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Abstract 

Background:  Periodontitis is described as a group of inflammatory diseases of the gingiva and supporting structures 
of the periodontium. The accumulation of plaque bacteria, which include putative periodontal pathogens, is known 
to initiate the disease but the host immune response is the major contributing factor for destruction of periodontal 
tissues. Proteins that bind to heparin heparin-binding protein (HBPs) play important roles in health and disease and 
interact with each other via networks known as ‘heparin interactomes’. This study aimed at evaluating published data-
sets of HBPs and its role in periodontitis.

Methods:  To elucidate the role of HBPs in periodontitis, bioinformatics analyses of published data was used. In 
silico analyses of published datasets were used to construct a putative HBPs interactome using an online database 
resource, ‘STRING’ (Search Tool for the Retrieval of Interacting Genes).

Results:  PubMed searches identified 249 genes that were up regulated and 146 genes that were down regulated 
in periodontal disease, compared with periodontal disease-free gingival samples. In silico analyses using published 
datasets revealed 25 up-regulated and 23 down-regulated HBPs in periodontitis. Of these HBPs; chemokines, such as 
CXCL12 was up regulated where as some of the matrixmetalloproteinases (MMPs; MMP-2 and MMP9) were up-regu-
lated while MMP-14 was down regulated.

Conclusions:  The results indicate that HBP analyses will provide multiple targets for the biological mechanisms 
underlying periodontal disease (such as MMPs, cytokines and chemokines) that will have important clinical implica-
tions in the future drug design and management of periodontal disease.
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Background
Periodontitis is a multifactorial disease instigated by the 
accumulation of certain pathogenic plaque bacteria that 
leads to the damage of the supporting tissues of teeth 
and can affect up to 45 % of UK dentate adults [1]. This 
is a disturbing development, as periodontitis may be a 
risk factor for severe systemic conditions such as arte-
riosclerosis, myocardial infarction and stroke; preterm, 
low birth weight babies and pose threats to those with 

chronic disease such as diabetes, respiratory diseases and 
osteoporosis [2]. Currently, periodontal therapy involves 
scaling or root planning, and in more severe cases anti-
microbial agents such as doxycycline, metronidazole, 
minocycline or combined antimicrobial chemotherapy. 
While drug treatment can result in control of pain and 
swelling, it is difficult to stop the associated structural 
destruction. Thus, attention has been channelled to find-
ing ways to inhibit the biological mechanisms that under-
lie the inflammation process.

To date, several proteins influencing periodontitis have 
been identified but how these proteins interact with each 
other in the progression of periodontitis is still not clear. 
Therefore identifying such interactions will be useful in 
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determining the target towards therapeutic development. 
From this angle, heparin-binding proteins (HBPs) which 
are extracellular regulatory proteins that mediate cell 
communication in development, homeostasis and disease 
[3–5] appear to be very important in the understanding 
of the progression of periodontitis. It has been reported 
that HBPs such as azurocidin could be a potential candi-
date for a biomarker for the early detection of inflamma-
tory periodontal destruction [6]. Many pathogens express 
proteins such as matrixmetalloproteinases (MMPs) that 
interact with heparin/heparan sulfate (HS), as part of 
their molecular adaptation to infection of mammals [7].

Fibroblasts secrete collagenase MMPs causing perio-
dontium degradation, whilst fibronectin, inhibits expres-
sion of interleukin-1 and modulates this pathogenic 
mechanism [8]. MMPs are endopeptidases that require 
metal ions as cofactors for activity and are critical in col-
lagenous cartilage matrix degradation [9]. MMPs are 
responsible for the destruction of collagen (MMP- 1 and 
8), stromolysins (MMP-3, 10 and 11) for that of proteo-
glycans [10]. Tissue inhibitors of MMPs, TIMPs coun-
teract the destructive effect of MMPs, and alterations 
of this balance causes pathological destruction of the 
periodontium [10]. These proteins are HBPs [4], which 
may explain in part the effects of heparin in periodonti-
tis, where it alters MMP/TIMP complexes circulating in 
blood, and increases release of TIMP-2 [11]. Heparin/HS, 
HBPs and MMPs are, thus, important in periodontitis. 
But detailed studies have not been conducted to analyse 
such interations in periodontitis. Therefore the aim of 
this study was to integrate and rationalise available data 
on HBPs with a view to identify drug targets that play 
important roles in periodontitis.

Methods
Construction of the heparin‑binding putative protein 
interactome in periodontitis and network analysis
HBPs associated with periodontitis were obtained using 
a combination of searches in PubMed using search terms 
such as ‘periodontal disease’, ‘periodontitis’, ‘periodontal 
disease microarray’, ‘periodontitis microarray’, ‘periodon-
titis and heparin’, periodontal disease and heparin’, ‘peri-
odontitis and ‘heparan sulphate’ and ‘periodontal disease 
and ‘heparan sulphate’. A PubMed search identified 249 
genes that were up regulated and 146 genes that were 
down regulated in periodontal disease, compared with 
periodontal disease-free gingival samples (supplementary 
information, [4]). Interactions between HBPs in perio-
dontitis were obtained using the online database resource 
‘Search Tool for the Retrieval of Interacting Genes’ 
(STRING), as described previously for analogous data-
sets of HBPs in normal pancreas and pancreatic disease 
[5]. STRING 9.1 is a database of known and predicted 

functional interactions and is a comprehensive resource 
that can be used with Cytoscape [12]. In STRING inter-
actions are given a confidence score that estimates the 
likelihood of the interaction describing a functional link-
age between the two proteins. Only interactions with the 
highest confidence score (0.900 and above) were used 
to build networks using Cytoscape 2.8.1, [13]. The con-
nectivity networks were called ‘putative protein interac-
tomes’, because the HBP lists were derived from mRNA 
expression data and the interactions between the HBPs 
were obtained from STRING. The network param-
eters were analysed using the ‘NetworkAnalyzer’ plugin 
[14] available in Cytoscape. The ‘Cluster ONE’ plugin 
in Cytoscape was used to identify densely connected, 
cohesive groups of HBPs within the putative HBP inter-
actome, with a view to identifying potential drug targets 
in periodontitis [15]. In the putative protein interactome 
graphs, the HBPs or ‘nodes’ are connected by black lines 
that denote the interactions or ‘edges’.

Functional analysis of HBPs
Tools for gene ontology (GO) term enrichment were 
used to undertake functional analyses of the HBPs in per-
iodontitis, as described previously [5]. GO covers biolog-
ical process (BP), cellular component (CC) and molecular 
function (MF) sub-ontologies. Enrichment of GO terms 
is a means to provide biological context to the datasets 
of HBPs. It was performed using the ‘Database for anno-
tation, visualization and integrated discovery’ (DAVID) 
and GO FAT annotation [16]. GO FAT is a subset of the 
GO term set created by filtering out the broadest ontol-
ogy terms to avoid overshadowing more specific ones.

Results and discussion
Construction of the heparin‑binding putative protein 
interactome in periodontitis and network analysis
HBPs play a major role in many fundamental biologi-
cal processes in health and disease [3, 4]. The potential 
of HBPs as therapeutic targets in periodontal disease is 
evident from the recent use of an HS-mimetic to facili-
tate regeneration of the periodontium in the presence of 
pathogenic periodontal bacteria [17]. Heparin has both 
direct and indirect effects on MMP/TIMP complexes cir-
culating in blood and thereby influences matrix remod-
elling. Due to its antibacterial and anti-MMP activity, 
gallium has recently been reported as a versatile thera-
peutic agent in the treatment of periodontitis [18]. In this 
study, a systems biology approach was used to investigate 
the role of HBPs in periodontal disease and to identify 
a drug target in the treatment of periodontitis such as 
MMPs.

The PubMed searches identified 249 genes that were 
up regulated and 146 genes that were down regulated in 
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periodontal disease, compared with periodontal disease-
free gingival samples. The HBPs among these are listed in 
Table 1. The list of HBPs was used to obtain interactions 
from STRING that was then imported into Cytoscape to 
build the heparin-binding putative protein interactome 
in periodontitis (Fig. 1). This interactome has a high clus-
tering coefficient of 0.479 and a low number of connected 

Table 1  HBPs differentially regulated in  periodontal dis-
ease

Protein name Protien abbrevia‑
tion

Up regulated HBPs

 ADAM metallopeptidase with thrombospondin 
type 1 motif, 1

ADAMTS1

 Arginase, liver ARG1

 Chemokine (C–C motif ) ligand 19 CCL19

 Complement factor H CFH

 Chemokine (C–X–C motif ) ligand 1 CXCL1

 Chemokine (C–X–C motif ) ligand 12 CXCL12

 Chemokine (C–X–C motif ) ligand 13 (B cell chem-
oattractant)

CXCL13

 Chemokine (C–X–C motif ) ligand 2 CXCL2

 Chemokine (C–X–C motif ) ligand 6 (granulocyte 
chemotactic protein 2)

CXCL6

 Fibronectin 1 FN1

 Heparin-binding EGF-like growth factor HBEGF

 Insulin-like growth factor 2 mRNA binding protein 
3

IGFBP6

 Interleukin 10 IL10

 Interleukin 12B (natural killer cell stimulatory factor 
2, cytotoxic lymphocyte maturation factor 2, 
p40)

IL12B

 Interleukin 6 (interferon, beta 2) IL6

 Interleukin 8 IL8

 Inhibin, beta A (activin A, activin AB alpha poly-
peptide)

INHBA

 Lactotransferrin LTF

 Matrix metallopeptidase 2 (gelatinase A, 72 kDa 
gelatinase, 72 kDa type IV collagenase)

MMP2

 Matrix metallopeptidase 9 (gelatinase B, 92 kDa 
gelatinase, 92 kDa type IV collagenase)

MMP9

 Plasminogen activator, urokinase PLAU

 Serpine peptidase inhibitor, clade E (nexin, plasmi-
nogen activator inhibitor type 1), member 1

SERPINE1

 Tenascin C (hexabrachion) TNC

 Tumour necrosis factor TNF

 Vascular endothelial growth factor VEGFA

Down regulated HBPs

 Amyloid P component, serum APCS

 Chemokine (C–C motif ) ligand 2 CCL2

 Chemokine (C–C motif ) ligand 3 CCL3

 Chemokine (C–C motif ) ligand 4 CCL4

 Chemokine (C–C motif ) ligand 5 CCL5

 CD36 molecule CD36

 Complement factor B CFB

 Connective tissue growth factor CTGF

 Chemokine (C–X–C motif ) ligand 10 CXCL10

 Fibroblast growth factor 2 (basic) FGF2

 Fibroblast growth factor receptor 3 FGFR3

 Fibronectin FN1

 Glycoprotein (transmembrane) GPNMB

Table 1  continued

Protein name Protien abbrevia‑
tion

 Interferon, gamma IFNG

 Insulin-like growth factor binding protein 2, 
36 kDa

IGFBP2

 Interleukin 2 IL2

 Interleukin 6 (interferon, beta 2) IL6

 Interleukin 8 IL8

 Matrix metallopeptidase 14 (membrane-inserted) MMP14

 Urokinase PLAU

 Thyroglobulin TG

 Thrombospondin 1 THBS1

 Tumour necrosis factor TNF

Analyses using published data sets show 25 up-regulated and 23 down-
regulated HBPs in periodontitis

Fig. 1  The heparin-binding putative protein interactome in peri-
odontitis. HBPs or ‘nodes’ are coloured orange and are connected by 
black lines that denote the interactions or ‘edges’
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components of 1 (‘NetworkAnalyzer’), both of which 
point to a high connectivity.

Our in silico analyses indicate that HBPs play impor-
tant roles in periodontitis. GO term enrichment analy-
ses using DAVID show that HBPs are pivotal in cytokine 
activity, chemokine activity, chemokine receptor bind-
ing, growth factor activity and endopeptidase activity 
(Table 1; Additional file 1: Table S1). The up regulation of 
IL-8 reaffirms the findings of the presence of IL-8 in gin-
gival crevicular fluid in periodontitis [19]. The cytokine 
IL-6 increases in expression amongst refractory perio-
dontitis patients [20] and plays a role in bone resorption, 
since it stimulates the differentiation of osteoclasts and 
inhibits bone formation [21]. Gallium has been shown 
to inhibit the production of inflammatory cytokines [22] 
and, therefore, may have potential beneficial effect on 
cytokine regulation in periodontitis.

Functional analysis of HBPs in periodontitis
In a functional analysis using DAVID, it was found that 
HBPs enrich a number of important biological processes 
such as ‘response to wounding’, ‘chemotaxis’, ‘inflamma-
tory response’ and molecular functions such as cytokine 
and chemokine activity (Additional file  1: Table S1). All 
of these clearly underlie periodontitis and highlight 
the likely importance of HBPs collectively in the dis-
ease. HBPs, by virtue of their extracellular location and 
key functions in cell communication are readily acces-
sible significant therapeutic targets [3–5]. Therefore, we 
sought to identify potential drug targets within the puta-
tive HBP interactome. For this, ‘Cluster ONE’ was used 
in Cytoscape, since it identifies HBPs which have an 
increased cohesiveness as a group, which is in keeping 
with the notion of using a systems biology approach to 
developing more holistic (in molecular terms) therapies.

It was reported that, during the development of peri-
odontal disease the Lipopolysaccharides (LPS) derived 
from bacterial membrane have the capacity to activate 
host epithelial cells to express and release pro-inflam-
matory cytokines such as IL‐1, IL‐8, tumour necrosis 
factor (TNF‐α), prostaglandins and proteases [23]. The 
synthesis and expression of these mediators occur in a 
transitory and strictly controlled way under intracellular 
signalling pathways, which contribute to the intricacies 
of the inflammatory network established during the dis-
ease progression. Major signalling pathways in periodon-
titis comprise of the mitogen activated protein kinase 
(MAPK), nuclear factor kappa B (NF-κB) and janus 
tyrosine kinase-signal transducer and activator of the 
transcription (JAK/STAT) pathways [24]. Of these path-
ways; MAPK pathway is activated by mitogens, growth 
factors, stress inducers and pro-inflammatory cytokines. 
The results showed that the potential MAPK pathway 

activating HBPs were both up regulated (ADAMTS1, 
CXCL12, FN1, HBEGF, IL6, IL8, IL10, IL12B, MMP2, 
MMP9, PLAU, TNF, VFGFA,) and down regulated 
(CCL2, FGF2, FGFR3, FN1, IL2, IL6, IL8, MMP14 and 
TNF) indicating the role of HBPs (Table  1) in disease 
progression and homeostasis. Activation of the NF-κB 
pathway occurs in the presence of many pro-inflamma-
tory mediators present in large quantities in tissues with 
periodontal disease such as bacterial LPS, TNF-α, IL-1, 
MMPs, COX2 and inducible nitric oxide synthase (iNOS) 
[25]. In our analyses HBPs such as TNF and MMPs were 
both up regulated and down regulated indicating its role 
in NF-κB pathway. It was reported that the JAK-STAT 
pathway is the signalling target of many cytokines which 
are thought to have biologically significant roles in perio-
dontal disease (IFN-γ, TNF-α, IL-1 IL-4, IL-6, and IL-10) 
[26]. In our analyses, HBPs such as IFN-γ was down 
regulated suggesting that it was not involved in the acti-
vation of the JAK-STAT pathway. However, TNF-α and 
IL-6 was both down regulated and up regulated which 
indicate that the results cannot categorically establish any 
single target or pathways for the disease progression. It is 
more likely that complex interplay of different pathways 
take place during the disease process and pathways might 
be switched on and off in order to achieve homeostasis.

It was also reported when IL-6 is not present, other 
cytokines such as IL-1 and TNF-α induce bone resorp-
tion [27]. Both IL-6 and TNF-α were present in the top 
cluster within the putative HBP interactome in this study 
(Fig.  2). Further studies about the relationship between 

Fig. 2  Top cluster within the putative HBP interactome. MMPs are 
important constituents of the top cluster of HBPs, using the ‘Cluster 
ONE’ plugin with Cytoscape
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periodontal disease development and the cytokine net-
work in the HBP interactome must be performed to 
establish the exact role of each cytokine in the inflam-
matory process. Chemokines, such as CXCL12, controls 
protection against periodontal disease associated bac-
teria, such as P. gingivalis, in normal gingival tissue and 
remodelling periodontal tissues to induce the production 
of VEGF [28]. The presence of both CXCL12 and VEGF 
in the top cluster within the putative HBP interactome 
(Fig.  2) thus suggests the important role it may have in 
periodontal disease homeostasis and indicate as potential 
drug targets. It is clear from the analyses that the major 
signalling pathways in periodontitis are common to vari-
ous inflammatory mediators and hence their blockade 
may be more effective than targeting specific cytokines. 
However, while designing drug targets, the fact that these 
pathways are important in several other physiological 
processes and therefore their inhibition can also result in 
undesirable side effects should also be taken into account.

The analyses also identified MMP-2, MMP-9 and 
MMP-14 as being constituents within the top cluster of 
the putative HBP interactome (Fig. 2), a result consistent 
with the known roles of MMPs in matrix reorganisation 
and periodontium degradation. However, the membrane 
bound proteinase, MMP-14, found to be down-regulated 
in gingival tissues from periodontitis sites. Hence its role 
in tissue homeostasis during periodontitis still remains 
ambiguous. While designing targeted drug for periodon-
titis treatment it is important to take account of the fact 
that the mRNA expression data was used to predict the 
HBP interactome in this study. It is known that some 
genes could display no change in the protein expression 
even though changes were observed during predicted 
gene-interaction network. HBPs such as azurocidin 
which have been indicated to possess an inhibitory role 
in osteoclast differentiation (and thus a protective role in 
alveolar bone loss during the early stages of periodontitis 
[6]) were not identified in our searches.

The network analysis indicates that MMPs are impor-
tant players in the putative HBP interactome and is an 
important constituent of the top cluster within the puta-
tive HBP interactome (Fig.  2). Fibroblasts secrete col-
lagenase matrixmetalloproteinases (MMPs) causing 
periodontium degradation and the most common type 
of MMPs related to tissue destruction belongs to col-
lagenases family (largely MMP-8 and MMP-13) with 
major contribution from MMP-9 and MMP-14 [29, 30]. 
However, in the present study it was found that MMP-14 
was down-regulated in gingival tissues from periodon-
titis sites and therefore suggests that the use of broad 
spectrum anti-MMP agents should be carefully formu-
lated to target specific HBPs associated with periodon-
titis. Several therapeutics has been reported to block 

MMPs function [31]. These includes Hydroxamate-based 
MMPIs (e.g. Batimastat, Marimastat and Prinomastat), 
Non-Hydroxamate-based MMPIs (e.g. Rebimastat, Tano-
mastat and Doxycycline) [31]. However, clinical successes 
were limited due to severe toxicities and prolonged treat-
ment contributing to inflammation. Furthermore some 
of this therapeutics possesses cancer promoting activities 
[e.g. Batimastat promote liver metastasis, 32] and raises 
the concern whether designing drugs against MMPs will 
be beneficial. Although it was reported that MMP-1, 
-2, -3, -7, -8 and -9 are associated with severity of peri-
odontitis [33], in silico analysis in this study only revealed 
MMP-2 and -9 as a major target for regulating periodon-
titis. Therefore, further work on elucidating the role of 
each MMPs in tissue homeostasis should be addressed 
prior to devising a new anti-MMP strategy. Recently, 
developing antibody based therapies to block MMPs 
has shown that the antibody approach was success-
ful in blocking MMP14 function [31] but contradicted 
results obtained in this study indicating further analyses 
is required to establish its potential application in regu-
lating periodontitis. In addition, further work should be 
considered as a means of activating genes down regulated 
in the periodontitis, such as MMP14 found in this study 
that may hinder the pathogenesis and thus can also form 
a potential drug target.

Conclusions
In conclusion, this study attempted to integrate and 
rationalise available data on HBPs to identify drug targets 
that may play important roles in periodontitis. In silico 
analysis demonstrates that HBPs may have a role in peri-
odontal disease and can be used for identifying poten-
tial drug targets that include chemokines, CXCL12, and 
proteases, MMP-2 and -9, for regulating periodontitis. 
The complex interactions HBPs displayed in the analyses 
suggest the importance of a multi-targeted approach in 
periodontitis treatment. From this standpoint, antibac-
terial and anti-MMP action of materials containing ‘gal-
lium’, which are also reported to inhibit the production of 
inflammatory cytokines, are promising candidates for its 
potential application in periodontitis treatment.

Availability of supporting data section
All the supporting data are included as additional files. 
Online database resources used in this study:

STRING v9.1. doi: 10.1093/nar/gks1094.http://string.
embl.de/

Cytoscape 2.8. doi: 10.1093/bioinformatics/btq675. 
http://www.cytoscape.org/download_old_versions.html

DAVID bioinformatics resources. doi: 10.1038/
nprot.2008.211. https://david.ncifcrf.gov/content.
jsp?file=release.html.
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