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Abstract: Shearers play an important role in fully mechanized coal mining face and accurately
identifying their cutting pattern is very helpful for improving the automation level of shearers and
ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been
proven to offer strong potential in prediction and classification issues, particularly by employing
an appropriate meta-heuristic algorithm to determine the values of its two parameters. However,
these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the
global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to
optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM)
was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting
patterns were collected and the special state features were extracted based on the ensemble empirical
mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model
were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and
FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was
feasible, efficient and outperformed the others. Finally, an industrial application example at the coal
mining face was demonstrated to specify the effect of the proposed system.

Keywords: shearer cutting pattern identification; least squares support vector machine; fruit fly
optimization algorithm; ensemble empirical mode decomposition; feature extraction

1. Introduction

In a fully mechanized coal mining face, as the most important coal mining equipment, a shearer
uses a drum to cut the coal. Due to the poor working conditions of coal mining, shearer operators
does not have an accurate way to determine whether the shearer drum is cutting coal, rock, or coal
with gangue depending only on simple visualization. This can lead to some poor coal quality and
low mining efficiency problems. Moreover, in collieries many accidents are occurring with increasing
frequently. The main reason of the problems is that the automation level of coal mining equipment
is too low. With the development the suitable automation techniques, the automatic control of
shearers has attracted more and more attention and accurate monitoring of shearer working status has
played an indispensable important role for the automatic control of shearers. Therefore, researching
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the identification approach for shearer cutting patterns has become a challenging and significant
subject [1].

Traditional identification techniques for shearer cutting patterns are mostly based on coal-rock
recognition. The most influential methods are γ-ray detection [2], radar detection [3], infrared
detection [4], and image detection [5], etc. However, these methods cannot satisfy the needs of practical
applications and possess lower recognition rates because of the harsh conditions in practical production
operation. In this context, this paper refers to the fault diagnosis and pattern recognition methods for
traditional equipment and focuses on the identification method for shearer cutting patterns. Sensors
are extensively used in pattern recognition and a diagnosis system to tackle the problem of perception
by providing information about the machine. Using vibrations to collect the state information has
become an effective method. In this regard, vibration-based analysis is becoming the most commonly
used method and also proved to be efficient in various real applications. For a shearer, the rocker
arm is the critical component and the vibrations of the rocker arm can comprehensively reflect the
cutting conditions of the shearer, which can be diagnosed correctly by appropriate measurement and
processing of sensor signals.

In general, existing pattern recognition methods can be classified into two categories: model-based
methods and data-driven methods. The model-based pattern recognition aims to determine a pattern
using the system’s analytical/mathematical model(s). However, the analytical/mathematical model
associated a specific pattern is difficult to construct accurately, which leads to the ineffectiveness of
model-based methods. In recent years, with the development of intelligent computing technology,
data-driven methods have received much attention. In these methods, the pattern diagnosis can
be realized by mapping the pattern space to the feature space through some modern intelligent
algorithms [6], such as expert systems [7,8], neural networks [9,10], fuzzy logic [11], rough sets [12],
and their hybrid methods [13,14]. Although the neural network and other conventional artificial
intelligent techniques have been widely used in fault diagnosis and pattern recognition, they require
sufficient samples and have limitations in generalization of results in models that can over-fit the
samples because of the empirical risk minimization principle. Support vector machine (SVM) is a
machine learning algorithm advocating structural risk minimization principle and has been widely
used in classification and regression prediction because of its desirable generalization performance.
The least squares support vector machine (LSSVM) is a reformulation of SVM which leads to solving a
linear Karush-Kuhn-Tucker (KKT) system. The LSSVM can deal with non-linear systems and perform
with high precision, making it a powerful tool for modeling and forecasting non-linear systems [15–17].
The performance of a LSSVM model largely depends on the values of its two parameters, one of
which (denoted regularization parameter “C”) controls the tradeoff between margin maximization
and error minimization. Another is called the kernel parameter and can implicitly define the nonlinear
mapping from input space to high-dimensional feature space. Therefore, it is an indispensable step
to optimize the parameters of LSSVM for a good performance in handling a learning task. Currently,
several meta-heuristic algorithms have been employed to determine the appropriate values of these
two parameters, such as particle swarm optimization [18,19], genetic algorithm [20,21], ant colony
algorithm [22], and immune algorithm [23]. However, these optimization algorithms have the common
drawbacks of being hard to understand and reaching the global optimal solution slowly.

The fruit fly optimization algorithm (FOA) proposed by Pan [24] is a novel evolutionary
computation and optimization technique. This new optimization algorithm has the advantages
of being easy to understand and to be written into program code which is not too long compared with
other algorithms. More recently, FOAs have been applied in a variety of fields, such as power load
forecasting [25], neural network parameter optimization [26], PID controller parameter tuning [27],
design and optimization of key control characteristics [28], and so on. However, it often suffers the
problem of being trapped into a local optimum which leads to premature convergence. In this research,
an improved fruit fly optimization algorithm (IFOA) is proposed to optimize the two parameters of
the LSSVM model, named the IFOA-LSSVM model, which uses a fruit fly optimization algorithm
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with two improvements to efficiently control the global search of LSSVM model in shearer cutting
pattern identification.

The remaining parts of the paper are organized as follows: Section 2 summarizes some related
works about the state of the art approaches to the problem. Section 3 introduces the basic theory of the
original LSSVM and FOA methods, and presents the proposed IFOA-LSSVM model in detail. Section 4
describes the identification system of shearer cutting patterns based on the proposed method. Section 5
provides some examples and comparisons of IFOA-LSSVM with other methods. Section 6 presents the
application results of the proposed method on a coal mining face. Section 7 gives the conclusions of
our paper and proposes some future work.

2. Related Works on Identification of Shearer Cutting Patterns

In the past decades, many researchers have focused on coal-rock identification to roughly estimate
the cutting state of shearers and many kinds of coal-rock recognition methods have been successively
proposed. In [2], gamma-ray backscatter sensing was used to measure the boundary coal thickness.
In [3], a radar coal thickness sensor was developed to identify the coal-rock interface and measure the
thickness of a coal seam. In [5], a coal-rock interface identification method was provided based on the
processing of visible light and infrared images. In [29], the recognition of a coal-rock interface in the
top caving was investigated via the vibration signals of the tail beam of the hydraulic support. In [30],
the color, grey scale, grain, shape and other image features of visible light images and infrared images
were integrated and used to identify the coal-rock interface. In [31], the wavelet packet were utilized
to extract the features of the torsional vibration signal of a drum shaft and the extracted features
were integrated to recognize the coal-rock interface through fuzzy neural network technology. In [32],
acoustic detection was applied in the identification of the coal-rock interface according to the sonic
wave reflection and refraction at the water-coal interface and coal-rock interface. In [33], Sahoo et al.
carried out some experiments about the application of a opto-tactile sensor for recognizing rock
surfaces. In [34], the radar technology was used to identify the coal-rock interface and obtain the
cutting patterns of a shearer.

Although many coal-rock recognition methods have been developed, they have some common
disadvantages. Firstly, the coal-rock detectors in the above references are complex and require too
harsh coal seam geological conditions, which cannot satisfy extensive applications during practical
production. Furthermore, the recognition rate is sensitively influenced by the conditions of gangue
included in the coal seam. Therefore, this paper utilizes the data-driven theory and proposes an
intelligent identification method for shearer cutting patterns based on the integration of least squares
support vector machine and an improved fruit fly optimization algorithm.

3. Least Squares Support Vector Machine with Improved Fruit Fly Optimization Algorithm

3.1. Least Squares Support Vector Machine

The support vector machine, a reliable tool for solving pattern recognition and classification
problems, was initially presented by Vapnik and his coworkers in 1995 based on statistical learning
theory and the structural risk minimization principle [35]. The least squares support vector machine
(LSSVM) is an extension of SVM which applies the linear least squares criteria to the loss function
instead of inequality constraints [36].

In a set of samples txi, yiu
m
i“1, xi P Rn is the input data and yi P Rn is the corresponding output

value for sample i. The formulation of the primal problem for the LSSVM can be given as follows:

min J
w,b,ξ

pw, ξq “
1
2

wTw`
1
2

C
m
ÿ

i“1

ξ2
i (1)
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subject to the equality constraint:

yi “ wT ϕpxiq ` b` ξi, i “ 1, 2, ¨ ¨ ¨ , m (2)

where J is objective function; 1/2wTw is used as a flatness measurement function; C is the regularization
parameter, which determines the tradeoff between the training error and the model flatness; ξ i is the
slack variable; the nonlinear mapping ϕ maps the input data into a high dimensional feature space,
where a linear regression problem is obtained and solved; b is the bias, and w is a weight vector of the
same dimension as the feature space.

The Lagrangian function L can be constructed by:

L pw, b, ξ, αq “
1
2

wTw`
1
2

C
m
ÿ

i“1

ξ2
i ´

m
ÿ

i“1

αi

”

wT ϕpxiq ` b` ξi ´ yi

ı

(3)

where αi is Lagrange multiplier. The Karush-Kuhn-Tucker (KKT) conditions for optimality are given by:
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(4)

Based on Equation (3), one can formulate a linear system Ax = B in order to represent this
problem as:

«

0 IT

I K` C´1 I

ff«

b
A

ff

“

«

0
Y

ff

(5)

where I = [1, 1, . . . , 1]T, A = [α1, α2, . . . , αm]T, Y = [y1, y2, . . . , ym]T. According to the Mercer’s
condition, the Kernel function can be set as:

Kpxi, xjq “ ϕpxiq
T
¨ ϕpxjq (6)

Then, the regression function of LSSVM model can be described as follows:

f pxq “
m
ÿ

i“1

αiKpx, xiq ` b (7)

For a classification problem, yi P {´1, 1} indicates the corresponding desired output vector and
the classification decision function is described as follows:

f pxq “ sgn
´

wT ϕpxq ` b
¯

(8)

Equation (1) for classification problem should meet the following equality constraint:

yi

”

wT ϕpxiq ` b
ı

“ 1´ ξi, i “ 1, 2, ¨ ¨ ¨ , m (9)

The corresponding optimization problem of LS-SVM model with Lagrange function is described
as follows:

L pw, b, ξ, αq “
1
2

wTw`
1
2

C
m
ÿ

i“1

ξ2
i ´

m
ÿ

i“1

αi

!

yi

”

wT ϕpxiq ` b
ı

´ 1` ξi

)

(10)
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Using the same processing method, the classification decision function is described as follows:

f pxq “ sgn

˜

m
ÿ

i“1

αiyiKpx, xiq ` b

¸

(11)

There are several different types of Mercer kernel function K(x, xi) such as sigmoid, polynomial
and radial basis function (RBF). The RBF is a common option for the kernel function because of fewer
parameters that need to be set and an excellent overall performance [37]. Therefore, this paper selected
the RBF as the kernel function:

Kpx, xiq “ expp´
1

2δ2 ||x´ xi||2
q (12)

Consequently, there are two parameters that need to be chosen in the LSSVM model, which are
the bandwidth of the Gaussian RBF kernel “δ” and the regularization parameter “C”. Many researches
have shown that the LSSVM parameters have great influence on its learning and generalization ability.
This paper presents an improved fruit fly optimization algorithm to determine the optimal values of
these two parameters, so that LSSVM could perform the best generalization ability.

3.2. The Basic FOA and Analysis

The fruit fly optimization algorithm (FOA) is a new swarm intelligence algorithm, which was
proposed by Pan [30], and it is a kind of interactive evolutionary computation method. The basic
thought of FOA is that fruit fly finds the food through the food finding behavior. During finding
food, a fruit fly initially smells a particular odor by using its osphresis organs, sends and receives
information from its neighbors and compares the current best location and fitness. Flies identify the
fitness values by taste and fly toward the location with better fitness. They use their sensitive vision to
seek food and fly toward that direction further. Figure 1 shows the food finding iterative process of a
fruit fly swarm.
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According to the food finding characteristics of fruit fly swarm, the FOA can be divided into
several steps, as follows:

Step 1: Parameters initialization. The swarm location range (LR), maximum iteration number
(Maxgen), and population size (sizepop) are initialized. The initial fruit fly swarm location (X_axis,
Y_axis) and the random flight distance range FR should be initialized first:

X_axis “ randpLRq
Y_axis “ randpLRq

(13)

Step 2: Population initialization. The random direction and distance for food searching of any
individual fruit fly can be given as follows:

Xi “ X_axis` randpFRq
Yi “ Y_axis` randpFRq

(14)

Step 3: Population evaluation. Firstly, the distance of food source to the initialization location (Disti)
is calculated by using the following equation:

Disti “

b

X2
i `Y2

i (15)

Secondly, the smell concentration judgment value (Si) need to be calculated, and the value of Si is
the reciprocal of the distance Disti:

Si “
1

Disti
(16)

Then, the smell concentration (Smelli) of the individual fruit fly location is calculated by inputting
the smell concentration judgment value (Si) into the Smelli judgment function (also called the fitness
function). Finally, the fruit fly with minimum smell concentration (the minimal value of Smelli) among
the swarm is determined and found out:

Smelli “ FunctionpSiq

rbestSmell bestIndexs “ minpSmellq
(17)

Step 4: Vision searching process. The minimal concentration value and X, Y coordinate are
maintained. The fruit fly swarm flies toward the location with the minimal smell concentration
value by using vision:

Smellbest “ bestSmell
X_axis “ XpbestIndexq
Y_axis “ YpbestIndexq

(18)

Step 5: The iterative optimization is entered to repeat the implementation of Steps (2)–(4). When the smell
concentration reaches the preset precision value or the iterative number reaches the maximal Maxgen,
the circulation stops. Through the analysis of Equations (14)–(15), it can be found that FOA has some
disadvantages which limit its searching performance. The disadvantages are summarized below.

(1) It is clear that the value Si is non-negative and this smell concentration judgment value is then
substituted into the smell concentration judgment function to find the smell concentration of
the individual location of the fruit fly. That is to say that the variable of the fitness function is in
the zone of (0, +8), which will prevent the application of FOA in some problems with negative
numbers in the domain.

(2) FOA depends only on the current generation optimal solution and when the optimal individual
is found, all fruit flies will fly towards this individual. Then the fruit flies are updated according
to Equation (10). This operation will greatly reduce the diversity and exploration ability of fly
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swarm. Furthermore, the current generation optimal solution may not the global optimum and
inapposite FR will make the FOA get into the local optimal solution.

3.3. The Improved Strategies for FOA

Based on the aforementioned analysis, the original FOA has demanding application conditions
and can possibly get into a local extreme. Thus, two improvements for the original FOA are proposed
in this subsection.

(1) In Step (3), in order to ensure the variable of the fitness function is in the zone of (´8, +8), the
smell concentration judgment value (Si) can be calculated by the following equation:

Si “
signr2ˆ randp q ´ 1s

Disti
(19)

(2) In order to improve the diversity and exploration ability of fly swarm and increase the ability to
break away from the local optimum, this paper proposes an improved strategy for FOA through
expanding search in the initial phase and narrowing search in the later phase. Let the fruit fly
population be updated by the following equation:

Xi “ X_axis` randpFRq ˆ β

gen
η

Yi “ Y_axis` randpFRq ˆ β

gen
η

(20)

where β is defined as the adjustment factor; η is used to control the flight distance range FR and
can be determined according to the practical problem; gen is the current number of iterations.
In the first phase, the random flight distance range should increase to realize the diversity of
population. The adjustment factor β should be larger than 1, marked as β1 and the number of
iterations in this phase t1 is equal to gen. Thus, the fruit fly population can be updated as follows:

Xi “ X_axis` rpb´ aq ˆ randp q ` as ˆ β

t1

η
1

Yi “ Y_axis` rpb´ aq ˆ randp q ` as ˆ β

t1

η
1

(21)

where [a, b] denotes the flight distance range of fruit fly. In the second phase, the random flight
distance range should increase to enhance the convergence accuracy and convergence speed. The
adjustment factor β should be smaller than 1, marked as β2 and the number of iterations in this
phase t2 is equal to gen ´ t1. Thus, the fruit fly population can be updated as follows:

Xi “ X_axis` rpb´ aq ˆ randp q ` as ˆ β

t2

η
2

Yi “ Y_axis` rpb´ aq ˆ randp q ` as ˆ β

t2

η
2

(22)

The complete flowchart of improved FOA is shown in Figure 2.
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3.4. Improved Fruit Fly Optimization Algorithm for Parameters Selection of LSSVM Model

Selecting appropriate bandwidth “δ” and regularization parameter “C” of LSSVM is extremely
important for the classification performance of LSSVM. In this paper, the proposed IFOA is used to
choose the appropriate parameter values of the LSSVM model, named IFOA-LSSVM model. The
details of IFOA for parameters determination of the LSSVM model are as follows:

Step 1: Initialization parameters. The maximum iteration number Maxgen, the population size
sizepop, the initial fruit fly swarm location (X_axis, Y_axis), and the flight distance range FR should
be determined at first. In the LSSVM model, two parameters need to be determined and we can set
X_axis = rands(1, 2), Y_axis = rands(1, 2), where rands( ) denotes the random number generation
function. Set gen = 0.

Step 2: Evolution starting. In the IFOA-LSSVM program, we employ two variables [X(i, :), Y(i, :)] to
represent the flight distance for food finding of an individual fruit fly i. If gen ďMaxgen/2, the flight
direction of fruit fly i should be updated by Equation (21). If gen > Maxgen/2, the flight direction of
fruit fly i should be updated by Equation (22).

Step 3: Calculation. In the IFOA-LSSVM program, D(i,1) and D(i,2) are used to represent the
distance Disti of the fruit fly i to the origin, which can be calculated as follows:

Dpi, 1q “
b

Xpi, 1q2 `Ypi, 1q2, Dpi, 2q “
b

Xpi, 2q2 `Ypi, 2q2 (23)

Similarly, we can use S(i, 1) and S(i, 2) to describe the smell concentration judgment value Si and
it can be calculated as follows:

Spi, 1q “
signr2ˆ randp q ´ 1s

Dpi, 1q
, Spi, 2q “

signr2ˆ randp q ´ 1s
Dpi, 2q

(24)

In the proposed model, the parameters (C, δ) of LSSVM are represented by S(i, 1) and S(i, 2), and
can be set as C = 20ˆ |S(i, 1)|, δ = |S(i, 2)|, respectively. Then, the smell concentration Smelli (also
called the fitness value of fruit fly i) should be calculated. We adopt two fitness functions to represent
the regression prediction performance and classification ability of IFOA-LSSVM model. One is the
root-mean-square error (RMSE) between the outputs of LSSVM and actual values and another is the
classification error rate (CER).

Step 4: Updating. The fruit flies are operated according to Equations (19) and (20), and then the
swarm is updated through Equations (21) and (22). The smell concentration values are calculated
again. Set gen = gen +1.

Step 5: Iteration termination. When gen reaches the max iterative number, the termination criterion
satisfies, and the optimal parameters (C*, δ*) of LSSVM model can be obtained. Otherwise, go back to
Step 2.

4. The Identification System for Shearer Cutting Pattern Based on Proposed Method

The intelligent identification for shearer cutting pattern based on proposed method is essentially a
pattern recognition system, shown in Figure 3. It mainly consists of data acquisition, feature extraction
and pattern recognition and prediction, which is explained as follows.
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4.1. Data Acquisition

The cutting pattern diagnosis of shearers starts with data acquisition to collect the machinery
working information. Vibration signal acquisition is the most commonly used method which is realized
by sensors. In this study, the data were acquired through four sensors installed in a self-designed
experimental system for a shearer cutting coal, as shown in Figure 4. In the experiment, the coal seam
was mainly divided into four parts, including two kinds of coal seams with different hardness and the
coal seam with some strata of gangue. All cutting patterns of the shearer (including the shearer with
unloaded condition) are represented in Figure 5.
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In Figure 4, the signs “S1, S2, S3 and S4” refer to four accelerometers located on the rocker arm.
A multifunctional high-speed collector performed the data acquisition and the data were collected
into a notebook computer through the USB interface. The sampling frequency was set as 12 kHz and
the sampling time of each sample was 0.5 s. Vibration signals of sensor S1 with different patterns are
plotted in Figure 6. Finally, 400 groups of samples were obtained with 80 groups of samples for each
cutting pattern.
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4.2. Feature Extraction

The signal feature extraction is a critical initial step in any pattern recognition and fault diagnosis
system. The extraction accuracy has a great influence on the final identification results, so there have
been a lot of signal processing approaches to obtain desirable features for machinery pattern diagnosis,
among which the Fast Fourier Transform (FFT) and Wavelet Transform (WT) are widely used and
well-established. When a fault occurs, new frequency components may appear and a change of the
convergence of the frequency spectrum may take place. However, for weak signals the features are
submerged in the strong background noise and it is difficult to extract effective features by traditional
feature extraction methods. Fortunately, the ensemble empirical mode decomposition (EEMD) has
been proposed in [38]. The EEMD method adds a certain amount of Gaussian white noise in the
original signal before decomposing it, so as to solve the problem of frequency aliasing. This method is
very appropriate for non-stationary and non-linear signals [39,40]. The steps of EEMD can be briefly
summarized as follows:

(1) Determine the number of ensemble M and initialize the amplitude of the added white noise, and
set m = 1.

(2) Add a white noise series with the given amplitude to the original signal.

xmptq “ xptq ` amptq (25)

where am(t) denotes the mth added white noise series and xm(t) denotes the investigated signal
added white noise (noise-added signal) of the mth trial.

(3) By the use of EMD method [41], the noise-added signal xm(t) is decomposed into N intrinsic
mode functions (IMFs), which can be marked as bnm(t)(n=1,2, . . . ,N) and bnm(t) represents the
nth IMF of the mth trial.

(4) If m < M then let m = m + 1. Repeat Steps (2) and (3) again with different white noise series each
time until m = M.

(5) Calculate the ensemble mean bn(t) of the M trials for each IMF. Then output the mean ci(t) (i = 1,2,
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According to the above steps, a measured signal is decomposed and the decomposition results are
given in Figure 7. It shows 11 IMFs in different frequency bands decomposed by the EEMD algorithm.
It can be seen from the figure that the original signal is very complicated and the decomposed IMFs
are hard to use for state diagnosis. Hence, features of the signals need to be extracted. In addition, the
correlation coefficients between the last three IMFs (IMF9, IMF10 and IMF11) and the original signal
are too low. Therefore, the kernel function value and energy of the first eight IMFs were extracted and
used as features for pattern identification [42].
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The kernel feature is employed by a kernel function. Firstly, the signal collected by the ith sensor
is defined as a sequence xi “ txi1, xi2, ¨ ¨ ¨ , xilu, where i = 1, 2, . . . , S and S is the number of sensors, l
is the number of sampling points. Then the sequence is decomposed by EEMD to get N IMFs: {c1,c2,
. . . ,cN}, where ck = {ck1,ck2, . . . ,ckl}, k = 1,2, . . . ,N.

The 2-norm of the kth IMF can be calculated as follows:

normk “ ||ck||2 “

c

ÿ j“l
j“1c2

kj (27)

Then, a vector can be constructed from N IMFs:

NORM “ tnorm1, norm2, ¨ ¨ ¨ , normNu (28)

A Gaussian kernel function is described as K pu, vq “ exp
`

´||u´ v||{2σ2˘. If v is defined as
a vector {0}1ˆN, the kernel feature value of the signal from the ith sensor can be calculated as kfi =
K(NORM, v). Finally, a kernel feature sample KF can be obtained by calculating S sensors’ signal data:

KF “ tk f1, k f2, ¨ ¨ ¨ , k fSu
T (29)

We assume that ei is the energy of the ith IMF, which can be calculated as follows:

ei “

ż `8

´8

|ci|
2 dt, i “ 1, 2, ¨ ¨ ¨ , N (30)
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The maximum energy of the IMFs is used to generate the energy sample EF, shown as follows:

EF “ temax1, emax2, ¨ ¨ ¨ , emaxSu (31)

In this experiment, the parameter of the Gaussian kernel function σ was set as 5. A feature sample
could be constructed by the KF, EF or the combination of KF and EF. The performance of the proposed
model based on different features was investigated and analyzed in Section 5.

4.3. Pattern Recognition and Prediction

In the shearer cutting pattern identification system, support vector machine, especially the least
squares support vector machine, is widely used as a pattern recognition and prediction approach to
diagnose which kind of working pattern the machinery is in. The proposed fruit fly optimization
algorithm is adopted to determine the optimal parameters in a least squares support vector machine.

5. Example Computation and Comparison Analysis

In this example, all samples were collected from the self-designed experimental system shown
in Figure 4. Four hundred groups of samples were obtained with 80 groups of samples for each
cutting pattern. The corresponding cutting patterns could be quantized as 1, 2, 3, 4 and 5. Seventy
five percent of the samples were used as the training samples to optimize the parameters of LSSVM
and the remaining samples were used for testing the generalization ability of the proposed model.
The parameters were provided as follows: Maxgen = 100, sizepop = 20, (X_axis,Y_axis) Ă [´1, 1],
FR = [´10, 10] (thus a = ´10, b = 10), β1 = 1.1, β2 = 0.9. The parameter η has great influence on the
quality of solution and searching speed. For different η, the changes of training root-mean-square error
(RMSE) and iteration numbers to obtain the RMSE are shown in Figure 8. Seen from this figure, the
proposed method has better training RMSE and iteration numbers when the parameter η is equal to
1.4, so the value of parameter η is set as 1.4 in this experiment.
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In order to measure the prediction performance of an IFOA-LSSVM model, the classification error
rate (CER) and the difference between the output of the model and the desired output were considered
as the evaluation indexes and represented in separate ways. In this paper, the following measures were
employed for model evaluation: the RMSE, the mean absolute error (MAE), the mean relative error
(MRE), and Theil’s inequality coefficient (TIC). The CER represented the categorization performance of
IFOA-LSSVM. The RMSE, MAE and MRE confirmed the prediction accuracy of the proposed model.
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The TIC indicated the level of agreement between the proposed mode land the studied process. These
indicators were defined as follows:

CER “
number of wrongly identifed samples

n
(32)

RMSE “

d
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where n is the number of samples; yi denotes the actual value of the ith sample; ŷi denotes the LSSVM
output of the ith sample.

As described in the feature extraction subsection, our feature construction included two types
of features: kernel feature (KF) and energy feature (EF). Here we constructed three models based on
KF, EF, the combination of KF and EF (KF + EF), respectively. In order to reduce the random error, the
models were trained and tested for about 50 times based on different features and the average values
were computed to compare. Finally, the performance of IFOA-LSSVM model trained and tested with
various features was shown in Table 1.

Table 1. The performance of IFOA-LSSVM on the testing set with different combinations of features.

Training
Features CER RMSE MAE MRE (%) TIC

KF 0.1782 0.3291 0.1754 7.79 0.0669
EF 0.2193 0.4262 0.2014 9.83 0.0939

KF + EF 0.03015 0.0611 0.0524 2.66 0.0089

According to the results in Table 1, the performance of proposed model trained with the
combination of KF and EF showed obvious improvement as compared to the individual feature.
This demonstrated that both of the two types of features contributed to identifying the cutting patterns
of shearer. Henceforth, the combination of KF and EF was selected as the feature samples to learn the
proposed model.

In order to investigate the performance of proposed IFOA-LSSVM model, four other models:
FOA-LSSVM, PSO-LSSVM (LSSVM optimized by particle swarm optimization algorithm), GA-LSSVM
(LSSVM optimized by genetic algorithm), and single LSSVM were employed for comparison. The
parameters of PSO were set as: population size = 20, maximum iteration number = 100, acceleration
factors C1 = 1.5 and C1 = 1.7. The parameters of GA were set as: population size = 20, maximum
iteration number = 100, crossover probability = 0.5, mutation probability = 0.1. The configurations
of experimental environment for these methods were uniform. The models were trained and tested
about 50 times and the average values were computed to compare. The comparison results of different
models on the testing samples are listed in Table 2.
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Table 2. Comparison of LSSVM, PSO-LSSVM, GA-LSSVM, FOA-LSSVM and IFOA-LSSVM models.

Model
Optimal Parameters

CER RMSE MAE MRE (%) TIC
C* δ*

LSSVM 10 2 0.1096 0.2609 0.1401 6.17 0.0544
PSO-LSSVM 32.5671 3.8547 0.08108 0.1304 0.0815 4.11 0.0238
GA-LSSVM 15.1136 1.2256 0.06915 0.1107 0.0831 3.71 0.0289
FOA-LSSVM 19.3742 0.2827 0.05011 0.0694 0.0645 2.88 0.0112
IFOA-LSSVM 28.3846 0.0513 0.03015 0.0611 0.0524 2.66 0.0089

In Table 2, the optimal parameters (C* and δ*) of the five models denote the parameters with
the smallest CER of different models among the 50 testing results. According to the results of IFOA
tuning the parameters of the LSSVM model, the optimal values of C and δ were selected as 28.3846 and
0.0513, respectively. In the FOA-LSSVM model, the optimal values of C and δ were 19.3742 and 0.2827.
According to the results of GA and PSO optimizing the parameters of LSSVM model, the values of C
and δ were optimized as 15.1136 and 1.2256, 32.5671 and 3.8547, respectively. In the single LSSVM
model, the values of C and δ were chosen as 10 and 2. The specific error indexes listed in Table 2
indicate that the IFOA-LSSVM model performed better than other models. In details, the LSSVM
model provided a CER of 0.1096, a RMSE of 0.2609, a MAE of 0.1401, a MRE of 6.17%, and a TIC of
0.0544. The PSO-LSSVM model obtained a CER of 0.08108, a RMSE of 0.1304, a MAE of 0.0815, a MRE
of 4.11%, and a TIC of 0.0238. The GA-LSSVM model produced a CER of 0.06915, a RMSE of 0.1107, a
MAE of 0.0831, a MRE of 3.71%, and a TIC of 0.0289. The FOA-LSSVM model obtained a CER of 0.05011,
a RMSE of 0.0694, a MAE of 0.0645, a MRE of 2.88%, and a TIC of 0.0112. Finally, the IFOA-LSSVM
model could acquire a CER of 0.03015, a RMSE of 0.0611, a MAE of 0.0524, a MRE of 2.66%, and a TIC
of 0.0089. We could see that the performances of LSSVM coupled with other optimization algorithms
were much better than single LSSVM. One noticed that selecting the parameters in LSSVM model was
of considerable significance for improving the learning and generalization performance of LSSVM.
As shown in Table 2, the IFOA-LSSVM gave a better performance than PSO-LSSVM, GA-LSSVM
and FOA-LSSVM models. Our proposed IFOA-LSSVM was reliable to provide superior regression
prediction performance and classification ability for shearer cutting pattern.

Visual comparison illustrations of the prediction values and classification results are also shown
in Figures 9 and 10. Obviously, the prediction results of IFOA-LSSVM model were nearly the real
values on most data points, and the proposed model’s classification performance was superior to that
of the competing models.
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In order to investigate the efficiency of the proposed method, the convergence performance of four
models (PSO-LSSVM, GA-LSSVM, FOA-LSSVM and IFOA-LSSVM) was compared and analyzed. The
convergence curves of RMSE and CER obtained through the four different algorithms are illustrated in
Figure 11. The results indicate that the proposed method had the advantage of faster convergence to
the global optimal fitness by about 20 iteration numbers than PSO-LSSVM and GA-LSSVM. Although
the iteration numbers were a little larger than that of FOA-LSSVM, the final RMSE and CER were
excellent. Besides, the RMSE and CER by IFOA-LSSVM were 0.0285 and 0.0033, while the values
by PSO-LSSVM, GA-LSSVM and FOA-LSSVM were 0.0924 and 0.010, 0.0898 and 0.013, 0.0355 and
0.0067, respectively, which signified the proposed method performed higher accuracy for forecasting
and classification than other three methods. In briefly, the computation results manifested that the
proposed IFOA-LSSVM model had better performance in the efficiency and generalization ability of
identifying shearer cutting pattern.
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6. Industrial Application

In order to verify the application possibilities of the proposed shearer control method, a system
based on the proposed method has been developed and an industrial test was carried out on a coal
mining face. The basic structure of the system is shown in Figure 12. The application was accomplished
at the 2115 coal mining face in the No.13 Mine of the Pingdingshan Coal Industrial Group Corporation.
Seen from this figure, the accelerometers were installed inside of the shearer rocker arm shell to
guarantee the reliability. The vibration signals were collected and transmitted into the explosion-proof
computers by wireless switches. The computers could process the signals and execute the proposed
method to identify the shearer cutting pattern. Meanwhile, a 3-dimensional virtual reality system was
used to vividly display the working status of the shearer.

The goal of the proposed method is to accurately identify the cutting pattern of the shearer, which
can provide the basis for its automatic control. Therefore, the cutting current of the front cutting motor
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was plotted in Figure 13 when the shearer was working from 25 m to 45 m. In this monitoring interval,
the front cutting current was changed in the scope of 32.6894 A to 37.7769 A and the average value
was 34.8074 A. The maximum current was only about 8.53% larger than that of the average value. The
results indicated that the shearer could work smoothly and safely in the coal seam according to the
identification provided by the proposed method and the system was proved stable and reliable in the
practical application.
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7. Conclusions and Future Work

In this paper, we propose a novel method for identifying the shearer cutting pattern based
on least squares support vector machine optimized by improved fruit fly optimization algorithm
(IFOA-LSSVM). This proposed method uses the IFOA to automatically select the appropriate
parameters of the LSSVM model in order to improve the forecasting and classification accuracy. The
training features are constructed reasonably by the combination of kernel feature and energy feature. To
validate the proposed method, four other alternative models (single LSSVM, PSO-LSSVM, GA-LSSVM,
and FOA-LSSVM) are employed to compare the forecasting and classification performances. Example
computation results show that the CER, RMSE, MAE MRE and TIC of proposed model are much smaller
than those obtained by the competing models. Meanwhile, the convergence speed and precision of
IFOA-LSSVM model perform with significant superiority over other alternative models in terms of the
shearer cutting pattern identification. Furthermore, the industrial application result indicates that the
system based on proposed method can provide stable and reliable references for the automatic control
of a shearer.

In future studies, the authors will analyze the vibrations of other parts to represent the influence
on the results of classification and plan to investigate advanced feature extraction methods to further
improve the pattern identification results. Possible improvements may include some intelligent
algorithms for synchronous feature selection and parameter optimization to obtain better performance.
In addition, applications of the proposed method in the fault diagnosis domain are also worth
further study.
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