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Summary

Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite 

technologies to survey the transcriptome, we lack a comprehensive understanding of transcript 

kinetics, which limits quantitative biology. This is an acute challenge in embryonic development 

where rapid changes in gene expression dictate cell fate decisions. By ultra-high frequency 

sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth 

gene expression trajectories in absolute transcript numbers. During a developmental period 

approximating the first 8 weeks of human gestation, transcript kinetics vary by 8 orders of 

magnitude. Ordering genes by expression dynamics, we find temporal synexpression predicts 

common gene function. Remarkably, a single parameter, the characteristic timescale, can classify 

transcript kinetics globally and distinguish genes regulating development from those involved in 

cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization 

of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.
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INTRODUCTION

Gene expression is dynamic and tightly regulated. To build a quantitative understanding of 

gene regulation, direct measurement of transcript kinetics is necessary. Transcript kinetics 

describe the rate of change of transcript copy numbers with time. In developing systems 

such as the embryo, dynamic transcript expression precisely coordinates a sequence of 

stereotypical events that occur in rapid succession. A quantitative understanding of the 

transcriptome during embryogenesis will have important applications for congenital 

malformation research and regenerative medicine (Fakhro et al., 2011; Tebbenkamp et al., 

2014; Zaidi et al., 2013). With the ability to measure global transcript kinetics, we can 

effectively study the impact of different transcript regulation strategies on gene expression, 

for example, dynamics of chromatin modifications, utilization of cis-regulatory sequences, 

kinetics of transcription factor binding, and transcript stability. Since the study of gene 

regulatory networks is limited by the lack of genome wide kinetic data (Karlebach and 

Shamir, 2008), a kinetic transcriptome dataset will be transformative to build and test gene 

regulatory network models in development.

The measurement of transcript kinetics has two requirements: 1) measurements of gene 

expression in absolute numbers of transcripts per cell or embryo and 2) sampling at a 

sufficiently high temporal resolution to properly calculate rates of change of transcript 

numbers. While there is great potential to use RNA-seq to study transcript kinetics, the 

currently available datasets lack one or both of these attributes, and suitable methodologies 

have yet to be developed (Stegle et al., 2015). In most datasets, sampling timepoints are too 

widely spaced. Data points are effectively isolated “snapshots” in developmental time, and 

analysis is restricted to pairwise comparisons of differences in relative gene expression 

(Aanes et al., 2011; Fang et al., 2010; Kalinka et al., 2010; Paranjpe et al., 2013; Spencer et 

al., 2011; Tan et al., 2013; Vesterlund et al., 2011; Wang et al., 2004; Yanai et al., 2011). In 

addition, in each of these datasets, relative normalization precludes kinetic calculations. 

Relative normalization is ubiquitous within the field and provides expression levels in 

arbitrary units related to the number of reads that map to a transcript relative to the total 

number of reads from the library. These relative values do not relate directly to transcript 

numbers and are not reliable indicators of either the magnitude or the direction of change in 

gene expression between samples when RNA content changes. For example, as the total 

amount of RNA increases in the developing embryo, transcripts with a constant copy 

number will appear to decrease in expression under relative normalization. Therefore, even 

in those studies where sampling rates are high (Collart et al., 2014; Tomancak et al., 2002), 

relative normalization combined with varying total mRNA levels confound comparisons 

such that kinetic calculations cannot be made even in simple fold change terms.

Absolute transcript measurements can be achieved by spiking in RNAs at known 

abundances for use as quantification standards. Native transcripts are calibrated against 

RNA standards to calculate absolute transcript copy number estimates. Previous reports 

have used spike-ins to normalize for sequencing depth, to control for technical variability, 

and to calculate estimates of absolute transcript numbers (Brennecke et al., 2013; Islam et 

al., 2014; Junker et al., 2014; Risso et al., 2014). However, recent reports have suggested 
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that such a direct absolute normalization with currently available RNA standards is 

infeasible due to significant sequencing biases (Risso et al., 2014; SEQC MAQC-III 

Consortium, 2014). To date, a few RNA-seq datasets have been calibrated indirectly, where 

a small number of transcripts are first quantified using a non-sequencing technology, which 

in turn is used to normalize RNA-seq data (Marguerat et al., 2012; Tu et al., 2014). Here, we 

show that direct absolute quantification using sequence data alone is feasible and yields 

accurate measurements of embryo RNA content. Using RNA-seq and spike-in RNAs for 

absolute normalization, we created a genome-wide dataset to precisely measure transcript 

kinetics, which can be linked to biological processes occurring during embryogenesis (i.e. 

gastrulation or organogenesis such as eye, muscle, heart). To accomplish this, we sampled 

rapidly developing embryos at such high temporal resolution that data from neighboring 

timepoints were found to be as similar as biological replicates, ensuring that we captured 

precise transcript dynamics.

This rich dataset enables the visualization of gene dynamics of the entire transcriptome over 

an extended developmental period. Below, we outline a number discoveries enabled by 

combining absolute normalization and high temporal resolution sampling.

RESULTS

Data Collection, Quality, and Overview of Analysis

To profile gene expression at high time-resolution in the human disease model, Xenopus 

tropicalis, we collected eggs (time 0) and then synchronously developing embryos from an 

in vitro fertilization at 30 minute intervals for the first 24 hours of development, followed by 

hourly sampling thereafter to 66 hours (Fig 1A). We sampled RNA from two crosses 

collected in parallel (Fig 1A), Clutch A and B. For Clutch A, we sequenced polyA+ RNA 

for the full 66 hours and also total RNA depleted of ribosomal RNA (rdRNA; containing 

both polyA+ and polyA− RNAs) for the first 24 hours. For Clutch B, we sequenced polyA+ 

RNA for the first 24 hours only.

To calculate absolute transcript numbers and kinetics, we calibrated read counts of all 

transcripts using spike-in RNAs as quantification standards. After embryo homogenization 

and prior to RNA extraction, we added a known amount of spike-in RNAs per embryo to 

each sample independently. This ensured that RNA standards underwent the same variations 

in recovery as the endogenous embryonic transcripts during RNA purification, library 

preparation, and sequencing. To Clutch A and Clutch B, we added the 92 synthetic RNAs 

available from the External RNA Control Consortium (ERCC) (Baker et al., 2005). In 

addition, we independently added three of the E. coli derived ArrayControl spike-ins to 

Clutch B.

We align reads to the X. tropicalis genome, known off-genome EST sequences and spike 

RNA sequences, and calculate relative transcript abundances of an augmented version of X. 

tropicalis v7.2 models in transcripts per million (TPM). The overall quality of our datasets 

was excellent according to a number of metrics (Fig S1A, B). Importantly, for capturing 

transcript kinetics, transcriptome wide comparisons of neighboring time points were as 

correlated as biological replicates as measured by transcriptome wide Spearman correlation 
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(Fig S1A). Four time points (among 139) and one RNA standard that performed poorly 

(Qing et al., 2013; SEQC MAQC-III Consortium, 2014) were excluded from all subsequent 

analysis (Fig S1C,D,E; Supplemental Experimental Procedures). We also found that a small 

fraction of non-ribosomal RNA transcripts are depleted in the rdRNA dataset (Fig S2F, 

Table S2) indicating that our ribosomal-depletion protocol may have a small number of off-

target effects.

Commonly, in large scale genomics studies, unsupervised machine learning tools such as 

clustering methods (like WGCNA: weighted correlation network analysis (Langfelder and 

Horvath, 2008)) or dimensionality reduction methods such as principle components analysis 

(PCA) (Jolliffe, 2002) can discover relationships within the data. In our case, PCA 

confirmed a strong temporal correlation inherent in our experimental design (Fig 1A, Fig 

S1F). Therefore, we opted for a data analysis framework that can explicitly describe these 

temporal correlations. Gaussian processes are employed commonly in the physical sciences 

and have received significant attention as general tools for machine learning (Rasmussen 

and Williams, 2006). They offer a statistical framework for representing and examining the 

strong temporal correlations present in our data. Gaussian processes have been successfully 

applied to a range of biological data (Aijo et al., 2014; Heinonen et al., 2014; Honkela et al., 

2010; Stegle et al., 2010; wa Maina et al., 2014). Here, Gaussian processes allow us to 

address multiple topics within a single framework to elucidate transcript dynamics. We 

employ them in absolute normalization, regression, estimation of confidence intervals, 

identification of differential expression and the calculation of kinetics.

Direct Absolute Normalization of RNA-seq data

We achieve absolute normalization with a two-step procedure. Our first step is relative 

normalization for sequencing depth resulting in transcript abundances in TPM. We note that, 

the relative normalized abundances of our RNA standards decrease with time due to 

accumulating RNA in the embryo (Fig 1B left, Fig S2A). In our second step, we transform 

these RNA standard abundances to be constant with time at the known amount spiked into 

each sample. To minimize the effects of technical noise of the RNA standards, we use 

Gaussian processes to learn a function that varies smoothly with time to transform the RNA 

standards. This smooth mapping is critical as it ensures that absolute normalized copy 

numbers are not contaminated by sample to sample technical noise in the RNA standards.

Recent work has demonstrated that ERCC spikes exhibit significant sequencing biases and 

their appropriateness for direct absolute normalization in RNA-seq has been questioned 

(Risso et al., 2014; SEQC MAQC-III Consortium, 2014). To investigate these concerns, we 

evaluated the consistency of our proposed absolute normalization on our three datasets 

independently: Clutch A PolyA+, Clutch A rdRNA, and Clutch B PolyA+ (Fig S2B). In 

agreement with previous observations (Qing et al., 2013; Risso et al., 2014; SEQC MAQC-

III Consortium, 2014), we find 1) that ERCC spikes perform poorly in polyA+ sequencing 

when compared to rdRNA sequencing (Fig S1F, Fig S2B), 2) spike-in variation between the 

two independently spiked PolyA+ datasets (Clutch A & B) is smaller than between Clutch A 

PolyA+ and Clutch A rdRNA (Fig S2B), and 3) spike-in performance varies across spike-in 

species but is consistent over replicates (Fig S2C). We apply corrections for the first two 
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sources of variation (Fig S2B; Supplemental Experimental Procedures) and then calculate 

absolute transcripts per embryo for native transcripts and RNA standards. We capture the 

Clutch A/B variation and the spike-in species sequencing biases in a single uncertainty 

model for the absolute normalization (Fig S2D). Our absolute normalization performs well 

with R2 = 0.97–0.98 (Fig S2C) and has a 1.11–1.25 fold error when comparing the ERCC 

and ArrayControl spike-ins that were added independently to Clutch B samples (Fig 2SC). 

We discuss the limitations of this normalization, the validity of our Gaussian Process 

models, and influences of gene model quality in Supplemental Experimental Procedures and 

Table S2.

The detection limit, which is the number of transcripts required to produce a single read on 

average, increases with time as mRNA accumulates in the embryo (Fig S2E). Averaged over 

all samples, the detection limit is ~1300 transcripts per embryo, which is less than 1 

transcript per cell once the embryo has attained the cell number present in the blastula.

Total mRNA Content of the Embryo Validates Absolute Normalization

We investigated the levels of total mRNA in the embryo during development. We summed 

the absolute abundance of all transcripts measured to derive the total mRNA in nanograms 

per embryo at each time point for both polyA+ and rdRNA (Fig 1C). Although there is a 

notable wave between 0–10 hpf (see below), the total amount of polyA+ mRNA increases 

with time from 10–15 ng of mRNA/embryo at fertilization to 30–50ng of mRNA/embryo at 

66 hpf (swimming tadpole, stage 42). These values validate our absolute normalization, as 

they agree well with total RNA yields after tissue homogenization (~1.3 μg/embryo and ~2.4 

μg/embryo at earliest and latest stages of our timecourse respectively), where ~1–2% of total 

RNA is polyadenylated (Davidson, 1986). As further validation of the absolute 

normalization, we compare our X. tropicalis mRNA predictions to experimentally measured 

polyA+ mRNA yields from X. laevis (Sagata et al., 1980). Accounting for the uncertainty in 

our absolute normalization, the mean ratio between these X. laevis mRNA yields and our 

data is 3.38 +/− 0.02 [mean +/− std. dev.] (Fig 1C). This is good agreement with the ratio in 

volume between X. laevis and X. tropicalis eggs, their respective diameters are 1.19 +/− 0.07 

mm and 0.80 +/− 0.05 mm (Crowder et al., 2015), giving a volume ratio of 3.31 +/− 0.76. 

Therefore, our absolute quantification agrees well with measurements of in vivo mRNA 

levels determined by an independent experimental method.

Transcript Dynamics in the Developing Embryo

Examining the expression of individual genes, we observe smooth transitions in gene 

expression (Fig 1D). Our sampling rate is sufficient to capture the dynamics of the expressed 

genes (see timescale analysis below). We find genes whose expression peaks at different 

times in development, demonstrating transcript kinetics that are highly dynamic, and 

suggesting specific roles for these genes during defined developmental periods (Fig 1D). For 

example, in the case of muscle induction, a series of genes critical for mesoderm and then 

somite specification accumulate and extinguish at different times as development progresses 

(Fig S3A). The temporal expression profiles of these genes agree with RNA detection by in 

situ hybridization in whole mount embryos (Fig S3A). We further examined genes 

Owens et al. Page 5

Cell Rep. Author manuscript; available in PMC 2016 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expressed later in development, which also correlated with in situ hybridization data (Fig 

S3B, C).

There is utility in identifying genes with constant expression as these may serve as optimal 

loading controls in various experimental regimens (Fig S4). We found 109 genes (<0.7%) in 

polyA+ (0–66 hpf) and 1078 genes (6.9%) in rdRNA (0–24 hpf) that had less than a two-

fold change (Fig S4A, Table S3). Commonly used loading controls (gapdh, odc1, eef1a1) 

have more variable expression (Fig S4B). Our data would suggest that the RNA helicase 

ddx3x has the best loading control performance across developmental time and RNA-seq 

preparations (Fig S4C).

Differential Expression between Biologically Independent Replicates Reveals Precise 
Regulation of Transcripts

Our dense temporal sampling, offers a unique ability to detect differential expression over 

the entire time course. We began by exploring differential expression between our Clutch 

A/B biological replicates (Fig 2, Supplemental Experimental Procedures). We find that 

12,062 of 16,914 genes (71%) had identical expression dynamics between the two clutches. 

Additionally, 4,561 genes (27%) showed differential expression, but with a small statistical 

effect (Fig 2A,B); their expression profiles show only minor differences (Fig 2C). Thus, 

expression dynamics of 98% of the transcriptome are similar between two independent 

biological replicates. This highlights both the high degree of reproducibility in our dataset 

and the exceptionally robust control of gene expression during development. The remaining 

291 genes (1.7%) had a large statistical effect indicating strong differential expression. The 

majority of these genes have differential maternal expression, but most Clutch A and Clutch 

B differences converge by 10–12 hpf, displaying identical expression later in development 

(e.g. dhx32, Fig 2D). Interestingly, this set of genes is enriched for GO terms relating to cell 

division (Table S4), suggesting roles in the rapid cell division of the early embryo. Notably, 

a smaller number of genes have expression profiles that are divergent between replicates 

(Fig 2D). From these data, we conclude that gene expression is tightly regulated throughout 

embryogenesis and highly reproducible when measured using high-throughput sequencing.

Differential Expression and Switching of Transcript Isoforms During Development

Next, we analyzed the differential expression of alternative transcript isoforms. We can 

classify differential isoform expression as either differential abundance or differential 

temporal dynamics. Transcripts are defined to have differential abundance if one transcript 

is expressed at a different level than the other with a constant ratio between them, and 

differential dynamics if the ratio varies with time (Fig S5). Here, we restrict our attention to 

those isoforms that have differential temporal dynamics (Fig 3, Fig S5). We found 761 

genes with isoforms showing differential dynamics, with differences in promoter and exon 

usage, as well as variable 3′ UTRs. Isoform expression profiles for 147 genes show a switch-

point, where their expression profiles cross, marking a change in which isoform is most 

abundant (Fig 3A). The timing of these switch-points was not evenly distributed over 

development; two thirds are transitions from a maternal to a zygotic isoform concentrated 

around 10 hpf (Fig 3A). Interestingly, we find examples of isoform switching due to post-

transcriptional regulation, two maternal isoforms of bicd2 exhibit differential 
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polyadenylation (Fig 3B). One isoform bicd2(1) has a long 3′ UTR and is polyadenylated 

upon fertilization, the other bicd2(2) has a short 3′ UTR and is deadenylated upon 

fertilization (Fig 3C). The 3′ UTR of bicd2(1) must contain control elements to remain 

deadenylated during oocyte maturation and become polyadenylated after fertilization.

We predicted that isoforms with different temporal dynamics may show different spatial as 

well as temporal expression, implying differential function. We selected three genes where 

the sequence differences between isoforms were long enough to generate effective in situ 

hybridization probes. Remarkably, all three showed different spatial expression domains 

(Fig 3D). This demonstrates the biological importance of isoform dynamics during 

embryogenesis and suggests specific mechanisms to regulate isoforms in different tissues. 

Moreover, we demonstrate the power of high-resolution sampling for transcript discovery 

and gene modeling. The small fragment sizes associated with high-throughput sequencing 

present challenges for identifying the co-expression of distant exons in long transcripts. The 

temporal statistics here can aid in the resolution of long-range order; distant exons that are 

expressed in the same isoform will exhibit related temporal dynamics (Fig 3C).

Temporal Synexpression Predicts Common Gene Function

To explore the expression dynamics of the entire dataset, we created a heat map of 

transcripts organized according to a hierarchical clustering of their normalized expression 

profiles (Fig 4A). The heat map is ordered such that nearest neighbors have similar 

expression profiles, which we term temporal synexpression. Synexpression suggests that 

genes are controlled by shared regulatory networks and may have common function (Niehrs 

and Pollet, 1999). To investigate temporal synexpression, we used a sliding window to 

assess local Gene Ontology (GO) enrichment across the heat map (Fig S6A, Table S4). 

Interestingly, we found many blocks of genes enriched for specific functions ranging from 

cellular biology to developmental patterning events (Fig 4A). In the set of genes showing 

early transient expression, we found GO terms associated with early developmental steps 

including germ layer specification, mesoderm/endoderm development, and axis patterning 

(Fig 4A right, top of heat map). Genes transiently expressed later in development are 

enriched for GO terms associated with organogenesis (Fig 4A right, bottom of heat map). 

Therefore, proximity within the heat map enriches for GO terms that are consistent with 

developmental events, demonstrating that temporal synexpression is a powerful predictor of 

gene function (see below).

While exploring temporal synexpression, we found two distinct sets of genes (S1 and S2 in 

Fig 4A, 4B left; Supplemental Experimental Procedures) that have similar oscillatory 

behaviors between 34 and 66 hours of development. These sets are not immediately adjacent 

in the overall heat map due to different expression prior to 34 hours. Postulating that there 

may be more genes across the heat map with similar oscillations, and hence similar function, 

we used one of these genes, ckb (Fig 3D, right), as a “seed” to identify other similarly 

oscillating genes and discovered a much larger set (150 genes, Table S5). To determine 

whether this local temporal synexpression identified common functions, we examined 

spatial expression patterns. Our seed gene, ckb, has pronounced expression in the somitic 

mesoderm and lies within a block of genes enriched for muscle contraction GO terms. 
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Remarkably, our larger local temporal synexpression set also has significant enrichment in 

somitic mesoderm. 38 of these genes have expression patterns available in public databases 

(Bowes et al., 2010), and 34/38 (89%) have somitic expression (Fig S6B). These genes 

appear to oscillate with a period of approximately 20 hours, which is significantly longer 

than the somitic clock (Pourquie, 2003) and more reminiscent of the circadian rhythm. 

Interestingly, a few circadian clock genes are expressed in the somites (Curran et al., 2014; 

Curran et al., 2008), and our analysis indicates there may be additional unexplored links 

between clock genes and somite regulatory networks.

In another case, we found two sets of genes (V1 and V2; Supplemental Experimental 

Procedures) with similar temporal expression patterns from 40–66 hpf that enrich for visual 

perception (GO:0007601). With the exception of tmem145, all V1 and V2 genes are well 

characterized as having roles in rod and cone cells and are associated with human retinal 

diseases (Table S5). We therefore predicted that the uncharacterized tmem145 also plays a 

role in vision, and indeed tmem145 does have spatial expression in the eye (XDB3 (Bowes 

et al., 2010) and XGC EST database (Klein et al., 2002; Morin et al., 2006)).

We conclude that temporal synexpression can be used effectively to predict gene function, 

and predictions can be refined depending on the local developmental period of interest. 

Remarkably, we uncovered a large cohort of genes expressed in the somites simply by 

ranking their similarity in expression to a gene with known somite expression. We anticipate 

that future investigations of temporal synexpression in this data may be able to assign 

putative functions to many of the 5,718 genes (~28%) that remain unnamed.

The Reorganization of Maternal and Zygotic Transcriptomes

In our analysis of total mRNA during development (Fig 1C), we noted a difference between 

total rdRNA levels and polyA+ mRNA levels prior to 4.5 hpf (early stage 9 blastula), the 

point at which zygotic transcription becomes widespread. From 0–4.5 hpf, there is an 

increase in polyA+ transcripts while rdRNA levels show little change, reflecting the 

polyadenylation of maternal transcripts (Collart et al., 2014). Then from 4.5–10 hpf, both 

polyA+ and rdRNA levels fall as the clearance of maternal mRNA exceeds nascent zygotic 

transcription. The fall in RNA constitutes a ~20% loss of the embryo’s mRNA content, 

supporting the notion that very early embryonic development relies heavily on maternally 

stored transcripts. By 10 hpf (late gastrula stage 12), those maternal mRNAs targeted for 

clearance are largely extinguished, and zygotic transcription causes mRNA levels to 

increase for the remainder of our timecourse.

To examine these transitions more closely, we considered the distribution of the number of 

transcripts per gene at different time points (Fig 5A). Initially, in the egg, the distribution 

has a broad peak at ~100,000 transcripts, which changes dramatically at 4.5 hpf into a 

bimodal distribution with a marked peak at ~600,000 transcripts. This change in distribution 

reflects the rapid increase in polyadenylated maternal transcripts. The distribution is again 

reorganized at 10 hpf, losing the bimodal appearance and shifting leftwards towards fewer 

transcripts as maternal transcripts are eliminated. By the end of our timecourse, the peak at 

~600,000 transcripts is re-established without the bimodal appearance seen at 4.5 hpf. The 

coincidence of a mode at approximately ~600,000 transcripts at 4.5 hpf and 66 hpf is 
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unexpected. The tadpole at 66 hpf has twice the mRNA content and is considerably more 

complex than the 4.5 hpf blastula stage embryo. Therefore, the doubling of the RNA content 

is achieved by having roughly twice as many genes with at least ~600,000 transcripts/

embryo rather than simply shifting the entire distribution (rightward) such that there are 

twice the copy number of each gene overall.

Transcript Kinetics Reveal a Rapid Deployment of Maternal Transcripts

To examine these changes in the distribution of transcript numbers in more detail, we 

calculated transcript kinetics. We determined the maximum rate of increase in transcripts per 

hour (either as transcripts/hr/embryo or kb/hr/embryo) and examined the distributions of all 

genes (Fig 5B,C). We compared these maximum rate distributions between rdRNA and 

polyA+ over 0–24 hpf and then polyA+ over 24–66 hpf. Strikingly, the maximum rates of 

accumulation vary over 8 orders of magnitude suggesting varied mechanisms for the 

regulation of transcript accumulation. The distributions for transcripts/hr and kb/hr are 

similar indicating that the rate distribution is not influenced by transcript length (Pearson 

correlation of 0.28 between max. accumulation rate and transcript length in Clutch A PolyA

+). Both the transcripts/hr and kb/hr distributions are negatively skewed, producing the 

sharp rise on the right tail of the distribution. This indicates that many genes experience a 

rate of accumulation that is close to the maximal, and that most genes experience a rate of 

accumulation that is greater than the mean.

Interestingly, genes measured from 0–24 hpf in polyA+ preparations show faster rates (blue 

line shifted rightward, Fig 5B,C) than in both 0–24 hpf rdRNA and 24–66 hpf polyA+, 

which are aligned. Given the reorganization of transcripts from 0–4.5 (Fig 5A), we 

compared maximum accumulation rates in polyA+ and rdRNA at this time interval. At 0–

3.5 hpf, the maximum accumulation rates for polyA+ are faster than for the rdRNA; in 

contrast, this difference is lost at 4–24 hpf where the polyA+ and rdRNA distributions are 

coincident (Fig 5D). We conclude that the polyadenylation of maternal transcripts offers the 

cleavage stage embryo a mechanism by which a large number of transcripts can be deployed 

for translation very rapidly, overcoming the embryo’s limited capacity for transcription (due 

to very rapid cell cycling and relatively few nuclei per embryo).

Rapid Kinetics of pri-mir427 and the Clearance of Maternal Transcripts

The clearance of maternal RNAs is one of the major embryo-wide transcriptome changes, 

resulting in a net loss of ~20% of the total mRNA content (Fig 1D). The mir427/430 family, 

in Xenopus and zebrafish respectively, plays a critical role in clearing maternal RNAs at the 

onset of zygotic transcription (Giraldez et al., 2006; Lund et al., 2009). Early embryonic 

phenotypes due to the loss of dicer, and therefore all miRNAs, can be rescued in zebrafish 

embryos by mir430, highlighting the importance of this microRNA (Giraldez et al., 2005). 

Interestingly, we find that the pri-mir427 transcript has the fastest kinetics of any transcript 

in the early frog embryo, at 7×108 kb/hour/embryo (Fig 5C), an order of magnitude faster 

than the very abundantly expressed ef1a1 (Fig 5C). In addition, we find pri-mir427 

transcripts to be ubiquitously expressed, and we first detect their transcription at the 8-cell 

stage (2 hpf), significantly earlier than the previously identified onset of nodals 3, 5 and 6 

and well before the classic midblastula transition (Fig 6A inset, Fig S7) (Kimelman et al., 
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1987; Newport and Kirschner, 1982; Skirkanich et al., 2011; Yang et al., 2002). Therefore, 

pri-mir427 is not only transcribed at a prodigious rate but is the earliest detected zygotic 

transcript in Xenopus.

As pri-mir427 is expressed during a period where precise cell numbers are known, we can 

calculate the average rate of transcription per allele from rdRNA data (Supplemental 

Experimental Procedures). The mir427 locus contains numerous copies of the mir427 

hairpin covering ~55kb of transcribed genome (Fig 6D, Data S2). Here, we report the 

aggregate RNA abundance and accumulation over the entire locus.

The abundance of pri-mir427 transcripts per cell peaks at 4.4 hpf (130 Mb/cell) with the 

peak accumulation rate per allele occurring at 4.2 hpf (2.6 Mb/min/allele; Fig 6B,C). 

Performing a similar analysis for other early transcribed genes (Fig S7B), we find that pri-

mir427 accumulates nearly 1000-fold more rapidly. We demonstrate that it is the size of the 

mir427 locus combined with ubiquitous expression that renders such a dramatic 

accumulation rate possible. We note that pri-mir427 is RNA pol II transcribed (Lund et al., 

2009). The maximum RNA pol II elongation rate has been estimated at ~4 kb/min (Ardehali 

and Lis, 2009). At this elongation rate the locus requires a polymerase density of 11–12 pol 

II/kb to achieve the measured 2560 (95% CI: 2280 to 2840) kb/min/allele. This is in good 

agreement with the maximum polymerase densities of ~10 pol II/kb observed on rapidly 

transcribed genes of amphibian oocyte lampbrush chromosomes (Miller and Hamkalo, 

1972). Corroborating this prediction, we examined published X. tropicalis blastula stage 9 

RNA pol II ChIP-seq data (van Heeringen et al., 2014), and found high RNA pol II 

occupancy over the mir427 locus (Fig S7A). In summary, we conclude that the pri-mir427 

achieves the highest known rate of transcript production during the very early rapid cell 

divisions of the frog embryo. To achieve this brisk rate, the size of the locus and the 

ubiquitous expression (supported by its spatial expression) are essential; however, the RNA 

pol II density and transcription rate need not have extraordinary values. This does imply that 

pri-mir427 is transcribed homogenously by all cells; any significant heterogeneity would 

require some cells to transcribe at rates beyond what has been observed.

We speculate that numerous copies are present in Xenopus and zebrafish to maximize 

production of mature mir427/mir430 microRNAs during the rapid development of these 

organisms. Interestingly, the mammalian member of the family, mir302, is present in far 

fewer copies on the genome, presumably because mammalian development is dramatically 

slower and the embryos smaller (with less maternal mRNA), and thus there is ample time to 

generate sufficient amounts of mir302 to clear maternal transcripts.

Interestingly, the earliest detection of pri-mir427 occurs at the 8-cell stage when its 

accumulating transcript breaks our detection limit. The next transcriptional events we detect 

are from loci that are on average 19 times smaller: nodal3/5/6 and siamois1/2 break our 

detection limit at 32–256 cell embryos (Fig S7B) which contain 4–32 fold more copies of 

these loci than 8-cell embryos. It is possible that these shorter loci may be transcribed from 

the 8-cell stage or earlier, but our expression measurements are insufficiently sensitive to 

detect this early transcription. Together, we conclude that we are able to detect the onset of 

zygotic transcription vastly earlier than previously thought.
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In principle, the approach taken to quantitate pri-mir427 transcript kinetics can be applied to 

any gene during any time interval in our timecourse once the numbers of expressing cells/

embryo are ascertained.

Characteristic Timescale of Gene Expression Classifies Developmental Gene Function

While the rate of accumulation of pri-mir427 is remarkable, transcript accumulation rates 

may not be optimal for identifying potent developmental regulatory genes, where small 

changes in transcript levels may be sufficient to alter cell fate and morphogenesis. We note 

that the distribution of maximum transcript accumulation rate does not differentiate 

transcription factors from all genes (Fig 7A). Whereas, ribosome related genes accumulate 

significantly faster. We postulated that developmentally regulated genes would not 

necessarily be transcribed at maximal rates but would be tightly regulated and transiently 

expressed, reflecting changing biological events (i.e. their expression would turn on and off 

rapidly). Using Gaussian processes, we calculate a single parameter to quantify such 

behavior, a characteristic timescale (τ) for each gene.

Formally, the timescale parameterizes the Gaussian process covariance function for each 

gene (Supplemental Experimental Procedures). The covariance function describes the 

covariance between a gene’s transcript levels at two time points (Fig 7B). Measurements of 

a gene’s expression that are closer in time will share a greater covariance (be more 

correlated) than those further apart in time. The timescale reflects how rapidly the 

covariance decays when considering expression at increasing time intervals (Fig 7B). Genes 

with rapidly changing expression kinetics lose covariance quickly and have short timescales 

(Fig 7B, 7C left). Conversely, genes with expression kinetics that vary more smoothly and 

gradually have covariances that persist in time and are described by long timescales (Fig 7B, 

7C right).

To explore the characteristic timescales relevant to development, we plotted the distribution 

of timescales over all genes (Fig 7C). We find the mass of the timescale distribution to be 

slower than our detection limit (Supplemental Experimental Methods); in fact, our sampling 

rate is sufficient to reliably detect very short timescales (for example pri-mir427 with τ = 1.8 

hours) (Fig 7C, upper left panel). We investigated the timescale distribution by gene 

ontology (Fig 7C). Remarkably, GO term enrichments segregated between short and long 

timescales (Table S4). At short timescales, there was a striking enrichment of genes 

associated with cell signaling and developmental processes; these genes are involved in 

rapid, spatially restricted patterning events during embryogenesis. At long timescales, we 

found enrichment in genes necessary for cellular metabolism, many of which correlate in 

expression with the changes in total mRNA in the developing embryo. We conclude that 

timescales are a powerful metric for investigating gene function, and are able to classify 

novel genes whose kinetics are similar to those with developmental or cell signaling roles, or 

unidentified roles in cellular metabolism.

DISCUSSION

We present a rich array of findings on transcript kinetics from our ultra-high temporal 

resolution expression profiling of Xenopus. To establish these biological observations, we 
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overcame the challenges of direct absolute normalization of RNA-seq data using ERCC 

spikes (SEQC MAQC-III Consortium, 2014). We show: 1) It is essential to spike RNA 

standards at a constant ratio to embryo/cell numbers directly into homogenates prior to RNA 

extraction. 2) Relative normalized spikes exhibit a clear decreasing trend that was the result 

of increasing RNA in the embryo with time. This demonstrated that the ERCC spikes were 

of suitable fidelity for absolute normalization and identified our absolute normalization 

strategy. 3) We found it necessary to sequence the same RNA by multiple protocols (PolyA

+ and rdRNA) so that protocol specific biases can be understood and minimized. 4) It is 

essential to estimate the error, or uncertainty, in the measurement of the RNA standards (Fig 

S2B,C,D) and then average over this uncertainty when making absolute transcript number 

predictions. We have achieved this latter point using Gaussian processes, and in doing so, 

we have ensured that our absolute normalization of native transcripts is not unduly 

influenced by technical noise or sequencing biases of the RNA standards (Fig S2D). 5) 

Finally, we note that high resolution temporal sampling has a significant advantage over 

multiple replicates of a low temporal sampling. With high frequency sampling, neighboring 

timepoints are still as similar as biological replicates, providing the necessary information on 

reproducibility, but importantly we also capture the transcript dynamics and so obtain more 

information for the same number of samples.

We have demonstrated that direct absolute normalization of RNA-seq data is feasible; the 

quality of the RNA standards and the understanding of their sequencing biases are the 

largest factors limiting progress in the absolute quantification of gene expression data and 

the accuracy of our predictions (see uncertainty confidence intervals in Fig S2D). Currently, 

the ERCC spikes are the predominant RNA standards; they are manufactured to log-scale 

precision and exhibit significant sequencing biases. With log-scale precision, the error is 

proportional to abundance and doubles for every doubling of target transcript copy numbers. 

Clearly, transcripts are under much tighter regulation in the embryo and the log-scale 

precision in RNA standard concentrations is far from ideal. The need for improved RNA 

quantification standards to advance future absolute quantification efforts is clear.

We demonstrate that high-frequency sampling is critical to define smooth expression 

trajectories and properly examine transcript dynamics. With such data, we can identify 

cohorts of temporally co-regulated genes and make accurate predictions on spatial 

expression and gene function. Our case studies of somite and vision temporal synexpression 

(Fig 4B) demonstrate the potential of this dataset not only for characterizing genes of 

unknown function but also uncovering new temporal phenomena in gene expression. High 

frequency sampling combined with Gaussian process analysis is a powerful tool for 

capturing the temporal evolution of differential expression, including identifying 

convergence and divergence points. Importantly, our analysis of timescales confirmed that 

our sampling rate was sufficient to capture the transcript behavior for even the most 

dynamic genes. The concept of the characteristic timescale will be critical for future 

transcriptome time series studies to ensure that dynamic behaviors are not missed or 

misinterpreted.

We also analyzed the global properties and kinetics of the transcriptome during our 66 hour 

timecourse. Interestingly, we find that much of the transcriptome accumulates to ~600,000 
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transcripts/embryo at different developmental stages. Examinations of transcript kinetics 

revealed that different kinetic signatures can be associated with the accumulation of 

transcripts via polyadenylation or transcription. We expect that further examination of 

kinetics may reveal additional signatures associated with different mechanisms of mRNA 

regulation.

The maternal to zygotic transition constitutes the most dramatic changes in the 

transcriptome that we observe in our timecourse. It begins with the polyadenylation of 

maternal transcripts, followed by onset of zygotic transcription and the clearance of maternal 

transcripts. The absolute nature of our data provides new quantitative insights into this 

period. For example, zygotic transcription starts early during the cleavage stages with the 

activation of pri-mir427, which plays an important role in maternal RNA clearance. The 

reduction in maternal mRNA exceeds transcription as the cleavage stages are completed 

(blastula stage 9; 4.5 hpf) and mRNA levels continue to fall until the end of gastrulation 

(stage 12.5; 10 hpf). During this time window, the majority of transcript level differences 

between Clutch A and Clutch B converge (Fig 2D), and many zygotic isoforms are activated 

whose abundance will exceed their maternal counterpart by ~10 hpf (Fig 3A).

Our data demonstrate that transcript levels during embryonic development are exquisitely 

controlled with only 2% of transcripts showing large differences in expression between 

replicates. Although the biological importance of these differences is not certain, these 2% 

of genes are nevertheless tightly regulated within the embryos of each clutch. This 

differential expression appears to be interesting and worthy of further exploration. Tight 

control over gene expression occurs at multiple levels, including chromatin modifications, 

cis-regulatory elements, transcription factors, and transcript stability. Our experimental 

approach can be used to investigate the effects of perturbation of these regulatory processes 

on transcript kinetics, which is particularly difficult without measurements of absolute 

transcript levels. Such real measurements have the potential to transform our understanding 

of the transcriptional control that is fundamental to gene regulatory networks. Our approach 

affords many opportunities to build gene regulatory networks whose foundation lies on 

much needed quantitative data. The potential for using Gaussian processes with time series 

expression data for uncovering gene regulatory interactions has been demonstrated (Honkela 

et al., 2010). Combining these approaches with our timecourse data holds exciting prospects 

for the elucidation of gene regulatory networks in early vertebrate development.

A major goal in developmental biology is to determine the temporal and spatial expression 

patterns of all genes during development. Our work is a step towards that goal. By 

combining absolute normalization and high frequency sampling with the recent advances in 

RNA tomography (Junker et al., 2014) and/or the spatial reconstruction of single cell RNA-

seq data (Satija et al., 2015), there is an exciting opportunity to create a 4D atlas of 

developmental gene expression especially in vertebrate human disease models such as 

Xenopus.
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EXPERIMENTAL PROCEDURES

Embryo Collection

To obtain RNA samples for RNA-seq, we performed 2 parallel in vitro fertilizations of 

siblings of 12th generation inbred Nigerian Xenopus tropicalis. All fertilizations and 

subsequent culturing of embryos were performed in a temperature-controlled room 

maintained at ~24°C, with fluctuations +/− ~1°C over the entire timecourse. All samples are 

reported in hours post fertilization (hpf) and developmental stage. Mapping from hpf to 

Nieuwkoop and Faber stage Is given in Table S1. We labelled the progeny of the two 

crosses Clutch A and Clutch B. All collections from the two clutches occurred concurrently.

RNA isolation and Spike ins

For most samples, 10 embryos/timepoint were homogenized in 200 μl Trizol® and frozen at 

−80°C, with the exception of egg, 0.5, 1, 1.5, 2, 2.5 and 3 hpf timepoints, which were 

sampled at 25, 30, 20, 20, 20, 15 and 15 embryos respectively. ERCC Spike In Mix 1 was 

added on a per embryo basis to Clutch A samples. For the Clutch B timecourse, ERCC spike 

in Mix 1 was also added along with the independent adding of Ambion Array Control RNA 

spikes. See Supplemental Experimental Procedures for additional details.

Data Analysis

All libraries were sequenced with 76bp paired-ends on an Illumina HiSeq 2000. Read pairs 

were aligned using TopHat v2.0.10 (Trapnell et al., 2009) to the X. tropicalis version 7.1 

genome (Hellsten et al., 2010; Karpinka et al., 2015) along with our ERCC & ArrayControl 

exogenous spike sequences and known off-assembly gene sequences used in a previous 

study (Collart et al., 2014). Alignment was guided by the v7.2 X. tropicalis gene models, to 

which we made improvements and corrections (Data S1). We estimated the relative 

abundance of all transcripts in fragments per kilobase per million (FPKM) with Cufflinks 

v2.1.1 (Trapnell et al., 2010), and converted to transcripts per million (TPM). Absolute 

normalization was achieved by calibrating relative normalized transcript abundances against 

spikes to achieve absolute normalization. Corrections for polyA+ bias and Clutch A/B 

variation are applied to absolute normalization of native transcripts. All subsequent analysis 

employs Gaussian processes. See Supplemental Experimental Procedures for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data generation, mRNA content of the embryo and gene expression dynamics, see also 
Fig S1, S2
A – Experimental design and sample collection

B – Left: eef1a1o and ERCC-00171 abundance in relative normalization (TPM), Clutch A 

polyA+. RNA standard decreases with time. Right: absolute normalization of left. Red line 

indicates ERCC-00171 transcripts added based on the manufacturer’s datasheet. The RNA 

standard is constant at the correct abundance.

C – Total mRNA (PolyA+ and rdRNA) in the embryo in nanograms with time. Gray region 

and line respectively mark Gaussian process 95% confidence interval (CI) and median of 

Clutch A & B PolyA+ data.

D – Dynamics of gene expression of PolyA+ RNA in transcripts per embryo. Circles mark 

Clutch A PolyA+, triangles mark Clutch B PolyA+. The horizontal axis marks time (bottom) 

and NF developmental stage (top). Shaded regions mark Gaussian process 95% CIs of the 

data.
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Figure 2. Clutch A vs Clutch B PolyA+ Differential Expression
A – Clutch A vs Clutch B histogram of differential expression scores as measured by the 

Bayesian Information Criterion (BIC), larger scores indicate greater differential expression 

(Supplemental Experimental Procedures). Three regions marked: 1) no differential 

expression BIC ≤ 0, 2) differential expression small effect 0 < BIC ≤ 60, 3) differential 

expression large effect BIC > 60. See B for explanation of thresholds.

B – Differential expression effect size as measured by the log10 mean overlap between 

Clutch A and Clutch B Gaussian process models (Supplemental Experimental Procedures). 

Mean overlap decreases with increasing BIC. BIC = 0, 60 and mean overlaps of 60%, 10% 

and 2.5% marked. At BIC = 60 approximately all genes have less than 10% overlap, and all 

genes with less than 2.5% overlap have BIC > 60.

C – Differential expression examples with decreasing BIC (top right). Genes on the 

boundary for strong differential expression have highly correlated expression profiles in A 

and B. Vertical lines mark convergences (red) or divergences (black).

D – Left: Examples of convergence (dhx32) and divergence (Xetro.K05169). Right: 

Histogram of convergence and divergence times.
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Figure 3. Isoform Differential Expression in Clutch A, see also Fig S5
A – Isoform switching event examples: maternal to maternal; maternal to zygotic; and 

zygotic to zygotic switching events (left). Histogram of isoform switching events by 

category and time (right).

B – bicd2 isoforms switch in PolyA+ data (circles), and do not switch in rdRNA data 

(squares) indicating differential polyadenylation. PolyA+ and rdRNA abundances agree 

within uncertainty of the absolute normalization (Supplemental Experimental Procedures).

C – Normalized read depth on bicd2 locus in Clutch A polyA+ between 0–4.5 hpf. Note 

temporal dynamics shared by the final three bicd2(1) exons. Heatmap and depth of pile ups 

corrected for changing total mRNA.

D – Spatial expression of three genes with isoforms with differential dynamics. All isoforms 

show different temporal and spatial expression domains. Grey lines and points mark total 

expression for each gene (sum of the red and blue isoforms).
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Figure 4. Temporal Synexpression in Clutch A PolyA+, see also Fig S6
A – Temporal map of the transcriptome: an enumeration of all gene expression dynamics in 

the embryo. Heat maps display all genes normalized by maximum expression and ordered 

by similarity. Inset (right) expands on genes transiently expressed with early onset. Vertical 

bars mark Gene Ontology (GO) enrichment (colors correspond to GO terms), numbers 

appended to GO bars indicate the number of genes of given category. All reported GO 

blocks are enriched with p < 2×10−4 (Fisher Exact) for entire block. S1, S2 and V1, V2 mark 

the location of somite and vision temporal synexpression genes respectively in B. 

“Transcription Factors *” labels an annotation of transcription factors separate to GO 

(Supplemental Experimental Methods).

B – Somite (left) and Vision (right) synexpression groups.
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Figure 5. Transcript copy numbers and kinetics per embryo in Clutch A
A – Transcript copy number histogram in polyA+ sequencing at 0.0 (egg), 4.5 hpf (early 

stage 9), 10 hpf (stage 12.5, end of gastrulation), 66 hpf (tadpole stage 42). Detection limits 

give number of transcripts required to generate a single read averaged over all transcript 

lengths (Fig S2E). Transcript copy number distributions transition smoothly between these 

timepoints (data not shown).

B – Histogram of maximum rates of increase in transcripts/hour between any consecutive 

measurement points calculated from Gaussian process medians for each gene. Blue – PolyA

+ 0–23.5 hpf; Red – rdRNA 0–23.5 hpf; Green – PolyA+ 24–66 hpf. Vertical lines mark the 

gene with max. rate of increase for each category.

C – As B but kb/hour.

D – Maximum rate of increase in transcripts/hour (left) and kb/hour (right) for 0–3.5 hpf and 

4–23.5 hpf time intervals. PolyA+ and rdRNA distributions are discrepant for 0–3.5 hpf 

reflecting polyadenylation of maternal RNAs. Distributions are identical over 4–23.5 hpf.
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Figure 6. Accumulation kinetics of pri-mir427 per allele in Clutch A rdRNA, see also Fig S7
A – pri-mir427 expression over first 12 hpf in rdRNA data and in situ hybridizations. pri-

mir427 show ubiquitous expression matching RNA-seq temporal data. Examples of most 

abundant transcripts shown for comparison. Inset: first detection of pri-mir427 above 

detection limit at 2.0 hpf (8–16 cell transition).

B – pri-mir427 abundance in kb per cell. Line marks Gaussian process median, error bar is 

95% CI (Supplemental Experimental Procedures). Peak per cell abundance occurs after 11th 

division at 4.4 hpf.

C – pri-mir427 accumulation rate in kb/min/allele with time. Line is median of differential 

of Gaussian Process, error bar gives 95% CI (Supplemental Experimental Procedures). Peak 

accumulation rate is achieved at 4.2 hpf just after 10th cell division.

D – Organization of pri-mir427 locus on X. tropicalis Chromosome 3 (X. tropicalis v8 

genome, Supplemental Experimental Procedures). Clusters of mir427 hairpins appear in 

tandem with a repeated sequence arranged symmetrically on opposite strands around a gap 

in the genome assembly.
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Figure 7. Characteristic Timescales of Gene Expression in Clutch A PolyA+
A – Distribution of max. rate of increase of all transcripts (gray) (as Fig 5), transcription 

factors (blue), and ribosomal proteins rps* and rpl* (red).

B – Theoretical covariance (Matérn covariance function, Supplemental Experimental 

Procedures) between two measurements by time interval for example genes in C.
C – Histogram of characteristic timescale over all genes in in Clutch A polyA+. Top row 

annotates example genes (timescale inset), fast/short timescales are on the left slow/long 

timescales on the right, Gaussian process 95% CI (gray) and median (blue) marked. Bars 

below give GO enrichment (calculated as Fig 2, Fig S6A) of histogram, numbers indicate 

total genes with given category. All enrichments have p < 2.6×10−5 (Table S4). 

“Transcription Factors *” labels an annotation of transcription factors separate to GO 

(Supplemental Experimental Methods).
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