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Weyl Mott Insulator
Takahiro Morimoto1 & Naoto Nagaosa1,2

Relativistic Weyl fermion (WF) often appears in the band structure of three dimensional magnetic 
materials and acts as a source or sink of the Berry curvature, i.e., the (anti-)monopole. It has been 
believed that the WFs are stable due to their topological indices except when two Weyl fermions of 
opposite chiralities annihilate pairwise. Here, we theoretically show for a model including the electron-
electron interaction that the Mott gap opens for each WF without violating the topological stability, 
leading to a topological Mott insulator dubbed Weyl Mott insulator (WMI). This WMI is characterized 
by several novel features such as (i) energy gaps in the angle-resolved photo-emission spectroscopy 
(ARPES) and the optical conductivity, (ii) the nonvanishing Hall conductance, and (iii) the Fermi arc 
on the surface with the penetration depth diverging as approaching to the momentum at which the 
Weyl point is projected. Experimental detection of the WMI by distinguishing from conventional Mott 
insulators is discussed with possible relevance to pyrochlore iridates.

Weyl fermions (WFs) in solids attract recent intensive interests from the viewpoint of their novel quantum 
transport properties and chiral anomaly. The WF is described by the 2-component spinors originating from 
4-component Dirac spinor when the mass m is zero in the Dirac equation. The realization of WFs in condensed 
matters has been recently established1–3. In magnetic materials, the time-reversal symmetry is broken and the 
energy dispersion of Bloch wavefunction has no Kramer’s degeneracy. In this case, the band crossings between 
the two bands are described by a 2 ×  2 Hamiltonian as
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k k kH h
1i

i
i0

1 2 3

with 2 ×  2 Pauli matrices σi (i =  1, 2, 3). Three conditions of the band crossing hi(k) =  0 for (i =  1, 2, 3) can be 
satisfied in general by appropriately choosing the three components of the crystal momentum k. Weyl points 
sometimes exist exactly at the Fermi energy when dictated by some symmetry and topology of the Bloch wave-
functions, for example, in Dirac semimetals4–8. More recently, experimental discovery of Weyl semimetals in an 
inversion broken material TaAs has been reported9–11.

Weyl fermion plays an important role in the context of the Berry phase, which is defined by 
= − ∇a i u uk k k kn n n  ( u kn  : the periodic part of the Bloch wave function with the band index n =  ±  and the 

momentum k) and acts as the vector potential in the momentum space. The Berry curvature bnk =  ∇ k ×  ank is the 
emergent magnetic field, and can be enhanced near the band crossing points. When one expand Eq. (1) around 
the band crossing point (Weyl point, which we assume to be k0 =  0), there appears the WF described with 
hi(k) =  ηvFki, by an appropriate choice of the coordinate ki’s, where vF is the Fermi velocity. The sign η =  ± 1 spec-
ifies the chirality of the WF, and the Berry curvature of the lower eigenstates (n =  − ) of the Hamiltonian in Eq. (1) 
is obtained as

η
= ,

( )
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k2 2k 3

which diverges as |k| →  0 and the total flux Φ  penetrating the surface S enclosing the Weyl point is given by 
∫ πηΦ = ⋅ =−S bd 2kS . This indicates that the WF acts as the magnetic monopole (anti-monopole) for η =  1 

(η =  − 1); the magnetic charge =
π
Φnm 2

 plays a role of topological index. Strong Berry curvature leads to the 
enhanced anomalous Hall effect1 as well as the chiral magnetic effect which results in the negative 
magneto-resistance12.

Figure 1 shows the schematic figure of the three dimensional first Brillouin zone in which two WFs exist along 
the kz direction. One can define the Chern number

1RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan. 2Department of Applied 
Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. Correspondence and requests for 
materials should be addressed to T.M. (email: tmorimoto@riken.jp)

received: 15 December 2015

accepted: 18 December 2015

Published: 29 January 2016

OPEN

mailto:tmorimoto@riken.jp


www.nature.com/scientificreports/

2Scientific Reports | 6:19853 | DOI: 10.1038/srep19853

∫ π
( ) = ( ), ( )kCh k

dk dk
b

2 3z
x y

z

for the plane of fixed kz. When we consider Ch(kz) as a function of kz, there appears the jump by η at kz =  ± k0z, i.e., 
kz-coordinate of the Weyl points. Therefore, due to the periodicity of Ch(kz) by kz →  kz +  2π/c, we need the pair of 
η =  1 and − 113,14. The existence of a single (an odd number of) WF is also excluded. Therefore, the annihilation of 
a single WF is prohibited, i.e., the only way to destroy the WFs is to annihilate a pair of WFs with opposite chiral-
ities either by making the two WFs approach to each other in the momentum space or by introducing a scattering 
between two WFs with some density-wave-type order. The former scenario is actually proposed for the transition 
between the Weyl metal and insulator in pyrochlore compounds15. The latter one is also discussed intensively16,17. 
Meanwhile, effects of the electron correlation have been discussed for WFs by several methods including random 
phase approximation18 and, more recently, cluster perturbation theory19. However, the possibility of the Mott gap 
opening at each WF has never been explored thus far to the best of the present authors’ knowledge.

In this paper, we study the effect of the electron correlation U on WFs by using a simple model which is exactly 
solvable. It is shown that the Mott gap due to U open at each WF without the pair annihilation, while the topolog-
ical properties are kept unchanged. Namely, the magnetic charge of the WF is unchanged with the role of poles in 
Green’s function being replaced by its zeros. The Hall conductance σxy remains nonvanishing and the Fermi arc on 
the surface remains, while the Green’s function and the optical conductivity σxx(ω) show the gap. Therefore, this 
Mott insulating state is identified as a topological Mott insulator, and we name it “Weyl Mott Insulator (WMI)”. 
The experimental detection of this new state is also discussed.

Results
Model and Green’s function.  The model we study is given by the Hamiltonian
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where ψk =  (ck,↑, ck,↓)T is the two-component spinor, and ψ ψ= = +,↑ ,↓
†n n nk k k k k . The most peculiar nature of 

this model arises from the electron-electron interaction which is local in k, i.e., the Hamiltonian is decomposed 
into independent k-sectors. In the real space, this corresponds to the non-local interaction in the limit of forward 
scattering. A similar idea has been explored to study the Mott transition20 and the spin-charge separation21. This 
locality of the interaction in k enables the exact solution of this problem. One can introduce the unitary transfor-
mation U(k) satisfying U(k)†[h(k) ⋅  σ]U(k) =  σ3h(k) with h(k) =  |h(k)| and a new spinor φk =  U(k)†ψk =  (ak+, 
ak−)T, and then obtain
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with =± ± ±
†n a ak k k  and nk =  nk+ +  nk−. There are four eigenstates and eigenenergies: (i) vac  with = ( )E kU

2
,  

(ii) +
†a vack  with E =  h(k), (iii) −

†a vack  with E =  − h(k), and (iv) + −
† †a a vack k  with = ( )E kU

2
.

Figure 1.  Schematic picture for the Weyl semimetal. A Weyl point plays a role of a source or sink of the Berry 
curvature, i.e., the (anti-)monopole in the momentum space. A pair of Weyl points with opposite charges is 
accompanied with a Fermi arc (the curve on the right side surface).



www.nature.com/scientificreports/

3Scientific Reports | 6:19853 | DOI: 10.1038/srep19853

Using these solutions, one can easily obtain the thermal Green’s function in the zero temperature limit as

σω ω( , ) = − ( ) ⋅ ( )
−ˆ ˆk h kG i i 1 6

1
eff

where heff(k) =  n(k)[h(k) +  U/2] with n(k) =  h(k)/h(k). (For details, see Supplementary Information SI.) As can 
be seen from Eq. (6), the energy dispersions of the poles are ε±(k) =  ± h(k) +  U/2, where the Mott gap of U exists 
even at the Weyl point with h(k) =  0 as shown in Fig. 2(a), which can be measured in the angle-resolved pho-
toemission spectroscopy (ARPES). It should be noticed that Eq. (6) is derived from the exact Green’s function 
and is not a result of some mean-field approximation. Thus, the WFs disappear due to the electron correlation 
without the pair annihilation.

Topological properties.  The topological index for the interacting electronic systems can be defined in terms 
of Green’s function22. For the (2 +  1)D case, it is given by
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where α, β, γ run over 0, 1, 2, and εαβγ is the totally antisymmetric tensor. Plugging Eq. (6) into Eq. (7), one 
obtains
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where the k-integral is over kx and ky for fixed kz. Since n(k) =  heff(k)/|heff(k)| =  h(k)/|h(k)|, Ch(kz) does not change 
in spite of the gap opening at Weyl points. The Green’s function in Eq. (6) depends on the direction in which k 
approaches to the Weyl point k0 and still plays a role of a source (sink) of the Berry curvature. At exactly k0, Ĝ has 
a zero at ω =  0 when one averages over the direction of ( )→ n klimitk k0

. Namely, the role of a pole is replaced by a 
zero in the topological properties of Green’s function22. Because of the bulk-edge correspondence, nonzero topo-
logical index Ch(kz) indicates that the existence of the surface states on the side surface, i.e., the Fermi arc. (For 
details, see Supplementary Information SII.)

Therefore, the present insulating state is topological and we call it “Weyl Mott insulator (WMI)” distinct from 
the usual antiferromagnetic Mott insulator (AFI).

Optical conductivity.  Now we study the conductivity, which is given by the two-particle correlation func-
tion. We consider a single WF with the Fermi velocity vF described by h(k) =  vFk. It is crucial to distinguish 
between the nonzero momentum transfer q and exactly q =  0. In the former case, the double occupancy of the 
electrons will be created, while not in the latter case, which brings about the singularity or discontinuity at q =  0. 
This reflects the long-range nature of our Coulomb interaction in Eq. (4). For q ≠ 0, the particle-hole continuum 
starts from ω =  U +  vF|q| for the transition of an electron from k to k +  q.

For the optical conductivity, the momentum of the incident light q is finite although small, and hence we 
take the limit q →  0. In this limit, the optical conductivity at zero temperature for a single WF is obtained as (See 
Supplementary Information SIII for details)

ba

ω

q
0

U
kz-k0z k0z

Figure 2.  Energy spectrum of WMI. (a) Poles of the Green’s function. Dashed line represents the band 
structure of a noninteracting Weyl semimetal. Energy bands are shifted by ±  U/2 and show a Mott gap of U.  
(b) Excitation spectrum indicating the region of non-zero conductivity σ(q, ω). Excitation gap of U +  vF|q| is 
finite for nonzero momentum transfer q. The spectrum is singular at q=  0 where gapless excitations are allowed 
due to k-local excitations without the energy cost of U.
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where θ(x) =  1(x ≥  0) and θ(x) =  0(x <  0). The optical conductivity shows a Mott gap of U and its asymptotic 
behavior for large ω is given by σ ω ω( ) ( / ) e hv12 F

2  which coincides with the well known result for a free WF23. 
In Fig. 3, the optical conductivity is plotted for various temperatures (See Supplementary Information SIII for the 
derivation). As the temperature increases, peaks at ω =  0 and ω =  U appear, as denoted by bars whose heights 
represent mutual ratios of the weights of the peaks. The peak at ω =  0 is a Drude peak for finite temperatures, 
while the peak at ω =  U arises from an intraband contribution in which a WF at k scattered to k +  q within the 
same band feels a Coulomb repulsion U. The appearance of the peak at ω =  U in σ(ω) for WMIs contrasts to the 
absence of such a peak for AFIs, because the peak at ω =  U originates from the correlation effect. In addition, the 
appearance of the in-gap absorption indicates the fragile nature of the Mott gap compared with the single-particle 
band gap.

For the case of exactly q =  0, only the vertical transitions within the same k-sector contribute to the conduc-
tivity as indicated by the red line in Fig. 2(b). Since no double occupancy is created in this case, no energy cost of 
U occurs. Therefore, the conductivity σ(q =  0, ω) is given by Eq. (9) with U =  0.

Discussions
Now the relevance of the present results to realistic systems is discussed. There are clear differences between the 
WMI and the AFI due to their topological nature: (i) The Hall conductance is finite in WMI while it is zero in 
AFI. (ii) Correspondingly, the Fermi arc on the surface remains in WMI while not in AFI. Also importantly, the 
phase transition between the WMI and AFI is possible once the former exists as explained below. Figure 4(a) 
shows the phase diagram of the present model. The horizontal axis is the separation Δ kz between the two WFs 
which is controlled by, e.g., the strength of the antiferromagnetic long range order parameter M. When U =  0, the 
phase transition occurs from the Weyl semimetal to the AFI by the pair annihilation of WFs at M =  Mc. Once the 
interaction U is switched on, we always opens the gap and the system becomes the WMI as long as Δ kz is finite. 
Along the phase transition line Δ kz =  0 at M =  Mc, U >  0, the pair annihilation of the two zeros of the Green’s 
function occurs, which is distinct from that at U =  0 where the two poles collide and pair-annihilate. Here one 
must consider the peculiarity of the present model. The effect of the long range Coulomb interactions is margin-
ally irrelevant as in the case of quantum electrodynamics (QED)24. As for the short-range Coulomb interaction U, 
it is irrelevant. This means that there must be a finite range of Coulomb interaction within which the WFs remains 
gapless and stable. On the other hand, the strong U limit in the lattice model corresponds to the localized electron 
and hence a trivial AFI. Therefore, the conjectured phase diagram of a more realistic model is given in Fig. 4(b), 
where the successive transitions from the Weyl semimetal to the WMI, and from the WMI to the AFI occurs as 
the strength of the interaction increases. (The separation of two WFs is reduced also as the interaction increases 
and hence the trajectory should goes as U and M simultaneously increase.)

Now we discuss the Green’s function and the two-particle correlation function for realistic electron-electron 
interactions given by
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Figure 3.  Temperature dependence of the optical conductivity of WMIs. We plotted results for β =  10 (blue), 
β =  3 (green), and β =  2 (red). The delta functions at ω =  0 and U from the intraband contributions are denoted 
by bars whose heights represent mutual ratios of the weights. The dashed line represents σ(ω) for a free WF. We 
set U =  1.
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The self-energy Σ (k =  0, ω) of the Green’s function in the second order in V(q) is given in Supplementary 
Information SIV. It is concluded that the gap of the spectral function is stable and remains nonzero. The 
two-particle correlation functions such as σ(q, ω), on the other hand, is gapless at q =  0 for the Hamiltonian in 
Eq. (4). For a finite size system of N sites, the number of poles forming this gapless excitation in the two particle 
correlation function [the red line in Fig. 2(b)] is of O(N) (which is the number of k where the excitation can be 
created). In general, the number of poles for a collective excitation is of O(N), while that of a continuous excita-
tion arising as a pair of single-particle excitations is of O(N2). This infers that the gapless excitations at q =  0 cor-
responds to a collective excitation. For realistic interactions, the discontinuity at q =  0 should be removed. In this 
case, we conjecture that the vertical transition [red line in the inset of Fig. 4(a)] turns into a collective mode with 
a linear dispersion as shown in the blue line in the inset in the WMI phase of Fig. 4(b).

These considerations offer a different scenario to interpret the phase diagram of pyrochlore iridates R2Ir2O7
3,15. 

As the radius of the rare-earth ion R is reduced, the correlation strength increases. A recent optical measurement 
in Nd2Ir2O7 has revealed the opening of the Mott gap of the order of 0.05 eV25. A transport experiment also 
discovered the metallic domain wall states even in the Mott insulating state, i.e., the bulk is insulating while the 
domain wall is metallic26. As the correlation is further reduced, these surface metallic states also disappear. One 
scenario is proposed by Yamaji et al.27 based on the mean field theory. As an alternative scenario, one can consider 
the two types of Mott insulators, i.e., the WMI and the AFI, and the disappearance of the metallic domain wall 
states signals the phase transition between the two phases. Namely, since two domains of the antiferromagnetic 
order correspond to opposite signs of σxy and hence the two-dimensional chiral surface modes are expected to 
appear at the domain boundary in the WMI phase. However, we note that this requires a symmetry lowering to 
violate the cancellation of the Chern vectors pointing toward four momentum directions equivalent to (1, 1, 1) 
which makes σxy zero in the cubic symmetric case28. The smoking-gun experiment for the WMI should be the 
ARPES to detect the Fermi arc even in the Mott insulating phase as mentioned above.
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