the agree-
ment between these approximations and the exact solution (obtained numerically). As we can
see, the analytic results confirm that the initial hyperbolic trend (dotted curve) is eventually
replaced by a slowdown characterised by a linear process (dashed line) with no technological
singularity associated.

Fig 3. Transient hyperbolic growth and blackholes in combinationmodels with limited memory. In (a) we display our predicted growth curveN(t) and
two approximations considering short time (dotted line) and long term (dashed line) scales. The effective kernels for these two scales are displayed in the
inset plots (b) and (c). The maximum value displayed in the τ axis of insets (b) and (c) corresponds to N(t) at times t = 213 and t = 270, respectively. The
characteristic scale of ageing imposed by the kernel implies that there is a time horizon beyond which no connections among inventions can be made. This is
illustrated schematically in (d) where we show the spindle diagram of the whole system π along with a subsetψ(t), first appearing at the characteristic time t1/
2 where the probability of citing the oldest invention π1 is half the maximum. All inventions within this “black hole” will be disconnected from the rest. In the
present (top large circle) only new inventions (filled circles) occupying the outer part of the circle can connect among them whereas they cannot link (light
lines) with those in the black hole (open circles). The parameter values used in (a)-(c) correspond to μ0 = 2 × 105, t0 = 0,N0 = 5000, and γ = 2 × 10−6.

doi:10.1371/journal.pone.0146180.g003

On Singularities of Technological Innovation

PLOS ONE | DOI:10.1371/journal.pone.0146180 January 28, 2016 8 / 13



An intuitive explanation for the change from early hyperbolic to late linear dynamics is pro-
vided in the insets of Fig 3b and 3c. Here we show the kernel associated to early (Fig 3b) and
late (Fig 3c) times, and thus smaller and larger numbers of innovations. Although the area cov-
ered by Γ almost fills the plot when N* O(104), it becomes smaller with large N values (here
N* O(106)). In Fig 3b, the probability of recombining any existing patent is higher than 90%
of the maximum [i.e., 90% of the probability of recombining the newest pattent N(t), with
t = 213]. However, the probability of combining patents existing at t = 270 (Fig 3c) folds to
approximately zero for the oldest patents. Then, we can arbitrarily define a patent number
πh(t) that delimits the frontier between up-to-date patents and obsolete patents (which will
hardly ever been recombined again). Specifically, we consider πh(t) to be the patent number for
which the probability of recombination is half the maximum (as indicated by the dashed line
in Fig 3c). Thus, the effect of ageing (or loss of memory) dominates in the long term (Fig 3a
and 3c) and the effective rate of innovation become linear. Such slowdown prevents the system
from approaching a divergent dynamics.

These results can be graphically interpreted as shown in Fig 3d. Here we use again the spin-
dle diagram showing how the universe (or space) of innovations experiences an accelerated
growth at early stages of development. Novel patents such as πj will be distributed over the
outer parts of the patent space (a circle at each time step) and connect with others such as πi.
After a critical time t1/2, some inventions start to become obsolete or forgotten. From this time
on, the expansion speed stabilises, and both the universe of inventions and the “black hole”
ψ(t) at its center (which represents the area of obsolete technology) grow at the same constant
speed. Inventions within the black hole (such as πk in Fig 3d) cannot be used and thus no infor-
mation about them can cross the obsolescence frontier. Our technological memory establishes
the distance between these two boundaries in the innovations space, and this distance deter-
mines the number of up-to-date inventions, which in turn determines the expansion rate of the
innovation space.

Exponential ageing (k� 1)
The previous results can be generalised to the k-diversity scenario, where the new equation
reads

dN
dt

¼ m
Yk
l¼1

Z N

0

e�gðN�t1Þdt1

� �
ð22Þ

This general model leads to: Z N

N0

deN
e�geN � 1
h ik ¼ m0

Z t

t0

det ð23Þ

which, at initial stages reads: Z N

N0

deN
geN� �k ¼ m0

Z t

t0

det ; ð24Þ

and gives hyperbolic dynamics, whereas in the long-term dynamics we have now:Z N

N0

deN ¼ m0
Z t

t0

det ; ð25Þ

again leading to linear dynamics.
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Aging in a multiple order recombination model
The previous models provide a simple theoretical framework to study the dynamics of purely
combinatorial innovations following a k-order kinetics. However, it seems sensible to think
that recombination takes place involving different k’s. In particular, we should consider one
special case where both combination and novel innovations contribute to the growth of the
technological universe. What would be the impact of considering k = 1 as part of the dynamical
equations? Here we present a simple, revealing example that deals with a bimodal recombina-
tion process.

In previous sections we have described the pairwise recombination in which two different
innovations are involved. The corresponding unimodal recombination equation is given by Eq
(23) using k = 2. Let us here consider that an additional mode of recombination is present in
the system. A very simple model that can be considered is the first-order recombination k = 1
in Eq (23). This kind of recombination can be seen as a mutation of an existent patent (e.g., a
given patent is for the first time applied in a new field, thus giving rise to a new patent). In the
absence of ageing effects, it is easy to see that k = 2 leads to hyperbolic growth and, analogously,
k = 1 would lead to Malthusian (exponential) growth dynamics. Considering a bimodal recom-
bination dynamics in which the two previous modes are added up, we have:

dN
dt

¼ mM

Z N

0

e�gM ðN�t1Þdt1 þ mH

Z N

0

e�gH ðN�t1Þdt1

Z N

0

e�gH ðN�t2Þdt2 ð26Þ

where μM and γM stand for the attachment rate and aging exponent for the mode k = 1, respec-
tively, while μH and γH are the analogous parameters for the hyperbolic mode k = 2.

In contrast with the unimodal cases above, finding the analytical solution of the bimodal
equation (27) can be cumbersome. Fig 4 shows the numerical solution of equation (27) for dif-
ferent values of the aging parameter γH. As shown in the previous sections, the hyperbolic
growth term μH is responsible of a superexponential [higher than linear in the semi-logaritmic
axis displayed by Fig 4] growth in the number of innovations. However, this accelerated trend
can be counterbalanced by the aging effects. This is illustrated in Fig 4a, for which we observe
that the system shifts from an approximately divergent dynamics when the ageing parameter
γH is relatively low (see the dashed-dotted line), to a linear dynamics for high values of γH
(dashed, dotted and solid lines). Moreover, we observe that the accelerated trend observed
slightly before t = 75 decays as the ageing effects increase. In Fig 4b we show the accumulated
contribution that the first-order (k = 1) recombination makes to the system. We can see that
early exponential growth of N (t< 50) can be mainly attributed to this first-order recombina-
tion. After a given number of patents is accumulated (around t = 50), the second-order recom-
bination becomes important, and N departs from the first-order regime. Interestingly, Fig 4b
reminds the behaviour observed in the number of patents (see Fig 1 in Ref. [21]), specially if
our first-order term is identified as the production of new kinds of technology (that could be
related to the number of UPSTO codes), and the hyperbolic recombination as the emergence
of new patents based on two existing technologies. This is of course a first approximation to
the actual role played by codes versus patents, but it illustrates a potential mean field approach
to these observations.

Discussion
The nature and tempo of innovation is a difficult and timely topic. It has been the focus of
attention from evolutionary biologists, economists and physicists alike. Inventors get inspira-
tion from previous, existing designs, while they push forward the boundaries of invention. In
searching for a theory of technological change, the combinatorial nature of technology seems
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to be an essential component of human creativity. By combining previous designs into novel
ones, there is a potential for an explosion of novelties, which could eventually move towards a
singularity. How can we test such possibility? Patent files are a privileged window into such
process, since they provide a first approximation to both the growth of inventions and their
interactions over time. The accelerated pattern of patent growth suggests that a super linear
process of innovation is taking place and available evidence indicates that this is at least par-
tially associated to combinatorial processes [21].

In this paper we have explored a simple class of models that include both the richness of
combinations and how rapidly the relevance of previous inventions fades with time. These two
features can be seen as two opposing forces: the diversity of potential previous inventions to be
combined powers combinatorial design, while the obsolescence of the same inventions makes
them less likely to contribute to combinations. Our goal was not as much as to fit data than
understand the basic scenarios where singularities might emerge when both features are
included.

We have shown that long-memory kernels permit the presence of singularities under some
conditions, while kernels involving a characteristic time scale of ageing forbid divergences to

Fig 4. Innovation dynamics of the bimodal recombinationmodel. In (a) we show the different dynamics of N(t) for different aging decays affecting the
hyperbolic (k = 2) term. The corresponding γH values are indicated in the legend. The rest of the parameter values are: μM = 8.5 × 10−2, γM = 1.5 × 10−4 and
μH = 5 × 10−7. In (b) we show again the case γH = 2 × 10−5 (triangles), and the accumulated contribution of the Malthusian (k = 1) recombination to the total
patent numberN. At any time, the accumulated number of patents that have been generated by hyperbolic (k = 2) recombination corresponds to the
difference between the two curves. The red line corresponds to an exponential fit to the first part (up to t = 50) of the time series.

doi:10.1371/journal.pone.0146180.g004
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occur. The first class predicts two different phases, which reminds us of a picture of innovation
defining a phase transition between sub-critical and super-critical phases [33]. The second pro-
vides a plausible reason why singularities might fail to be observed, while the transient dynam-
ics of innovation appears hyperbolic. Further investigations should analyse other temporal
trends (including the patterns of fluctuations) associated to these class of models and a more
detailed analysis of available time series. Existing models of evolution of innovations [34, 35]
can provide very useful tests to the ideas outlined here. Other factors have not been considered
here, such as the limited resources effectively available for developing new technologies. Never-
theless, our models suggests that some generic trends can be defined that pervade the ways in
which innovation evolves.
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