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Abstract
Interventional procedures, including percutaneous transluminal coronary angioplasty

(PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary

arteries, injure the vascular wall and cause endothelial denudation and medial vascular

smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs

is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phos-

phatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased

expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG,

contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using

immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1

(pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and

compared it with those in the corresponding uninjured vessels. We also compared the

expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC

marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the

uninjured vessels. Immunostaining demonstrated an increase in the number of cells

expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-

grafts compared to their uninjured counterparts. VSMCs in the neointima showed an

increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ

and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no

significant expression of the aforementioned proteins. These data suggest that PLK1 might

play a critical role in VSMCmitosis in hyperplastic intima of the injured vessels. Thus, novel

therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and con-

trol neointimal hyperplasia.
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Introduction
Cell division, and the progress of cells through their respective cell cycles; are finely regulated
and controlled, at specific junctures, by a complex interplay between various kinases and phos-
phatases. Understanding the critical role of these kinases and phosphatases, as the major regu-
lators of the cell cycle, marked the start of a new era of increased comprehension of cell cycle
progression. Polo like kinase 1 (PLK1), a member of the polo like kinase family, is a serine/thre-
onine kinase that regulates cell cycle progression and mitosis [1]. PLK1 has been reported to
mediate multiple mitotic processes including centrosome maturation, assembly of the bipolar
spindle, chromosome segregation, activation of the anaphase promoting complex (APC/C),
and cytokinesis [2–9]. The expression and activity of PLK 1 is elevated in tissues and cells with
high mitotic index, such as cancer cells. Cancers including breast, ovarian, endometrial, pros-
tate, and colorectal are found to have such elevated expression and activity of PLK1 [10–14]. In
2012, Shan and colleagues [15] reported increased expression of PLK1 and its upstream regula-
tor Aurora A kinase in uterine leiomyosarcomas, a neoplastic lesion involving SMCs of the
uterine myometrium. Targeting and inhibition of the PLK1 upstream kinase, Aurora A, in the
leiomyosarcomas cells decreased the proliferation and induced apoptosis in these malignant
cells [15].

Vascular smooth muscle cells (VSMCs) found in the media of coronary arteries play a criti-
cal role in the pathogenesis of intimal hyperplasia (IH), which proceeds percutaneous coronary
angioplasty (PTCA) and coronary artery bypass surgery (CABG) [16–18]. Angioplasty and
bypass grafting are the two major interventional procedures employed to re-vascularize coro-
nary arteries that are occluded, secondary to coronary artery disease (CAD). The aforemen-
tioned coronary vascular interventions injure the vascular wall and cause endothelial
denudation, and medial VSMCs metaplasia: from contractile/quiescent to a synthetic/prolifer-
ative state [19–21]. The phenotypically transformed medial SMCs are the central effectors of
IH [19–21]. These highly proliferative and migrating SMCs expresses higher levels of synthetic
markers including non-muscle myosin heavy chain B (SMemb), relative to contractile SMCs
[22]. Several mitogens such as interferon gamma (IFNᵞ) released at the site of the injury stimu-
late the medial SMCs to enter G1 phase of cell cycle followed by the subsequent DNA synthesis
at the S phase [23, 24]. The expression of PLK1 begins to increase from S/G2 phase and peaks
at mitosis in cancerous cells. Phosphorylated-signal transduction and transcription (pStat-3) is
implicated as the transcriptional factors of the PLK1 gene [25–27]. Structurally PLK1 has two
domains; one is a C-terminal polo box domain targeting substrate for sub-cellular localization
regulating the functional aspect of PLK1 and the other one is the kinase domain that gets acti-
vated upon phosphorylation by other kinases. Once activated, PLK1 phosphorylates and fur-
ther activates a wide range of substrates including Cdc25, Cyclin B1, and CDK1, which
promotes mitotic progression [28, 29]. Therefore, PLK1 acts as a hub, where it receives several
signals at a specific time and place and in turn reacts by transmitting multiple signals to the
effector proteins. Given its well-established functions in regulating cell cycle and promoting
proliferation in human cancers, we singled out PLK1 for further study in hyperplastic VSMC.

We focused our initial efforts on examining the role of PLK1 for several reasons: first, PLK1
functions in activating the major kinases, phosphatases and cyclins that promote mitotic entry
and progression through the G2-M cell cycle check point, [29] second, PLK1 overexpression
has been well documented in cells with high mitotic index including an SMC tumor, leiomyo-
sarcoma [15], third, a number of small ATP-competitive inhibitors such as BI 2536 and BI
6727, highly selective for PLK 1, are currently in different phases of clinical trial against other
common human cancers [30, 31]. We have investigated the presence, expression and activity
of PLK1 in VSMCs, which may play a critical role in the development of IH after PTCA and
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CABG in a porcine model. In this investigation, we compared the immunostaining pattern of
PLK1, phosphorylated-PLK 1 (pPLK1), SMemb, α-SMA, IFNᵞ, and pStat-3 in a porcine model
post PTCA and CABG with their respective uninjured vessels as control. In CABGmodel of
swine, the left and right superficial epigastric veins (SEVs) were chosen to mimic the branches
of the main human saphenous vein because their sizes are similar to these branches and can be
easily harvested. Since the vascular injury caused by PTCA or CABG produces SMC phenotype
switching, and increased proliferation of vascular SMCs leading to IH, we hypothesize a rela-
tively greater expression of PLK 1 in the hyperplastic intima of the injured vessels compared to
the control vessels. This suggests that PLK 1 is involved in medial smooth muscle cell mitosis
in the hyperplastic intima of injured vessels. In such a situation, the inhibitors of the PLK1
could be developed to inhibit the mitogenesis of VSMCs. This process would decrease the pro-
gression of the coronary IH, secondary to angioplasty or CABG, and hence may decrease the
mortality and morbidity in CAD.

Methods

Porcine model
This experimental protocol has obtained formal approval from Creighton University Institu-
tional Animal Care and Use Committee. The animals were housed in the Animal Resource
Facility of Creighton University, Omaha, NE and cared for as per National Institute of Health
standards. Yucatan™miniature and microswine, weighing 20–45 kg, were purchased from Sin-
clair Bio-resources (Windham, MA). The swine were fed a special high cholesterol diet. The
high cholesterol diet (HC) consists of 37.2% corn (8.5% protein), 23.5% soybean meal (44%
protein), 20% chocolate mix, 5% alfalfa, 4% cholesterol, 4% peanut oil, 1.5% sodium cholate,
and 1% lard; with 52.8% of the kilocalories from carbohydrates and 23.1% of the kilocalories
from fat. After 16 weeks of the high cholesterol diet the animals were subjected to percutaneous
transluminal balloon angioplasty (PTCA) in left anterior descending artery (LAD) or left cir-
cumflex artery (LCX) [32]. The control group of Yucatan™ and domestic swine were fed the
normal diet but were excluded from undergoing PTCA.

Domestic swine were obtained from the UNL Swine Research Unit (Mead, NE). The domes-
tic swine were fed a normal diet (Teklad Miniswine diet 8753, Harlan Laboratories) composed
of wheat middlings, ground corn, soybean hulls, dehulled soybean meal, dehydrated alfalfa
meal, dicalcium phosphate, and soybean oil. Within the diet, 57% of the kilocalories were from
carbohydrates, 28% of the kilocalories from protein, and 15% of the kilocalories from fat. After
one week of acclimatization, the animals were subjected to off-pump CABG; the right SEV was
used as a vein graft.

Anesthesia, monitoring, and operative procedures
Animals were sedated with a telazol and xylazine mixture prior to endotracheal intubation and
general anesthesia was maintained with isoflurane. Analgesia was provided with local bupiva-
caine and IM buprenorphine. Animals had continuous EKG, rectal temperature, pulse oxime-
try, intra-arterial blood pressure and arterial blood gases monitoring in addition of the
activated coagulation time monitoring during CABG. Animals were administered with pro-
phylactic antibiotic cefazolin and prophylactic antiarrhythmic amiodarone and prophylactic
anticoagulant heparin prior to the procedure. The defibrillator electrodes were attached preop-
eratively for defibrillation when needed.
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PTCA procedure
Transfemoral approach was adopted after femoral artery cut down. 6F arterial sheath was
inserted and a 6F-guiding catheter was advanced to the left coronary artery on a guide wire
under fluoroscopic guidance. Coronary angiography was done using nonionic contrast media.
LCX or LAD balloon angioplasty were done followed by OCT (optical coherence tomography)
to verify the placement and to get a baseline measurement of the surface are of both the LAD
and LCX.

CABG procedure
Off-pump CABG method was used. The SEV was harvested using the no touch technique
through a longitudinal incision parallel to the mammary line. The chest was then opened
through a sternotomy incision using the electric sternotomy saw. The heart was then exposed
after incising the pericardium. The ascending aorta was exposed and prepared for the anasto-
mosis using an aortic side clamp and a circular opening was created using a suitable aortic
punch. The proximal part of the anastomosis between the proximal ascending aorta and the
distal end of the SEV was completed. A cardiac surface stabilizer device was used to stabilize
the area of the intended anastomosis with the LAD. The LAD was then dissected and incised; a
temporary coronary shunt was used to maintain the coronary blood flow during the anastomo-
sis. The distal part of the anastomosis between the LAD and the proximal end of the SEV was
then completed. The temporary coronary shunt was removed before putting the last stitch. The
blood flow in the bypass graft was verified before ligating the LAD proximal to the bypass to
allow exclusive blood flow in the vein graft. The sternotomy was then closed using stainless
wire and the soft tissues and skin were approximated and the animal was allowed to recover
under thermal blanket and close monitoring during the postoperative recovery.

Tissue harvest and processing
Heart was removed and placed in DMEM from both the swine models post PTCA and CABG.
Coronary vessels (LAD, LCX, RCA), SEV-graft (right SEV) and left SEV were dissected,
removed and fixed in 10% formalin for 24 hours at room temperature. Tissues were embedded
in paraffin and thin sections (5μm) were obtained using microtome (Leica, Germany). Sections
were stained with hematoxylin and eosin (H&E) for histomorphometric studies [33]. The non-
injured vessels from swine with normal diet were used as controls.

Immunofluorescence
Paraffin embedded samples, after deparaffinization and rehydration, were treated by steam
heating for antigen retrieval (20–30 min) using DAKO antigen retrieval solution (DAKO, Car-
penteria, CA). Slides were washed using Tris buffered saline and tween (TBST) twice 5 min
each. Sections were incubated for 2 hr in block/permeabilizing solutions containing TBS,
0.25% Triton X-100, and 5% (v/v) goat serum at room temperature. The slides were subse-
quently incubated with primary antibody solutions including mouse polo like kinase1 (PLK1)
(Abcam, ab17056), rabbit PLK1 phosphorylated at Thr210 (pPLK1) (Abcam, ab155095),
mouse/rabbit non-muscle myosin heavy chain B (SMemb) (Abcam, ab684/ab24761), mouse
smooth muscle alpha actin (α-SMA) (Abcam, ab7817), rabbit histone H3 phosphorylated at
Ser-10 (pHis H3) (Abcam, ab32107), rabbit interferon gamma (IFN-γ) (Abcam, ab9657) and
rabbit STAT3 phosphorylated at Tyr-705 (pSTAT3) (Bioss, bs-1658R) at 4°C overnight. On
the following day, slides were rinsed in TBST three times for 5 minutes each, and the secondary
antibody was incubated on the slides for 2 hours at room temp. In case of polyclonal primary
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antibodies, we used Alexa Fluor1 594-conjugated AffiniPure Goat Anti-Rabbit or Goat Anti-
Mouse; Alexa Fluor 488-conjugated AffiniPure Goat Anti-mouse or Goat Anti-Rabbit second-
ary antibody, and for the monoclonal primary antibodies, we used Alexa Fluor 488 Goat Anti
Mouse IgG2b secondary antibody, 1:200 (Jackson ImmunoResearch, Westgrove, PA). Negative
controls with complete omission of primary antibody were run in parallel with normal host
IgG. Sections were washed with TBST three times for 5 min. Nuclei were counterstained with
4’, 6- diamidino-2-phenylindole (DAPI) using Vector laboratories DAPI mounting medium.
Tissue sections were viewed with an Olympus BX-51 epi-fluorescent microscope and images
were photographed with an Olympus DP71 camera.

Image analysis and fluorescence quantification
Numbers of immunopositive cells were counted and mean fluorescence intensity (MFI) was
quantified using ImageJ software for each marker analyzed. Briefly, for each marker and in
each independent experiment, 3 regions of interest (ROI) within the whole neointima were
randomly chosen. The total numbers of cells showing immunopositivity for each marker and
the MFI per cell in each of these ROI were analyzed. The ImageJ software quantified the pro-
tein expression in mean intensity value for each cell. The resulting values were then averaged
and statistically analyzed.

Statistical Analysis
In order to determine the statistical significance, data was analyzed using GraphPad Prism 5.0
biochemical statistical package (GraphPad Software, Inc., San Diego, CA). Values of all mea-
surements are expressed as mean ± SEM of at least 3 independent experiments from each of
the animals in each experimental group (2 for CABG; 5 for PTCA). Statistical analysis was per-
formed using Student’s t-test to analyze statistically significant differences between the two
groups. Differences at p<0.05 were considered significant.

Results

Vessel damage and development of intimal hyperplasia post PTCA and
CABG
Balloon injury resulted in medial rupture in all PTCA. Significant neointima proliferation was
observed both in left anterior descending and left circumflex arteries following PTCA. Signifi-
cant restenosis was observed in post PTCA-coronaries compared to RCA (Fig 1A–1F).

CAGB procedure exposes the SEV lumen to high pressure resulting in endothelial damage
and dysfunction accompanied by medial SMCmigration and proliferation. Significant IH of
the SEV graft was observed compared to the left SEV that was not used as a graft (Fig 1G–1L).

Vascular injury and PLK1 expression
Arteries injured by balloon angioplasty and SEV-graft was examined for PLK1 and SMemb
expression by immunofluorescence. In order to be able to examine the co-distribution of both
PLK1 and SMemb in the tissue, a double immunofluorescence procedure was used. Signifi-
cantly increased expression of PLK1 and SMemb was noted in the post PTCA-coronaries and
SEV-grafts compared to their respective uninjured counterparts (Fig 2). Few SMCs in the
neointima expressed both PLK1 and SMemb. These results suggest a strong association
between post-therapeutic interventional vascular injury and PLK1 expression.

PLK1 in Vein Graft and Coronary Arteries

PLOS ONE | DOI:10.1371/journal.pone.0147937 January 28, 2016 5 / 17



Vascular injury and pPLK1 expression
Post PTCA-arteries and SEV used as a coronary bypass graft were examined for pPLK1 and
SMemb expression by immunofluorescence. Phosphorylation of PLK1 at Thr-210 by other
kinases is required for its catalytic activity. Restenotic coronary artery post PTCA showed sig-
nificant expression of pPLK1, which was limited to the neointima; however, SMemb was
expressed in the neointima and also in the medial layer, compared to the uninjured RCA. Few
cells in the neointima expressed both pPLK1 and SMemb (Fig 3A–3H, 3Q and 3S). Moreover,
significantly increased expression of SMemb and pPLK1 were noted in the neointima of the
SEV-graft compared to uninjured left SEV (Fig 3I–3P, 3R and 3T). In the SEV-graft, a group of
cells in the neointima expressed either SMemb and pPLK1 or a combination of both. These
results suggest a strong association between post-therapeutic interventional vascular injury and
pPLK1 expression.

Fig 1. Histology of swine coronary artery and SEV tissue sections. The H&E staining of uninjured coronary artery (A, B, C) shows normal histology,
whereas 16 weeks after balloon angioplasty neointimal hyperplasia (arrows) is noted in post PTCA-coronary arteries (D, E, F). H&E staining of the uninjured
SEV showed normal histology (G, H, I). SEV that was used as a graft (J, K, L) developed neointimal hyperplasia (arrows). All images were taken in 4x, 10x
and 20x objective. This is a representative of tissue histology in 2–5 individual swine in each experimental group. L: lumen, M: medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g001
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Fig 2. Double immunofluorescence showing the expression of PLK1 and SMemb in post PTCA- coronary arteries, SEV-grafts, and their uninjured
counterparts in porcine model. There is less immunopositivity to PLK1 (red) and SMemb (green) expression in uninjured coronary artery at low (20x) (A)
and high (40x) magnification (B,C,D). The immunostaining of PLK1 (red) and SMemb (green) is noted in restenotic post PTCA- coronary arteries (arrows) at
low (20x) (E) and high (40x) magnification (F, G, H). Similarly, less immunostaining of PLK1 (red) and SMemb (green) expression is noted in the uninjured
SEV at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where many cells showed immunopositivity to PLK1 (red) and
SMemb (green) at low (20x) (M) and high (40x) (N,O,P) magnification. This is a representative of tissue histology in 2–5 individual swine in each experimental
group. MFI measured in arbitrary units (AU) in post-PTCA coronary arteries (Q) and SEV-grafts (R) compared to their uninjured counterparts. Graphs
showing number of PLK1- positive (+) cells in the neointima of the post-PTCA restenotic coronary artery (S) and SEV-grafts (T) compared to their uninjured
counterparts. There was significantly increased immunopositivity to SMemb and PLK1 in the neointima of the post-PTCA restenotic coronary artery (arrows)
compared to uninjured coronary artery. SEV-graft had significantly increased immunopositivity to SMemb and PLK1 in the neointima compared to uninjured
SEV. Data are shown as mean ± SEM of values of at least three measurements in 2–5 individual swine in each experimental group. *P < 0.05. L: lumen, M:
medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g002
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Fig 3. Double immunofluorescence showing the expression of pPLK1 and SMemb in post- PTCA coronary arteries, SEV-grafts, and their
uninjured counterparts in swine. There is less immunopositivity to pPLK1 (green) and SMemb (red) expression in uninjured coronary artery at low (20x)
(A) and high (40x) magnification (B,C,D). The immunostaining of pPLK1 (green) and SMemb (red) is noted in restenotic post PTCA- coronary arteries
(arrows) at low (20x) (E) and high (40x) magnification (F, G, H). Similarly, less immunostaining of pPLK1 (green) and SMemb (red) expression is noted in the
uninjured SEV shown at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where many cells showed immunopositivity to
pPLK1 (green) and SMemb (red) at low (20x) (M) and high (40x) (N, O, P) magnification. This is a representative of tissue histology in 2–5 individual swine in
each experimental group. MFI measured in arbitrary units (AU) in post-PTCA coronary arteries (Q) and SEV-grafts (R) compared to their uninjured
counterparts. Graphs showing number of pPLK1- positive (+) cells in the neointima of the post-PTCA restenotic coronary artery (S) and SEV-grafts (T)
compared to their uninjured counterparts. There was significantly increased immunopositivity to SMemb and pPLK1 in the restenotic post-PTCA coronary
arteries compared to uninjured coronary arteries. SEV-graft had significantly increased immunopositivity to SMemb and pPLK1 in the neointima compared to
uninjured SEV. Data are shown as mean ± SEM of values of at least three measurements in 2–5 individual swine in each experimental group. *P < 0.05. L:
lumen, M: medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g003
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Vascular injury, pHistone-H3 and SMemb
Immunoreactivity towards phospho-histone H3 (pHistone) at Ser-10 was done to examine
proliferating cells in the neointimal area. Phosphorylation at a highly conserved serine residue
(Ser-10) in the histone H3 tail is considered to be a crucial event for the onset of mitosis. Signif-
icantly increased immunopositivity towards pHistone and SMemb were noted in the same tis-
sue sections of post PTCA coronaries and SEV-grafts compared to their respective uninjured
counterparts (Fig 4). Immunopositivityy towards pHistone was noted only in the cells at the
neointima in both post PTCA-coronaries and SEV-graft. Many cells in the neointima of the
injured vessels were immunopositive for both pHistone at Ser-10 and SMemb.

Vascular injury, SMemb and smooth muscle α-actin
Immunopositivity towards SMemb in both post PTCA-coronaries and SEV-graft establishes
the presence of synthetic SMCs with increased rate of proliferation (Fig 5). High expression of
smooth muscle α-actin (α-SMA) was found in all the vessels. Expression of α-SMA and
SMemb in these lesions confirmed that vascular SMCs were the main cellular component of
neointimal proliferative lesions. There is an increased expression of SMemb at the neointima
in post PTCA-coronaries and SEV-grafts compared to that of their uninjured counterparts. In
PTCA-coronaries, SMemb was mostly expressed in the neointima; some of these SMCs also
expressed α-SMA. However, in the SEV-grafts, two distinct sets of SMCs were observed, one
expressed SMemb and the other expressed α-SMA. A few SMCs around the pseudo-lumen
showed co-localization of both the markers.

Vascular injury, IFNγ and SMemb
A double immunofluorescence procedure was used to examine the immunoreactivity towards
IFNγ and SMemb in the same tissue. Significantly increased expression of IFNγ and SMemb
was noted in post PTCA-coronaries and SEV-grafts compared to the uninjured counterparts
(Fig 6). The expression of IFNγ was limited to the neointima of the injured vessel. Most of the
SMCs in the neointima of post PTCA-coronaries and SEV-grafts co-expressed IFNγ and
SMemb.

Vascular injury, pStat-3 and PLK1
Significantly increased expression of pStat-3 and PLK1 was noted in post PTCA-coronary
arteries and SEV-grafts compared to the uninjured counterparts (Fig 7). Many SMCs in the
neointima of the injured vessels showed immunopositivity towards both pStat-3 and PLK1.

Discussion
Restenosis after percutaneous coronary intervention, and vein graft failure post CABG, are
chronic pathological conditions that proceed to obstructive vascular lesions with time. Mito-
genic stimuli released at the site of the injury elicit different signaling pathways, but all finally
converge at the cell cycle of the proliferating medial smooth muscle cells. The process of DNA
doubling (S phase) and distribution (mitosis) are separated by G1 and G2 phases, respectively.
In the G1- and G2-phases of cell cycle, the mitogenic and anti-mitogenic signals are combined
and the cells exit, pause or continue through the cell cycle. Beyond these two R-points (G1 and
G2), cells are committed to further progress through the cell cycle, independent of extracellular
stimuli [34]. Reports have shown that at the G1 R-point, p27KIP1, Rb, PTEN proteins are
down regulated in mitogen stimulated vascular SMCs increasing the transcription and stabili-
zation of cyclin D, which critically contributes to the development of IH [35]. However, the
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Fig 4. Double immunofluorescence showing expression of pHistone H3 at Ser-10 and SMemb in thin sections of uninjured swine coronaries, post-
PTCA coronary arteries, uninjured swine SEV and SEV-graft. There is less immunopositivity to pHistone (green) and SMemb (red) expression in
uninjured coronary artery shown at low (20x) (A) and high (40x) magnification (B, C, D). The immunostaining of pHistone (green) and SMemb (red) is noted in
restenotic post PTCA- coronary arteries (arrows) at low (20x) (E) and high (40x) magnification (F, G, H). Similarly, less immunostaining of pHistone (green)
and SMemb (red) expression is noted in the uninjured SEV shown at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where
many cells showed immunopositivity to pHistone (green) and SMemb (red) at low (20x) (M) and high (40x) (N,O,P) magnification. This is a representative of
tissue histology in 2–5 individual swine in each experimental group. MFI measured in arbitrary units (AU) in post-PTCA coronary arteries (Q) and SEV-grafts
(R) compared to their uninjured counterparts. Graphs showing number of pHistone- positive (+) cells in the neointima of the post-PTCA restenotic coronary
artery (S) and SEV-grafts (T) compared to their uninjured counterparts. Strong immunopositivity to pHistone H3 was found in the neointima of the post PTCA-
coronary arteries and in SEV-graft. Many cells in the neointima of the injured vessels were immunopositive for both, pHistone H3 and SMemb, especially
around the pseudo lumen in SEV-graft. Data are shown as mean ± SEM of values of at least three measurements in each group in 2–5 individual swine in
each experimental group. *P < 0.05. L: lumen, M: medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g004
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second restriction site in the cell cycle, G2 R-point, may prevent proliferation of the cells,
which have lost proper G1/S control. Plk1, activated during G2-M phase, activates CDC25 and
controls the activity of Cdk1/Cyclin B1 complex thus promoting the G2/M phase transition
[36–41]. Injection of anti-PLK1 antibodies in HeLa cells mitotically arrested the cells to divide
[42].

Extensive volume of literature cites the association of PLK1 with G2-M transition and mito-
sis in numerous cancer conditions [36–41]. Therefore, it is plausible that an association,
between phenotypically altered SMCs and PLK1 also exists in hyperplastic cells found in non-
neoplastic pathologies such as IH. In this study we have demonstrated for the first time the

Fig 5. Double immunofluorescence showing expression of smoothmuscle α-actin (α-SMC) and SMemb in thin sections of uninjured coronaries,
post PTCA-coronary arteries, uninjured SEV and SEV-grafts in swine. Expression of α-SMC (green) and SMemb (red) are noted in uninjured coronary
artery at low (20x) (A) and high (40x) magnification (B, C, D). Less expression of α-SMC (green) and increased expression of SMemb (red) are found in the
hyperplastic region post PTCA- coronary arteries (arrows) at low (20x) (E) and high (40x) magnification (F, G, H). Similarly, immunopositivity to α-SMC
(green) and SMemb (red) are observed in the uninjured SEV at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where few
cells are immunopositive to α-SMC (green) and many cells showed immunopositivity to SMemb (red) at low (20x) (M) and high (40x) (N, O, P) magnification.
Increased density of SMemb-immunopositive cells are found at the neointima in post PTCA- coronary arteries and SEV-grafts compared to that of normal
uninjured coronary artery and vein, respectively. Strong expression of α-SMA is noted in all the vessels, injured or uninjured. This is a representative of tissue
histology in 2–5 individual swine in each experimental group. L: lumen, M: medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g005
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Fig 6. Double immunofluorescence showing expression of IFNγ (green) and SMemb (red) in thin sections of uninjured coronaries, post PTCA-
coronary arteries, uninjured SEV and SEV-graft. Less immunopositivity to IFNγ (green) and SMemb (red) are noted in uninjured coronary artery at low
(20x) (A) and high (40x) magnification (B, C, D). Strong expression of IFNγ (green) and SMemb (red) are found in the hyperplastic region post PTCA-
coronary arteries (arrows) at low (20x) (E) and high (40x) magnification (F, G, H). Similarly, less immunostaining of IFNγ (green) and SMemb (red) expression
is noted in the uninjured SEV at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where many cells showed immunopositivity
to IFNγ (green) and SMemb (red) at low (20x) (M) and high (40x) (N,O,P) magnification. This is a representative of tissue histology in 2–5 individual swine in
each experimental group. MFI measured in arbitrary units (AU) in post-PTCA coronary arteries (Q) and SEV-grafts (R) compared to their uninjured
counterparts. Graphs showing number of IFNγ - positive (+) cells in the neointima of the post-PTCA restenotic coronary artery (S) and SEV-grafts (T)
compared to their uninjured counterparts. Many cells in the neointima of the injured vessels were immunopositive for both, IFNγ and SMemb, especially
around the pseudo lumen in SEV-graft. Data are shown as mean ± SEM of values of at least three measurements in each group in 2–5 individual swine in
each experimental group. *P < 0.05. L: lumen, M: medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g006
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Fig 7. Double immunofluorescence showing expression of pStat-3 (green) and PLK1 (red) in thin sections of uninjured coronaries, post PTCA-
coronary arteries, uninjured SEV and SEV-graft in swine. Less immunopositivity to pStat-3 (green) and PLK1 (red) are noted in uninjured coronary artery
at low (20x) (A) and high (40x) magnification (B, C, D). Strong expression of pStat-3 (green) and PLK1 (red) are found in the hyperplastic region post PTCA-
coronary arteries (arrows) at low (20x) (E) and high (40x) magnification (F, G, H). Similarly, less immunostaining of pStat-3 (green) and PLK1 (red)
expression is noted in the uninjured SEV at low (20x) (I) and high (40x) magnification (J, K, L) compared to SEV post CABG, where many cells showed
immunopositivity to pStat-3 (green) and PLK1 (red) at low (20x) (M) and high (40x) (N,O,P) magnification. This is a representative of tissue histology in 2–5
individual swine in each experimental group. MFI measured in arbitrary units (AU) in post-PTCA coronary arteries (Q) and SEV-grafts (R) compared to their
uninjured counterparts. Graphs showing number of pStat-3—positive (+) cells in the neointima of the post-PTCA restenotic coronary artery (S) and SEV-
grafts (T) compared to their uninjured counterparts. Increased immunopositivity towards pStat-3 and PLK1 are found in the neointimal region of the injured
vessels compared to the uninjured vessels. This is a representative of tissue histology in 2–5 individual swine in each experimental group. L: lumen, M:
medial layer, NI: neointima.

doi:10.1371/journal.pone.0147937.g007
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increased expression and activity of PLK1 in SMCs present in the hyperplastic zone in vessels
exposed to post- therapeutic intervention.

Vascular injury caused by PTCA and CABG leads to inflammatory cell infiltration; these
cells release IFNγ, which plays an important role in initiating IH. IFNγ stimulates the tran-
scriptional activity of pro-proliferative genes through Stat-3 and causes SMC phenotype
switching and proliferation leading to IH. PLK1 is one of the target genes of stat-3 [21, 23–25].
Phenotypically transformed SMCs proliferate at a higher rate, express distinct synthetic mark-
ers including SMemb, and possess decreased contractile proteins; when compared to the quies-
cent smooth muscle cells found in the tunica media of normal vessels [22].

Neointimal thickening was observed in arteries post-PTCA and SEV-grafts compared to
their uninjured counterparts. In this study we have documented the increase in the number of
PLK1- positive (+) cells in the neointima of restenotic coronary arteries, post balloon angio-
plasty and post CABG SEV grafts, compared to the respective uninjured counterparts. Many of
the SMCs in the neointimal region, which were positive for PLK1, were also found to be immu-
nopositive for SMC synthetic marker SMemb. PLK1 undergoes phosphorylation at Thr-210
and becomes catalytically active [43]. We showed the co-distribution of both pPLK1 and
SMemb in the hyperplastic region of coronary arteries and SEVs post intervention or surgery.
The neointimal-SMCs expressing immunopositivity to pPLK1 is significantly high to that of
the uninjured vessels. Increased expression of SMemb was not only noted in the neointima but
also in the medial layer of the occluded vessel compared to the uninjured and un-occluded
ones. These results indicate that the phenotypically modified SMCs in the neointima were over
expressing PLK1. In the post CABG SEV graft sections we found a group of cells in the hyper-
plastic zone that showed immunopositivity for SMemb, PLK1 and pPLK1. These results reveal
a strong association between vascular injury and pro-proliferative mitotic kinase PLK1 expres-
sion and activity in post PTCA coronary arteries and SEV-grafts. The potential ability of SMCs
to replicate under mitogenic stimuli could occur through the loss of negative growth regulators
and/or to the overexpression of pro-proliferative protein.

We also observed immunopositivity in the neointimal area towards pHistone H3 at Ser-10
that correlates with the cells undergoing mitosis [44, 45]. Significant increase in the number of
the pHistone-positive SMCs was noted in balloon-injured coronaries and SEV grafts compared
to that of their uninjured vessels. The expression of pHistone was limited only to the neointima
and many of these cells also co-expressed SMC-synthetic marker SMemb and pHistone. This
observation may be due to the high proliferative nature of the synthetic SMCs. As mentioned
above many of these highly proliferative cells in the neointima were also positive for PLK1 and
pPLK1. To the best of our knowledge, ours shall be the first study, which demonstrates
increased expression and activity of PLK1 in the neointimal region post vascular injury along
with the expression of SMC-synthetic marker SMemb and mitotic marker pHistone H3. Next,
we wanted to know if these cells express the contractile SMC marker, α-SMA [22]. Strong α-
SMA was observed in all the vessels, injured or uninjured, but SMemb was only expressed in
the neointima of the injured vessels. In post PTCA-coronaries, many cells in the neointima
expressed both α-SMA and SMemb, however, in the SEV grafts two distinct sets of cells
expressed α-SMA and SMemb. This could be due to the higher rate of phenotypic transforma-
tion of medial VSMCs in post CABG venous grafts, compared to that of the post PTCA-coro-
nary arteries. Venous grafts are more sensitive to shear stress than coronary arteries and this
would explain the pronounced IH in the venous grafts compared to the post PTCA- coronary
arteries. Significantly increased expression of IFN-γ and active transcription factor pStat-3
were noted in vessels post PTCA and CABG. Increased number of cells expressing IFN-γ and
pStat-3 were observed in the neointima of both, post PTCA-coronaries and SEV-grafts com-
pared to the uninjured vessels. IFN-γ was mostly co-expressed with SMemb in the neointima
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of the vessels. This could explain that synthetic SMCs are one of the cellular sources of IFN-γ.
Many phosphorylated Stat-3 positive cells were also immunopositive for PLK1. Studies have
shown that IFN-γ can induce phosphorylation of stat-3 which in-turn can transcribe PLK1
gene. In this study we found more cells in the neointima expressing immunopositivity towards
SMemb, pHistone H3, PLK1, pPLK1, IFN-γ and pStat-3 in the post PTCA- coronary arteries
and SEV-grafts compared to their respective uninjured counterparts. Therefore, an increased
MFI of each immunofluorescent stain within the injured vessels is due to a greater number of
immunopositive cells in the neointima. This suggests that each of these markers/proteins may
have played a critical role in the formation of the intimal hyperplasia post vascular injury. This
study should pave the way for further in-vitro studies to understand the relationship among
these proteins in regard to IH. Also, future studies are warranted to further understand the role
of mitotic kinase PLK1 in the pathogenesis and prognosis of IH in coronary arteries following
intervention and in vein graft disease.
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