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A signature event during the cell intrinsic apoptotic pathway
is mitochondrial outer membrane permeabilization, leading to
formation of the apoptosome, a caspase activation complex. The
cellular apoptosis susceptibility protein (CAS) can facilitate
apoptosome assembly by stimulating nucleotide exchange on
Apaf-1 following binding of cytochrome c. We report here that
CAS expression itself is up-regulated during tumor necrosis fac-
tor-related apoptosis-inducingligand (TRAIL)-induced apopto-
sis, and knockdown of CAS renders cells resistant to TRAIL. We
find that TRAIL induces up-regulation of CAS in a posttran-
scriptional, caspase-8-dependent manner through degradation
of cIAP1, an E3 ligase that targets CAS for ubiquitin-dependent
proteasomal degradation. We identified a novel signaling path-
way whereby caspase-8 engages a feedforward cascade thatleads
to CAS up-regulation and amplifies the apoptotic signal. Fur-
thermore, in silico analysis revealed that expression of CAS is
up-regulated at both the mRNA and DNA levels in human
breast tumors, consistent with its role in promoting cell prolif-
eration. Overexpression of various oncogenes led to CAS up-
regulation in non-transformed cells. Intriguingly, oncogene-in-
duced CAS up-regulation also resulted in greater susceptibility
to TRAIL-induced cell death, consistent with its proapoptotic
function. These findings suggest that CAS plays contrasting
roles in proliferation and apoptosis and that overexpression of
CAS in tumors could serve as a potential biomarker to guide
therapeutic choices.

Apoptosis in mammalian cells typically proceeds through
one of two signaling cascades: the cell-intrinsic or the cell-ex-
trinsic pathway. The cell-intrinsic pathway is initiated by mito-
chondrial outer membrane permeabilization (MOMP)?* (1).
This leads to release of cytochrome c into the cytosol, where it
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binds to adaptor protein Apaf-1 and triggers assembly of the
apoptosome, a heptameric caspase activation complex (2, 3).
The apoptosome recruits and activates caspase-9, an initiator
caspase that subsequently activates executioner caspase-3/7,
which cleave a variety of cellular proteins, leading to cell death
(4, 5). In the cell-extrinsic pathway, binding of extracellular
ligands leads to activation of caspase-8 at the cell surface (6).
Caspase-8 can then directly activate caspase-3 or, additionally,
engage the mitochondrial pathway through cleavage of BID,
leading to MOMP (7, 8). In so called “type II” cells, BID-medi-
ated MOMP is essential for death receptor-induced apoptosis.
On the other hand, direct activation of caspase-3 by active
caspase-8 is sufficient for apoptosis in type I cells (9, 10).

MOMP is associated with a loss of mitochondrial function
and release of several factors from the mitochondrial inter-
membrane space that can induce caspase activation as well as
caspase-independent cell death. Therefore, MOMP has been
postulated to be a “point of no return” for cell death; i.e. follow-
ing MOMP, cells are committed to death regardless of caspase
activation (11). However, although this may be true in some
cases, several lines of evidence contradict this claim. For
instance, cells lacking Apaf-1 or caspase-9 are highly resistant
to various apoptotic stimuli that induce MOMP (12-17). Addi-
tionally, pharmacological or genetic inhibition of caspases pro-
tects neurons from NGF withdrawal-induced cell death,
despite cytochrome ¢ release, and these cells completely
recover after NGF restimulation (18, 19). Indeed, cells can sur-
vive MOMP, provided executioner caspase activity is inhibited
(20, 21).

The ability to survive MOMP has several important physio-
logical consequences. Firstly, it provides a mechanism to pro-
tect cells against “accidental” MOMP induced by minor apo-
ptotic insults. This is particularly relevant to the survival of
postmitotic cells like cardiomyocytes and neurons, which
indeed exhibit a higher threshold of cytosolic cytochrome ¢
needed to induce cell death (22-24). Furthermore, caspase-3
and -9 are involved in several non-apoptotic processes, such as
differentiation of various cell types (25-29), development and
maintenance of neuronal function (30-32), and proliferation
and maturation of immune cells (33, 34). Importantly,
caspase-3 activation in these scenarios is not lethal but, rather,
leads to changes in cell shape or function, presumably resulting

IP, immunoprecipitation; Ni-NTA, nickel-nitrilotriacetic acid; NT, non-tar-
get; TRAIL, TNF-related apoptosis inducing ligand.
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from cleavage of specific substrates. In the context of onco-
genesis, tumor cells often evolve mechanisms of inhibiting
caspase-3 activation downstream of MOMP, including down-
regulation or loss of Apaf-1 (35, 36) or caspase-3 (37) and over-
expression of inhibitor of apoptosis (IAP) proteins (38, 39). The
ability to survive therapy-induced MOMP by limiting caspase-3
activation can facilitate tumor cell survival and has obvious
clinical implications. Intriguingly, when MOMP is limited or
incomplete, low levels of caspase-3 activation can directly pro-
mote tumorigenesis through genomic instability (40, 41).
Finally, it is worth noting that, even in cases where MOMP is
sufficient to trigger cell death, caspase-3 activity is essential in
preventing an immune response in vivo (42, 43). Collectively,
these findings underscore the importance of understanding
how caspase-3 activation is regulated post-MOMDP.

Regulating apoptosome formation is a critical means
through which caspase-3 activity can be fine-tuned following
the onset of MOMP. After binding cytochrome ¢, Apaf-1
undergoes nucleotide exchange. This is a necessary step for
apoptosome formation because, in the absence of nucleotide
exchange, cytochrome c-bound Apaf-1 forms nonfunctional
aggregates (44). The cellular apoptosis susceptibility protein
(CAS), functioning together with PHAPI and Hsp70, stimulates
apoptosome formation by enhancing nucleotide exchange on
Apaf-1 following cytochrome c binding (45). In this study, we
investigate the regulation of CAS upon TRAIL-induced apopto-
sis. Furthermore, we explore the role of CAS in cancer cell
growth and apoptosis.

Experimental Procedures

Cell Culture—MCE-10A cells were cultured in DMEM/F12
supplemented with 5% horse serum, EGF (20 ng/ml), hydrocor-
tisone (0.5 ug/ml), cholera toxin (100 ng/ml), insulin (10
pg/ml), and penicillin-streptomycin. 293T and HT-29 cells
were cultured in DMEM high-glucose supplemented with 10%
FBS, L-glutamine (2 mm), and penicillin-streptomycin. Lentivi-
ral or retroviral constructs were co-transfected with packaging
vectors into 293T cells for virus production. Virus containing-
medium was passed through a 0.45-um polyethersulfone filter
and supplemented with Polybrene before being used to trans-
duce cells.

Reagents, Antibodies, and Plasmids—SuperKiller TRAIL
(catalog no. ALX-201-115-3010) and Z-VAD-fmk (catalog no.
ALX-260-020) were from Enzo Life Sciences. Caspase-8 inhib-
itor (IETD-fmk, catalog no. 550380) and caspase-3 inhibitor
(DEVD-fmk, catalog no. 550378) were from BD Biosciences.
MG132 was from EMD Millipore (catalog no. 474790). Bafilo-
mycin Al was from Sigma. For Western blot analysis, the fol-
lowing antibodies were used: anti-CAS (Bethyl, catalog no.
A300-473A), anti-caspase-3 (Cell Signaling Technology, cata-
log no. 9662), anti-caspase-8 (Cell Signaling Technology, cata-
log no. 9746), anti-cIAP1 (Cell Signaling Technology, catalog
nos. 7065 and 4952), anti-XIAP (Cell Signaling Technology,
catalog no. 2045), anti-CYLD (Cell Signaling Technology, cat-
alog no. 8462), anti B-Actin (Sigma, catalog nos. A1978 and
5316), anti a-actinin (Santa Cruz Biotechnology, catalog no.
sc-17829), anti-ubiquitin (Millipore, catalog no. 05-944), anti-
GFP (Roche, catalog no. 11814460001), and anti-HA clone
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16B12 (Covance, catalog no. MMS-101P). The SMAC-cherry
reporter construct was generated by fusing the N-terminal 171
bp of human SMAC cDNA to the N terminus of mCherry on
the pBabe-puro vector. Bcl-xL was subcloned into the pQCXIP
vector using the EcoRI and BamHI sites. N-terminally tagged
GFP-His-CAS and GFP-CAS were generated by subcloning the
respective fragments into the pQCXIP-GFP vector. cIAP1
c¢DNA was purchased from Addgene (WT, catalog no. 8311;
H588A, catalog no. 8334) and subcloned into the pQCXIP-HA
vector (N-terminally tagged) at the Xhol and EcoRI sites or the
pET28A vector at the Nhel and Xhol sites. pcDNA-Myc-
His-Ubiquitin, pBabe-Erbb2, MSCV-mCherry-Myc, pBabe-
PI3BKH'*"R, and pBabe-KRASS'?V were provided by Filippo
Giancotti (Memorial Sloan Kettering Cancer Center).

Co-immunoprecipitation—For co-immunoprecipitation as-
says, 293T cells grown in 10-cm plates were transfected with
the indicated plasmids. 24 h later, cells were lysed in-plate with
IP buffer (10 mm Hepes (pH 7.5), 150 mm NaCl, 0.5% Nonidet
P-40, 1 mm EDTA, 1 mm DTT, and 10% Glycerol) supple-
mented with protease inhibitors. Lysates were cleared by cen-
trifugation at 14,000 rpm for 10 min at 4 °C and incubated with
HA-agarose beads (Sigma, catalog no. A2095) overnight at 4 °C.
Beads were then washed five times in IP buffer and eluted by
boiling in 1X SDS sample buffer.

In Vivo Ubiquitination Assays—For assays in MCF10A cells,
cells stably expressing GFP-His-CAS were lysed in 100 ul of
radio-immunoprecipitation assay buffer supplemented with 25
uM MG132, 10 mm N-ethylmaleimide (Sigma), and protease
inhibitors. Ni-NTA-agarose beads (Qiagen) were then used to
pull down His-tagged protein as described previously (46). For
assays in 293T cells, cells were transfected with Myc-His-Ubiq-
uitin and the indicated plasmids in 6-cm plates. 24 h later, cells
were treated with 25 um MG132 for 4 h. After washing with
PBS, a small fraction of the cell pellet was saved for input and
lysed in radio-immunoprecipitation assay buffer. The rest of
the cell pellet was resuspended in lysis buffer (6 M guanidine, 0.1
M NaH,PO,, 10 mm Tris (pH 8.0), 10 mm B-mercaptoethanol)
freshly supplemented with 15 mm imidazole, 10 um MG132, 10
mM N-ethylmaleimide, and protease inhibitors and sonicated
to reduce viscosity. Lysates were then incubated with pre-
washed Ni-NTA-agarose beads for 3 h at room temperature.
Beads were then washed once with buffer A (lysis buffer + 0.2%
Triton), once with buffer B (8 M urea, 0.1 m NaH,PO,, 10 mm
Tris (pH 8.0), 10 mMm B-mercaptoethanol and 0.2% Triton),
twice with buffer C (8 M urea, 0.1 M NaH,PO,, 10 mm Tris (pH
6.3), 10 mm B-mercaptoethanol and 0.2% Triton), and twice
with buffer D (8 murea, 0.1 M NaH,PO,, 10 mMm Tris (pH 6.3), 10
mM B-mercaptoethanol and 0.1% Triton). All wash buffers were
freshly supplemented with 15 mm imidazole. Finally, bound
proteins were eluted by boiling in radio-immunoprecipitation
assay buffer containing 1X SDS loading buffer and 200 mm
imidazole for 10 min. Samples were then subjected to Western
blot analysis with the indicated antibodies.

In Vitro Ubiquitination Assay—His-tagged cIAP1 proteins
were cloned into the pET28A vector, expressed in BL21-DE3
cells (Novagen), and purified from bacterial lysates using Ni-
NTA-agarose beads. GFP-CAS was expressed in 293T cells and
purified using GFP-Trap beads (ChromoTek). Briefly, cells
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were lysed in IP buffer and incubated with GFP-Trap beads
for 1 h, followed by sequentially washing three times in IP
buffer and twice in ubiquitination reaction buffer (50 mm
Tris (pH 7.5), 5 mm MgCl,, and 2 mm DTT). Beads were then
resuspended in reaction buffer containing 75 nm E1, 600 nm
E2,5mm ATP, and 10 pg/pul ubiquitin in a final volume of 20
pl. Where indicated, 800 ng of WT- or H588A-cIAP1 were
included, and reactions were incubated at 30 °C for 2 h with
gentle agitation. Following the reaction, beads were washed
four times in denaturing buffer (8 M urea and 1% SDS in PBS)
to remove nonspecific binding. Following a final wash in IP
buffer, bound proteins were eluted by boiling in 1X SDS
sample buffer and subjected to immunoblotting with the
indicated antibodies.

Knockdown by siRNA and shRNA—siGenome SMART pool
siRNAs (CAS, cIAP1, and XIAP), control siRNA (D-001210-
05-20), and individual siRNA against CYLD (M-004413-02-
0005) were purchased from Dharmacon. Cells were seeded in
6-well plates at a density of 80,000 cells/well (MCF10A) or
200,000 cells/well (HT-29) and, 24 h later, transfected with
25-30 nMm CAS siRNA using Oligofectamine (Invitrogen) or
Dharmafect 1 (Dharmacon), respectively. Cells were routinely
assayed 64—72 h post-transfection. For cell growth assays, a
higher concentration of CAS siRNA (75 nm) was used. Knock-
down of cIAP1, XIAP, and CYLD was achieved with 100 nm
siRNA. The caspase-8 shRNA sequences were as follows: shi,
GACATGAACCTGCTGGATATT; sh2, GCCTTGATGTTA-
TTCCAGAGA. Lentiviruses harboring the knockdown se-
quences were used to infect MCF10A cells. Cells when then
selected with puromycin for at least 3 days before testing for
knockdown.

Cell Viability and Growth Assays—Cell viability was mea-
sured using the CellTiter-Glo luminescent cell viability assay
kit (Promega). Briefly, cells were plated in triplicate at a density
of 1500-3000 (MCF10A) or 6000 (HT-29) cells/well and
allowed to adhere for 24-48 h. Following treatment with
TRAIL, the percentage of viable cells was quantified relative to
untreated cells according to the directions of the manufacturer.
All cell viability data are values from at least three independent
experiments. To measure cell growth, following transfection
with siRNA, cells were split into 12-well plates at a density of
10,000 cells/well. At 24-h intervals, cells were fixed in 10% for-
malin for 10 min. Following washing with PBS, cells were
stained with 0.1% crystal violet solution for 20 min, washed
three times with water, and allowed to air-dry. The stain was
extracted by incubating in a 10% acetic acid solution for 20 min
with shaking. The relative number of cells was then quantified
by measuring the absorbance of the extracted stain at 590 nm.

Caspase Assay—T o quantify caspase activity, cell lysates were
collected after treatment, and 20 ug of total protein was incu-
bated with 15 um fluorogenic caspase-3 rhodamine-DEVD sub-
strate (AnaSpec, catalog no. 60304) in a final volume of 20 ul.
Samples were then loaded immediately on 384-well plates, and
fluorescence was measured at 30 °C at an interval of 2 min for
3 h using a SpectraFluor Plus spectrometry reader (Tecan) with
an excitation wavelength of 485 nm and an emission wave-
length of 535 nm. Average relative fluorescence units = S.E. of
three independent experiments were plotted.
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Quantitative RT-PCR—Total RNA was extracted using the
Aurum Total RNA mini kit (Bio-Rad), and reverse transcrip-
tion was performed using the iScript cDNA synthesis kit (Bio-
Rad). Quantitative RT-PCR was performed with iQ SYBR
Green Supermix (Bio-Rad) using a CFX Connect real-time sys-
tem (Bio-Rad). The relative level of mRNA was calculated by
the comparative Ct method using GAPDH as a control. The
primers for CAS were TGCCTCGTTTTGTTACAGCC (for-
ward) and GGTCTCTCACAAACTGAAGCC (reverse). The
primers for GAPDH were TGCACCACCAACTGCTTAGC
(forward) and GGCATGGACTGTGGTCATGAG (reverse).

Genomic Analysis—The Cancer Genome Atlas dataset
used has been described previously (47). All data were
retrieved and analyzed using the cBioPortal for Cancer
Genomics (48, 49).

Statistical Analysis—Unless noted otherwise, results were
analyzed by Student’s ¢ test performed using GraphPad Prism 6
software. Significance was defined as p < 0.05.

Results

CAS Promotes TRAIL-induced Apoptosis—We and others
have shown previously that CAS plays a significant role in apo-
ptosis induced by select stimuli (45, 50). To specifically examine
the role of CAS in TRAIL-induced apoptosis, we used siRNA to
silence CAS expression in MCF10A and HT-29 cells. Relative to
control siRNA, we observed that knockdown of CAS signifi-
cantly inhibited TRAIL induced caspase-3/7 activation in both
cell types (Fig. 1, a and b). Consistently, overall cell viability
following TRAIL-treatment was greater in CAS-siRNA trans-
fected cells (Fig. 1, c and d). These results clearly indicate that
CAS facilitates TRAIL-induced cell death.

TRAIL Induces Robust Up-regulation of CAS through Activa-
tion of Caspase-8 and Independent of Mitochondrial Outer
Membrane Permeabilization—In the course of our experi-
ments, we observed that TRAIL induces a robust increase in
CAS protein levels within a few hours of treatment (Fig. 2a).
Because CAS clearly plays a functional role in TRAIL-induced
cell death, we sought to explore the mechanism of TRAIL-in-
duced CAS up-regulation. Apoptotic signaling by TRAIL pro-
ceeds through activation of the initiator caspase-8, followed by
executioner caspase-3/7. We hypothesized that activation of
one or more caspases plays a critical role in up-regulating CAS
levels upon TRAIL treatment. In support of this hypothesis, we
found that addition of a pan-caspase inhibitor (Z-VAD-fmk)
completely blocked TRAIL-induced CAS up-regulation (Fig.
2b). Furthermore, specific inhibition (Fig. 2b) or shRNA-medi-
ated knockdown of caspase-8 (Fig. 2¢) inhibited an increase in
CAS levels upon TRAIL treatment. Intriguingly, co-treatment
with a caspase-3-specific inhibitor failed to inhibit CAS up-reg-
ulation (Fig. 2b). All three inhibitors completely abolished
downstream activation of caspase-3, confirming their respec-
tive activity (Fig. 2b). These results demonstrate that TRAIL-
induced CAS up-regulation is caspase-8-dependent but cas-
pase-3-independent.

Upon activation, caspase-8 can, in turn, activate caspase-3 by
two distinct mechanisms: direct cleavage of caspase-3 or cleav-
age of the BH3-only protein BID, leading to MOMP and cyto-
chrome crelease. To determine whether MOMP is required for

JOURNAL OF BIOLOGICAL CHEMISTRY 2381



CAS Promotes TRAIL-induced Apoptosis and Cell Proliferation

a MCF10A cells b HT-29 cells
o B NTsi BB CAS si > BN NTsi WM CAS si
S 5x10* . 2 5x10* —
i3] 410" — . o 4 .
< x10 si: NT CAS ; __ 4x10 si: NT CAS
= 4 =) 4
55 3«10 CAS- G2 310
9 2x10* § = 2x10*
§ 1x10* B-Actin _ § 1x10*
8 o
TRAIL: - + TRAIL: - +
¢ MCF10A cells d HT-29 cells
Il NTsi I CAS si . I NT si I CAS si
—_ o *
2 * < — * "
p 80 — - :? — si: NT CAS
© =
S z
TRAIL: - 5 75 TRAIL: - 5 75
(ng/ml) TRAIL (ng/mi) TRAIL

NT si

CAS si CAS si

NTsi

FIGURE 1. Knockdown of CAS inhibits TRAIL-induced apoptosis. a and ¢, MCF10A cells transfected with non-target (NT) or CAS siRNA were treated with
TRAIL (15 ng/ml for 4 h) for measurement of caspase-3/7 activity (a) or for 8 h at the indicated concentration for measurement of cell viability (c). b and d, HT-29
cells transfected with NT or CAS siRNA were treated with TRAIL (12.5 ng/ml for 6 h) for measurement of caspase-3/7 activity (b) or for 12 h at the indicated
concentration for measurement of cell viability (d). Representative phase-contrast images displaying cell morphology and Western blots confirming knock-
down of CAS are shown. All values are mean = S.E. from at least three independent experiments. *, p < 0.05. RFU, relative fluorescence units.
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FIGURE 2. TRAIL induces robust up-regulation of CAS in a caspase-8-dependent manner and independently of MOMP. a, MCF10A cells were treated with
30 ng/ml TRAIL and harvested for Western blot analysis at the indicated time points. b, MCF10A cells were pretreated for 30 min with 20 um of a pan-caspase
inhibitor (Z-VAD-fmk), a caspase-3 inhibitor (C3i, DEVD-fmk), or a caspase-8 inhibitor (C8i, IETD-fmk), followed by 40 ng/ml TRAIL for 3 h, and subsequently
harvested for Western blot analysis. Right panel, quantification of CAS levels (mean = S.D.) relative to untreated cells from three independent experiments. c,
MCF10A cells stably expressing control shRNA or one of two different shRNAs against caspase-8 were treated with 30 ng/mlI TRAIL for 3 h, and expression of the
indicated proteins was analyzed by Western blot. The asterisk indicates a nonspecific band. d, WT and Bcl-xL-overexpressing MCF10A cells stably expressing
SMAC-cherry were treated with 40 ng/ml TRAIL for 2.5 h, and imaged for the onset of MOMP. e, WT and Bcl-xL-overexpressing MCF10A cells were treated with
40 ng/ml TRAIL for 3 h and harvested for Western blot analysis with the indicated antibodies.
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FIGURE 3. TRAIL-induced CAS up-regulation is posttranscriptional and
occurs through inhibition of its proteasomal degradation. g, quantitative
RT-PCR was used to detect expression of CAS mRNA in MCF10A cells treated
with 30 ng/mITRAIL for 1 h. GAPDH was used as an internal control. Values are
mean = S.E.from three independent experiments. b, Western blot of MCF10A
cells stably expressing a GFP-His-CAS fusion protein following stimulation
with TRAIL (30 ng/ml, 3 h). ¢, MCF10A cells were treated with the proteasome
inhibitor MG132 (75 um) or the lysosomal inhibitor Bafilomycin A1 (BafA, 20
nwm) for the indicated time and then harvested for Western blot analysis. d,
lysates from MCF10A cells stably expressing GFP-His-CAS were subjected to
pulldown with nickel beads under denaturing conditions and subsequently
probed with the indicated antibodies. Where indicated, cells were treated
with 10 um Z-VAD-fmk for 30 min prior to addition of TRAIL (30 ng/ml, 4 h).
Endo, endogenous; Ub,, CAS, polyubiquitinated CAS.

up-regulation of CAS, we generated an MCF10A cell line stably
overexpressing Bcl-xL. Bel-xL is an anti-apoptotic Bcl-2 family
protein that antagonizes mitochondrial permeabilization by
Bax/Bak (51). To monitor MOMP, we used a fluorescent
SMAC-cherry reporter construct. mCherry fluorescence was
localized to mitochondria in untreated cells but released into
the cytosol following TRAIL stimulation, indicating the onset
of MOMP. Bcl-xL-overexpressing MCF10A cells were resistant
to TRAIL-induced MOMP (Fig. 2d). Consistently, TRAIL-in-
duced caspase-3 activation was also blocked by Bcl-xL overex-
pression (Fig. 2e), demonstrating that MCF10A are type II cells.
Importantly, overexpression of Bcl-xL failed to inhibit CAS up-
regulation (Fig. 2e), indicating that TRAIL induces CAS up-reg-
ulation upstream of MOMP.

Proteasomal Degradation of CAS Is Inhibited during TRAIL-
induced Apoptosis—We next asked whether TRAIL induces an
increase in transcription of CAS. Quantitative RT-PCR exper-
iments revealed that CAS mRNA levels are not increased upon
TRAIL treatment (Fig. 3a4). Additionally, TRAIL treatment led
to a comparable up-regulation of a GFP-CAS fusion protein
expressed under the control of a naive retroviral promoter (Fig.
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3b), indicating that TRAIL-induced CAS up-regulation is post-
transcriptional in nature.

Interestingly, we observed that inhibition of proteasome
activity by MG132 was sufficient to elevate basal levels of
CAS, whereas inhibition of lysosome activity by Bafilomycin
Al failed to do so (Fig. 3c), suggesting that CAS is prone to
ubiquitination-mediated proteasomal turnover. We therefore
tested whether CAS ubiquitination is decreased in response to
TRAIL. Indeed, TRAIL stimulation significantly reduced the
accumulation of ubiquitinated CAS but not global ubiquiti-
nated proteins (Fig. 3d). Furthermore, consistent with the
essential role of caspase activation in promoting CAS up-re-
gulation, addition of the pan-caspase inhibitor Z-VAD-fmk
abolished the decrease in CAS ubiquitination upon TRAIL
treatment.

Degradation of cIAP1 Mediates CAS Accumulation during
TRAIL-induced Apoptosis—On the basis of these data, we rea-
soned that TRAIL treatment could lead to decreased CAS ubiq-
uitination through two possible mechanisms: inhibition of an
E3 ubiquitin ligase that targets CAS for degradation or activa-
tion of a deubiquitinase. To further dissect this signaling path-
way, we sought to identify the proteins involved in this process.
We undertook a candidate-based approach, focusing on pro-
teins that met two criteria: those documented to possess E3
ligase or deubiquitinase catalytic activity and those known to be
regulated by caspase-8 and/or TRAIL signaling. Intriguingly, a
literature search revealed that cIAP1, a potent E3 ligase and
anti-apoptotic protein, is degraded during TRAIL-induced apo-
ptosis (52). Consistently, we observed that TRAIL treatment
leads to a significant decrease in cIAP1 levels, which is rescued
by addition of a caspase-8 inhibitor (Fig. 4a), fitting our model.
To test whether cIAP1 controls the stability of CAS, we trans-
fected siRNA targeting cIAP1 into MCF10A cells. Notably,
silencing cIAP1 expression led to a modest increase in the
steady-state levels of CAS relative to control siRNA (Fig. 4b).
Meanwhile, silencing XIAP (another E3 ligase degraded upon
TRAIL treatment (52)) or CYLD (a deubiquitinase known to be
targeted by active caspase-8 (53)) had no effect on basal CAS
expression or TRAIL-induced CAS up-regulation, respectively
(data not shown). Furthermore, co-immunoprecipitation in
HEK293T cells revealed that cIAP1 and CAS interact in vivo
(Fig. 4c). We observed that transfection of a high dose of WT
but not E3-dead cIAP1 in 293T cells promoted CAS degrada-
tion in a dose-dependent manner (Fig. 4d). Furthermore, WT-
cIAP1 overexpression significantly increased polyubiquitina-
tion of CAS in vivo, whereas E3-dead cIAP1 had no such effect
(Fig. 4e). To confirm that cIAP1 is a direct E3 ligase for CAS, we
used purified proteins to perform an in vitro assay and found
that WT, but not E3-dead, cIAP1 can catalyze in vitro polyu-
biquitination of CAS (Fig. 4f). Collectively, these results dem-
onstrate that cIAP1 directly ubiquitinates and targets CAS for
proteasomal degradation. TRAIL-induced caspase-8 activation
leads to a marked decrease in cIAP1 levels, thereby mitigating
CAS ubiquitination and allowing for its accumulation (Fig. 4g).

Aberrant Expression of CAS in Human Tumors—The proapo-
ptotic function of CAS implies that it is a potential tumor sup-
pressor, and it would therefore be expected to be deleted or
undergo loss-of-function mutations in cancer. Intriguingly
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FIGURE 4. clAP1 mediates the turnover of CAS and is degraded upon TRAIL treatment. a, MCF10A cells were treated with TRAIL (30 ng/ml, 4 h) and
harvested for Western blot analysis. Where indicated, cells were pretreated with a caspase-8 inhibitor (C8i, 20 um) for 30 min prior to addition of TRAIL. b,
MCF10A cells were transfected with NT siRNA or siRNA against clAP1 and harvested for Western blot analysis 72 h later. Right panel, quantification of CAS levels
(mean = S.D.) relative to NT siRNA cells from three independent experiments. ¢, lysates from 293T cells expressing GFP-CAS and empty vector or HA-clAP1 were
subjected to immunoprecipitation with HA-agarose beads. Bound proteins were then probed by Western blotting with the indicated antibodies. d, 293T cells
were transfected with GFP-CAS and WT or E3-dead (H588A) clAP1 and subjected to Western blot analysis 24 h later. The total amount of DNA transfected was
balanced using empty vector DNA. Right panel, quantification of CAS levels (mean = S.D.) relative to control cells from three independent experiments. e,
HEK293T cells transfected with the indicated plasmids were treated with 25 um MG132 for 4 h to allow for accumulation of ubiquitinated proteins. Whole cell
lysates were then subjected to a nickel bead pulldown under denaturing conditions, and bound proteins were probed with the indicated antibodies. Note that,
in d and e, expression of E3-dead clAP1 is significantly higher than WT, presumably because of the lack of autoubiquitination-induced degradation. f, in vitro
ubiquitination of GFP-CAS purified from 293T cells was performed using recombinant clAP1, as described under “Experimental Procedures.” Note that
WT-clAP1 shows a smearing pattern because of autoubiquitination activity. /B, immunoblot. g, model illustrating the regulation of CAS. Upon stimulation by
TRAIL, clAP1 is degraded in a caspase-8-dependent manner, allowing for accumulation of CAS, which then feeds forward into the apoptotic pathway by

stimulating apoptosome formation. Cyt C, cytochrome c.

however, multiple studies have reported that CAS is actually
amplified in various human tumors (54 —57), implicating CAS
as a potential oncogene. Notably, studies have pointed toward
an essential role for CAS in cell division (58, 59), and CAS
expression has been documented to be higher in rapidly prolif-
erating tissue like testis and fetal liver (50). We therefore rea-
soned that elevation of CAS levels in tumor cells increases the
proliferative capacity of these cells. Consistently, we observed
that thorough depletion of CAS using higher doses of siRNA
leads to a clear inhibition of cell growth (Fig. 5a).

We sought to understand the cause and consequences of
aberrant expression of CAS specifically in breast cancer.
Analysis of the breast carcinoma dataset from The Cancer
Genome Atlas project revealed alterations in CAS in about
16% of tumors, with mRNA up-regulation being the most
frequent (Fig. 5b). Given the role of CAS in cell proliferation,
we hypothesized that oncogenic signaling pathways could
drive the enhanced expression of CAS in tumors. To test this
idea, we introduced various oncogenes, including Erbb2, Myc,
PI3KMO%7R - and KRASC'?Y, into untransformed MCF10A
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cells. This led to a clear increase in expression of CAS at the
protein level, driven by an increase in the transcription of CAS
mRNA (Fig. 5, ¢ and d). These results suggest that multiple
oncogenic signaling pathways are capable of driving CAS
mRNA expression, likely to support cell growth. We then
examined the co-occurrence of CAS mRNA up-regulation with
alterations in the same set of oncogenes in The Cancer Genome
Atlas breast cancer dataset (Fig. 5e). Notably, we observed a
significant co-occurrence of increased CAS mRNA expression
with alterations in Myc (p < 0.001) but not with the other onco-
genes tested.

Increased CAS Expression Contributes to the Heightened
Apoptotic Sensitivity of Oncogene-overexpressing Cells—To
understand the functional significance of increased basal
CAS expression, we used c-Myc-overexpressing MCF10A cells
(MCF10A-Myc), given the high prevalence of Myc amplifica-
tion in breast cancer and the tendency toward its co-occurrence
with CAS up-regulation. Because CAS can facilitate caspase-3
activation by driving apoptosome formation, we hypothesized
that MCF10A-Myc cells (with higher basal CAS expression) would be
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Representative phase-contrastimages displaying cell morphology and Western blots confirming knockdown of CAS are shown. All values are mean = S.E.from
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more sensitive to TRAIL than their wild-type counterparts. Indeed, in
response to TRAIL, we observed increased caspase-3 activation and
lower cell survival in MCF10A-Myc cells (Fig. 6,2 and b). Importantly,
knockdown of CAS by siRNA decreased caspase-3 activation and
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improved cell viability in MCF10A-Myc cells (Fig. 6, c and d). Collec-
tively, these results indicate that, although elevated basal levels of CAS
promote breast cancer proliferation, they also lead to an increased
sensitivity to TRAIL.
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Discussion

Multiple studies have revealed that cells can survive incom-
plete MOMP provided that downstream caspase-3 activity is
limited. Therefore, the decision to live or die following MOMP
is determined, at least in part, by the extent of caspase-3 activa-
tion. However, our understanding of how caspase-3 activity is
regulated following MOMP remains incomplete. We have
shown previously that CAS can drive caspase activity by stim-
ulating apoptosome formation (45). Here we demonstrate that,
during TRAIL-induced apoptosis, CAS levels are up-regulated
rapidly and that knockdown of CAS inhibits TRAIL-induced
caspase-3 activity and cell death. On the basis of these results,
we propose that up-regulation of CAS amplifies the apoptotic
signal, increasing the commitment to cell death following
MOMP.

Mechanistically, the up-regulation of CAS in response to
TRAIL is caspase-8-dependent. Active caspase-8 induces deg-
radation of cIAP1, an E3 ligase that ubiquitinates and promotes
the degradation of CAS. How caspase-8 targets cIAP1 for deg-
radation remains an unanswered question. The most straight-
forward explanation is a direct cleavage of cIAP1 by caspase-8.
Alternatively, caspase-8 could target a binding partner that sta-
bilizes cIAP1 or potentially regulate the autoubiquitination
activity of cIAP1. Our studies also reveal that caspase-8 induces
up-regulation of CAS independent of stimulating MOMDP.
Therefore, increased levels of CAS can feed forward into the
apoptotic cascade following the onset of MOMP.

Our mechanistic studies focused exclusively on TRAIL-in-
duced apoptosis. However, it is worth noting that we have
reported previously that other extrinsic apoptotic stimuli, such
as TNF-« and IFN-v, can also induce CAS up-regulation (45)
and that, as with TRAIL, knockdown of CAS inhibits apoptosis
induced by these stimuli. Although these stimuli target distinct
receptors, leading to accumulation of different adaptor pro-
teins, they all induce caspase-8 activation. Therefore, it is likely
that the caspase 8-cIAP1 pathway we described here for TRAIL
mediates up-regulation of CAS induced by these stimuli as well.
Intriguingly, UV radiation is also capable of up-regulating CAS
(45). UV radiation-induced DNA damage leads to activation of
the cell-intrinsic apoptotic pathway, and this is thought to
occur independently of caspase-8 activity. How UV radiation
up-regulates CAS remains an open question.

Contrary to its prototumor-suppressive role in facilitating
apoptosis, CAS is frequently amplified in human tumors. Nota-
bly, CAS levels are higher in proliferating fibroblasts and
decrease upon growth arrest, suggesting its potential role in cell
proliferation (50). Furthermore, homozygous deletion of CAS
in mice leads to embryonic lethality (59), and mutations in the
yeast homologue (CSE1) are lethal as well (60). The precise
molecular function of CAS in cell proliferation remains to be
identified. Interestingly, we found that overexpression of mul-
tiple oncogenes led to increased expression of CAS mRNA and
protein. This indicates the existence of a regulatory network
closely linking cell growth and CAS levels that can be co-opted
during oncogenic transformation.

Our studies show that increased basal expression of CAS in
oncogene-overexpressing cells contributes to heightened sen-
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sitivity to TRAIL. This raises the intriguing possibility that the
increased levels of CAS seen in several human tumors could
represent an “Achilles” heel.” Tumor cells up-regulate CAS to
support their enhanced proliferation, but this, in turn, could
make them more vulnerable to certain apoptotic stimuli. In this
regard, it is worth noting that not all apoptotic stimuli induce
CAS up-regulation and that those that do not (e.g. staurospo-
rine) are unaffected by knockdown of CAS (45). Therefore, pro-
filing the expression of CAS in tumor tissue could potentially be
used to guide decisions regarding therapeutic choices.

In conclusion, our studies uncovered a novel signaling path-
way whereby caspase-8 amplifies the TRAIL-induced apoptotic
signal by mediating up-regulation of CAS. Furthermore, we
highlighted the increased transcription of CAS in response to
oncogene overexpression and the consequences of this up-reg-
ulation. The regulation of CAS at both the transcriptional and
posttranslational levels is reflective of its multiple roles in pro-
liferation and apoptosis. It is likely that such intricate regulation
is key in maintaining the proper function of this dynamic pro-
tein in these two contrasting cellular processes.
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