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The authors have carried out an investigation of the two “draft maps of the human pro-
teome” published in 2014 in Nature. The findings include an abundance of poor spectra, low-
scoring peptide-spectrum matches and incorrectly identified proteins in both these studies,
highlighting clear issues with the application of false discovery rates. This noise means that the
claims made by the two papers – the identification of high numbers of protein coding genes,
the detection of novel coding regions and the draft tissue maps themselves – should be
treated with considerable caution. The authors recommend that clinicians and researchers do
not use the unfiltered data from these studies. Despite this these studies will inspire further
investigation into tissue-based proteomics. As long as this future work has proper quality
controls, it could help produce a consensus map of the human proteome and improve our
understanding of the processes that underlie health and disease.
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Nature issue number 7502 introduced two
large-scale proteomics studies of the human pro-
teome.[,2] They were both advertised as initial
drafts of the human proteome and the journal
compared the impact of these two mass spectro-
metry-based analyses to the publication in 2001
of the draft human genome sequence.[,4] The
justification for this singular comparison was
that they claimed to identify many more pro-
teins than previous experiments while analyzing
tissues and body fluids rather than cell lines.
TheWilhelm et al. study [2] introduced a novel

large-scale proteomics database, ProteomicsDB,
which houses protein, peptide and tissue expres-
sion data from 16,857 tandem MS proteomics
experiments carried out on human cell lines and
tissues. At the time of publication, ProteomicsDB
contained 1.1 billion peptide spectrum matches
(PSMs) from 49 previously published large-scale

MS-based analyses, as well as 24 data sets from the
authors’ group (both published and not pub-
lished). The database uses two tools, Mascot [5]
and Andromeda [6], to map the spectra to pep-
tides from UniProt annotation of the human pro-
teome.[7] Most of the spectra in the database were
previously published and were reanalyzed for the
database, but the authors did carry out experi-
ments on >30 different fluids and tissues especially
for the paper. This last set of peptides is a small
subset of the data from theWilhelm analysis and is
referred to throughout this work as the
“Human_body_map” set. These peptides also
form the basis of the tissue-based analysis in the
Wilhelm analysis, but again they are only a subset
of those peptides used to describe their pro-
teome map.
For the paper, the peptides from ProteomicsDB

were refined by filtering out peptides shorter than
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seven residues and by applying two false discovery rate (FDR) filters.
The filtered peptides from ProteomicsDB mapped to 18,097 genes
in the UniProt annotation of the human genome. The authors also
detected peptide evidence for 430 peptides that mapped to 404
lncRNAs and other likely noncoding genes.
The Kim et al. study [1] analyzed spectra from >80 experi-

ments covering 24 distinct tissues, 6 of which were fetal and 6
hematopoietic. The Kim paper also identified peptides using
two different search engines, this time Mascot and Sequest.[8]
The authors identified peptides for 17,294 genes from the
RefSeq annotation of the human genome,[9] including peptides
for >2500 genes that were not previously identified in the main
proteomics databases.[,11] There was peptide evidence for 2350
genes in all 30 tissues (“housekeeping genes”), while 1537 genes
were identified in just a single tissue. The authors mapped
unmatched spectra against noncoding RNA from the translated
human genome and detected peptides for 808 “novel” annota-
tions for a variety of noncoding regions. The peptides were
deposited in the authors’ own Human Proteome Map database.

Clear contrasts with published studies
Before the two Nature papers were published, the two previous
largest studies of the human proteome had reported 11,200 and
11,700 genes,[,13] while the PeptideAtlas database, a reanalysis of
spectra from many publically available experiments, had identified
peptides for 12,644 genes.[10] The Wilhelm and Kim analyses
claimed to identify substantially more genes than all these studies.
The authors published an analysis of large-scale proteomics

resources at approximately the same time as the two Nature
papers.[14] Several of the data sets the authors reanalyzed overlapped
with those in the Wilhelm paper, though analysis was more con-
servative (e.g., the authors required at least two unique fully tryptic
peptides to identify a gene). The authors found that these resources
largely identified the same genes and that these genes were the most
conserved and those that had the longest evolutionary history.
Adding more large-scale analyses did not substantially increase the
number of genes the authors identified. In contrast to the Nature
papers, which concentrated efforts on finding new genes to annotate
as coding, the authors proposed that many automatically annotated
protein-coding genes did not code for proteins. More than 1000
coding genes were reclassified as a result.
There was such a clear difference between what the authors

found in this paper and what was in the Kim andWilhelm analysis
that they decided to reanalyze the data. As part of the experiment,
the authors had looked at the correlation of gene detection rates
with UniProt evidence code. The Wilhelm paper carried out the
equivalent analysis, and the comparison of the two results is
instructive (Figure 1). For those genes with the strongest evidence
(“protein evidence”), both analyses identify high numbers of genes
(97% in the Wilhelm analysis, 82% in this analysis), but the
Wilhelm analysis detects much higher proportions of the four
weakest UniProt evidence codes; the paper identifies three-times
as many genes with transcript-level evidence and >40-times as
many genes that are “predicted” and “uncertain”. Proteins labeled

as predicted and uncertain in UniProt are those that are not
supported by any experimental protein or transcript evidence.
There are two possible explanations for the difference

between the two analyses, either the Wilhelm study detects
peptides for UniProt predicted and uncertain genes where pre-
vious protein and transcript experiments do not or many of the
gene identifications in the Wilhelm analyses are simply the
result of false positive peptide identifications.

The olfactory receptor test
The authors carried out a simple experiment to test whether the
two studies were generating false positive identifications.
Olfactory receptors are proteins that should not be detected in
standard proteomics experiments since they are integral trans-
membrane proteins, they have detectable transcript expression
levels in very few tissues [16] and the vast majority of them
should be limited to a single tissue, the nasal epithelium.[17]
The authors did not identify a single olfactory receptor gene in
their conservative analysis.[14] Earlier versions of PeptideAtlas
[10] identified two olfactory receptors that have been subse-
quently eliminated in the new human build.[18]
The nasal epithelium was not investigated in either of the two

Nature studies. Despite this, there was peptide evidence for 108
olfactory receptors in the Kim data and for 200 olfactory receptors
in the Wilhelm analysis.[19] The authors found that some olfac-
tory receptors had been identified from ambiguous peptides (pep-
tides that mapped to more than one gene), but that most were
identified from poor quality spectra, spectra with few identifiable
fragments. For example of olfactory receptor,[20] see Figure 2.

Figure 1. Proportion of human proteins detected by
UniProt evidence category. The percentage of proteins
identified within each of the five UniProt evidence codes by
the Wilhelm analysis,[2] the Kim analysis [1] and by the
Ezkurdia et al. analysis.[14] We calculated the evidence
codes from the Kim analysis by mapping all 292,000 pep-
tides detected by Kim et al. to the GENCODE annotation
[15] in the same manner as the Kim analysis. The Kim
analysis would have identified 18,230 genes if they had
searched against the GENCODE annotation in the same way
as they searched against the RefSeq database.[9]
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Nondiscriminating peptides
The Kim study was considerably smaller than the Wilhelm
study (292,500 peptides vs. 598,845 peptides) yet it identi-
fied only 800 fewer genes. The reason for this is that the Kim
paper identifies genes using nondiscriminating peptides.
Nondiscriminating peptides map promiscuously to two or
more genes either because the two genes products are highly
similar or because the peptide is very short.
In the Kim study, if a nondiscriminating peptide mapped to

two genes, the peptide was used to identify both genes. As an
example, the short peptide “DISPVLK” is used in the Kim
study to identify both olfactory receptor OR10K1 and gene

APRT (adenine phosphoribosyl transferase). In the case of
OR10K1, the peptide would be semi-tryptic, it is the only
peptide that maps to this gene and it is used to demonstrate
that this olfactory receptor is most highly expressed in platelets
and fetal liver. “DISPVLK” in APRT is fully tryptic and is one
of many peptides that identifies APRT – in fact, APRT has
practically 100% peptide coverage. It is clearly much more likely
that this peptide is from the gene APRT. From a methodological
point of view, identifying multiple genes from a single peptide is
highly irregular; instead, nondiscriminating peptides should be
discarded because they cannot properly distinguish one gene
from another.

Figure 2. Illustrating the difference between a good and a poor peptide-spectrum match. (A) A good peptide-spectrum match
for the peptide VILHLKEDQTEYLEER, a peptide shared by HSP90AB1 and by several other genes. Note that almost all the
b-series ions and the y-series ions in the image and in the legend on the right have been correctly identified (correct
identification is indicated by the color and by the label in the image). (B) A poor peptide-spectrum match for the peptide
MSGTNQAAVSEFLLLGLSR, a peptide that maps to the olfactory receptor OR1F1. Just three of the b-series ions and two of the
y-series ions have been correctly mapped (again, shown by the label in the image and the color in the image and the legend
on the right) and none of the correct mappings were consecutive. Both spectra came from ProteomicsDB.
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The Kim study used trypsin as the cleavage enzyme, but they
identified semi-tryptic peptides too (peptides that are not fully
cleaved by trypsin). This made it even easier for nondiscrimi-
nating peptides to map to multiple genes. One nondiscriminat-
ing peptide (“EEELRK”) maps to 21 genes in the GENCODE
20 annotation of the human genome, [15] and the number of
RefSeq genes identified by this peptide would have been similar.
Approximately 3000 genes in the Kim study were identified
solely by nondiscriminating promiscuous peptides. Without
these promiscuous peptides, the Kim study identifies only
14,286 genes from the GENCODE 20 human gene set.
In addition, the two studies have problems with the way they

treat leucine and isoleucine. Search engines cannot distinguish
leucine from isoleucine because they have almost the same mass,
so they should be treated as if they were the same amino acid.
For example, the peptides “ILVAIMK” and “LIVALMK”
belong to different proteins, but they should be treated as if
they were the same peptide. The Wilhelm and Kim studies both
chose to identify the peptide “ILVAIMK” and map it to the
olfactory receptor OR1M1. According to the Kim study, the
peptide places this olfactory receptor in placenta, while in the
Wilhelm study OR1M1 is found in lung and ovary. However,
the spectrum can also be explained by the peptide,
“LIVALMK,” which maps to the highly expressed gene
ANXA5 (placental anticoagulant protein 4). The authors do
not know which one of the two peptides the spectrum belongs
to, although given the evidence it seems much more likely that
the two studies identified the highly expressed ANXA5. In total,
40 of the 108 olfactory receptors identified in the Kim analysis
were identified solely by nondiscriminatory or isobaric peptides.

Calculating the FDR
Perhaps the biggest single problem in these two studies is the way
they tackle the difficult issue of FDRs .[–23] FDRs allow researchers
to determine where to draw a line that limits the number of incorrect
peptide matches in a study. If the study is small-scale and can be
followed up by experimental verifications, researchers might use a
high FDR to improve coverage. Generally in larger-scale studies, a
stricter FDR cutoff is used, often 1%, because researchers cannot
follow up their predictions with experimental confirmation.
FDRs can be calculated at the PSM, peptide and protein levels.

For the first two levels, the calculation of FDRs is well described.
The standard target-decoy strategy involves generating decoy pep-
tides with the same composition as known peptides and searching
against a joint database of known and decoy peptides. The decoy
peptides simulate the false positive mappings and the FDR rate is
then calculated based on the proportion of random peptides that
are detected in the search.[21] Protein FDRs are harder to estimate
and there are many ways to do this.[23] What is known is decoy
hits (and, therefore, false positive matches) are distributed ran-
domly,[24] while correctly mapped PSM tend to map to the
most highly expressed proteins. This means that a 1% FDR at
the PSM level translates into a much higher PSM at the peptide
level, and a 1% FDR at the peptide level means that the protein-
level FDR is substantially higher. For example, the PeptideAtlas

database [18] has a 0.00009% PSM-level FDR, a 0.0003% pep-
tide-level FDR and a 1% protein-level FDR. The current version
of PeptideAtlas identifies 14,629 proteins from the NextProt
annotation of the human genome [25] and includes the spectra
from the Kim analysis and many (but not all) of the experiments
included in the Wilhelm analysis.[18]
The calculation of FDRs in large-scale experiments is parti-

cularly complicated because large-scale proteomics experiments
are generally made up of many smaller experiments. The peptide
FDR for an individual experiment may be correctly estimated,
but this FDR will increase when the experiments are concate-
nated because correctly identified peptides will appear in multi-
ple experiments, while false positive matches tend to be random
in nature and different in each experiment (Figure 3).[24]

Experiment 1 Experiment 2 Combined

Figure 3. Illustrating how combining experiments incre-
ments the false discovery rate. The illustration shows the
effect of combining two imaginary experiments, experi-
ments 1 and 2. In the figure, the yellow boxes represent
true positive peptide hits, the pink boxes represent false
positive peptide identifications. The real peptide false
positive rate for both experiments 1 and 2 is 10% (one false
positive event in 10). However, when the two imaginary
experiments are combined, the number of true positive hits
only rises to 11 because 7 of the peptides were identified in
both experiments. The false positive identifications were
not the same in both experiments, so the real peptide false
positive rate rises to 15.39% (2 in 13). In general, many of
the true positive peptide hits are repeated across experi-
ments and few of the false positive identifications are
repeated, so the false discovery rate will always go up
when experiments are combined – and the more experi-
ments that are combined, the greater the effect as it gets
harder and harder to identify peptides that have not pre-
viously been identified in another experiment.
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The authors of the Wilhelm paper, which brought together a
huge number of published and unpublished experiments, recog-
nized this problem and carried out their own detailed investiga-
tions into the effects of combining many experiments in their
“supplementary material”. They suggested that the result of com-
bining peptides from many experiments under the standard FDR
calculations would be a huge increase of the numbers of false
positive mappings from the decoy database. They made two
further pertinent points, namely that the classical protein FDR
calculations are only “appropriate for relatively small studies” and
that the current protein-level FDRmodel is not valid. The authors
even suggested a number of possible strategies to get around this
problem,[24] including one of their own,[26] but finally did not
apply any protein-level FDR at all to their data.[23] Instead, the
Wilhelm paper calculated a 1% FDR for the peptides in each
individual experiment and a length-dependent 5% FDR for all
the peptides once the experiments have all been combined.
The justification for the FDR limits in theWilhelm paper is that

they are in line with results from the individual large-scale experi-
ments that make up the analysis. However, the supplementary
material from the paper shows that this is not so. Even though
the number of genes identified by theWilhelm analysis is similar to
those identified in each individual experiment, the Wilhelm paper
uses two search engines, not one. For example, the Shiromizu et al.
experiment [12] reported 11,278 proteins. The Wilhelm analysis
of the Shiromizu spectra identified 11,204 genes using the Mascot
search engine, and also 11,703 genes using Andromeda. However,
the total number of genes identified from the Shiromizu spectra
will be substantially higher because the Wilhelm paper adds the
peptides identified by Mascot to those found by Andromeda. The
overlap between the peptides identified by the two search engines is
likely to be between 50 [27] and 75%,[28] which means that a
substantial number of peptides are gained by using two search
engines. Using both Mascot and Andromeda to reanalyze the
large-scale experiments means that the paper is effectively doubling
the number of large-scale experiments that are being analyzed.
Each of these >150 separate large-scale analyses will have their
own set of unique false positive matches.
The Wilhelm analysis addresses the issue of false positive

matches from multiple large-scale analyses by using a pre-calcu-
lated length-dependent 5% FDR filter at the peptide level. As
argued above, the real peptide FDR is likely to be much higher
than 5% because of the effect of combining multiple large-scale
experiments. But even if the pre-calculated global 5% length-
dependent FDR rate for the combined peptides is accurate, this
suggests that approximately 30,000 (5%) of the 598,845 peptides
identified in the analysis are false positive identifications. That is,
1.66 falsely identified peptides for every one of the 18,097 proteins
detected in the analysis, a staggeringly high number. In other
words, the 5% FDR used in the Wilhelm analysis implies that
any gene identified by just one or two peptides has a very high
probability of being a false positive identification.
This is almost certainly part of the reason why the Wilhelm

paper identifies peptides for 200 olfactory receptors.[19] Most
of these olfactory receptors (127) were identified with a single

peptide, 62 were identified with two peptides and none by more
than four peptides.
In fact, the Wilhelm and Kim studies include a large number

of very poor spectra and consequent false positive mappings. For
example, the Kim study reports two peptide-spectrum matches
in adult liver that supposedly identify the olfactory receptor
OR4F6. The peptide “TISFGGCVVQIFFIHAVGGTEMVLL
IAMAFDRYVAICKPLHYLTIMNPQR” covers 16% of the
protein sequence, but the corresponding fragmentation spec-
trum is of very poor quality (Figure 4). The Mascot scores of
the two matches are very low, 3.22 and 2.57. Another example
is the peptide “DVAVVFTEEELELLDSTQRQLYQDVM
QENFR.” This peptide is the only discriminating peptide that
identifies the gene ZNF229, but the spectrum is poor and the
Mascot score is 1.22, very close to zero (Figure 4).
The predicted Ensembl gene LINC00346 is a good example of

how the analysis and data quality problems can accumulate.
LINC00346 is coded from a single poorly conserved exon, had
no protein features, and UniProt annotates it as “Uncertain,”
“product of a dubious CDS prediction” and “may be a noncoding
RNA”.[7] Indeed, in recent versions of the database it is no longer
annotated as protein coding. There are eight peptides in
ProteomicsDB that map uniquely to gene LINC00346 and six of
these peptides pass the local 5% FDR filter for the paper. If the
statistical calculations for peptide identity and filtering were cor-
rectly carried out, the eight peptides detected for this gene would
mean that the identification of this gene would never be in doubt;
for most analyses, just two peptides are usually sufficient to be sure
of a positive identification. However, the spectra for all eight
peptides are poor, only a couple of fragments are identified for
each spectrum. Even though the analysis identifies eight separate
peptides for this gene, the identification is absolutely untrust-
worthy (Figure 5). Another example is the gene EBLN2, which is
identified by 4 discriminating peptides in the Kim analysis, and
another 9 discriminating peptides in the ProteomicsDB, and the
PSMs that identify all 13 peptides are very poor (Figure 5).
It has long been standard practice to require that proteins in

large-scale proteomics experiments be identified by at least two
distinct peptides.[,30] This requirement is essential for large-scale
experiments because no matter how well filtered the peptides are, a
protein with a single peptide hit is more likely to be a false positive
identification. False positive hits will be randomly distributed
among the genes in the genome, so proteins identified with just a
single peptide will be rich in false positive matches (see Figure 3).
Despite this, both the Kim and Wilhelm analyses identified

many proteins with a single peptide. The authors calculated that
if the Kim study had required two nondiscriminating peptides
to identify proteins they would have identified just 12,006 genes
from the GENCODE 20 gene set. The supplementary material
from the Wilhelm paper suggests that the number of proteins
identified by just one peptide is 1259, which means that the
authors identified <17,000 genes with two or more peptides.
As described above, both the Kim andWilhelm analyses used two

search engines to map the peptides to their search databases. It has
been shown that where two or more search engines agree on a PSM
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Figure 4. Examples of the many poor spectra from the Kim analysis. (A)One of the two very poor spectra used to identify peptide
TISFGGCVVQIFFIHAVGGTEMVLLIAMAFDRYVAICKPLHYLTIMNPQR for geneOR4F6. TheMascot scores of the twomatches are very
low, 3.22 and 2.57, only a handful of ions are properly identified. (B) A very poor spectrum for the peptide
DVAVVFTEEELELLDSTQRQLYQDVMQENFR, which is the only peptide that identifies gene ZNF229.Only the y-series is shown for this
+4 charge spectrum, very few y-series ions are identified. (C) A very poor spectrum for peptide MGYFLKLYAYVNSHSLFVWVCDR,
which is used to identify EBLN2. Here just a single ion is identified. It is worth noting that this peptide is supposed to have both an
N-terminal acetylation. All these spectra are from the Human ProteomeMap from the Kim analysis.
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Figure 5. Examples of the many poor spectra from the Wilhelm analysis. (A) One of the three poor spectra used to identify
peptide VGLSSPR for gene LINC00346. This peptide was identified with an Andromeda score of 71.95. No consecutive ions in
the series were identified. (B) The very poor spectrum for peptide MRPQPRGGSGR, which maps to gene LINC00346. The
peptide is supposed to be N-terminal acetylated. None of the fragments are identified. C. One of three poor spectra for
peptide SYKRSFRMILNK, which is used to identify EBLN2. Again very few fragments are identified. All these spectra are from
the ProteomicsDB and from the Wilhelm analysis.
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the identification is more likely to be reliable than when the identi-
fication comes from a single search engine.[31] This suggests that
when search engines are used in tandem as in the Kim andWilhelm
analyses it is better to take the intersection of their PSMs, those PSM
where both engines agree on the identified peptide, rather than the
union of the PSMs, where peptides need only to be identified by a
single search engine. Unfortunately, both the Kim and Wilhelm
papers take the union of the PSMs. This decision clearly improves
coverage, the numbers of genes identified, but will come at the
expense of a higher false positive rate. The studies give no figures
for the numbers of peptides identified by just a single search engine,
nor do they explain what happens when they map two different
peptides to the same spectrum, but we can estimate howmany genes
were identified by a single peptide. The supplementary material of
the Wilhelm analysis suggests that at least 1632 genes were sup-
ported by peptides from a single search engine, while the Kim study
identified 1248 GENCODE 20 genes from peptides detected by
just one of the two single search engines.
Identifying genes with more than just a single peptide and

using the intersection rather than the union of the search
engines are two very simple strategies that could have been
used to limit the worst of the effects of combining multiple
large-scale experiments. If the Kim analysis had required genes
to be identified by two discriminating peptides that in turn were
identified in the same spectrum by both the Mascot and Sequest
search engines, the Kim study would have identified just 11,229
genes from the GENCODE 20 human gene set, in line with
previous studies.[–14] This is still a substantial number, but it is
a full 6000 fewer genes than the authors claimed to have
identified in their paper.
The supplementary material from the Wilhelm analysis sug-

gests that combining these two strategies would have decreased
the number of identified proteins by 1854. However, the sup-
plementary material underestimates the effect of the combina-
tion of the two strategies. For example, according to the
supplementary material the gene LINC00472 was identified
with six peptides found by the Andromeda and Mascot search
engines. However, close inspection shows that Mascot and
Andromeda do not identify the same PSM for any peptide; so
even LINC00472 would not have been identified with these
filters. This case demonstrates that these two simple filters
would have removed substantially >1854 proteins from the list
of identifications.
For researchers, the real problem is that FDR calculations have

been complicated by improvements in proteomics technology.[–
34] The result is that false positive rates cannot be calculated
correctly. Something is clearly wrong with the FDR calculations
in these papers if the spectra in Figures 4 and 5 are able to pass a
standard 1% FDR. There is still no agreed solution to this
problem,[,25] but in the interim there are simple quality filters
that can be put in place to reduce the false positives.
Applying the intersection of the search engines and a mini-

mum of two discriminating peptides per gene is not a panacea,
but the Wilhelm data show the importance of even these two
minimal rules. With both filters in place, ProteomicsDB would

only have identified two olfactory receptors. And both of these
would have fallen foul of the 5% length-dependent FDR used in
the Wilhelm analysis.

The Human Proteome Project
The Human Proteome Project (HPP) was instigated with the
goal of experimentally observing all human proteins.[35] They
have recently produced three papers that deal with the Kim and
Wilhelm analyses in some detail.[,35,36] Horvatovich et al. [36]
discussed the importance of error analysis in large-scale data
projects in the light of the Kim and Wilhelm analyses. They
advocate the use of protein-level FDR when proteins are being
identified; a 1% peptide FDR will dramatically underestimate
the number of false positive proteins identified since false posi-
tive peptides will be randomly distributed among the proteins in
the search database – and the larger the search database, the
more likely these false positive peptides will identify sequences
that are not present in the experimental sample. The update of
the PeptideAtlas database [18] did use a 1% protein FDR and
found that the spectra from the Kim and Wilhelm studies added
<500 genes to those that were already identified by proteomics.
The main HPP paper [35] also looked into the studies, finding
that an independent analysis of the Kim spectra suggested that
the authors had identified 11,000, not 17,000, genes. They
reported that the GPM proteomics database [11] used the
same lax filters as the Wilhelm analysis to analyze their own
spectra, and they were able to map the peptides they found to
97% of the human genome. The HPP paper concluded by
calling for a 1% protein FDR and a minimum of two uniquely
mapping peptides to be used in large-scale analyses.

Identification of noncoding genes
Proteogenomics [37] is the use of proteomics to detect novel
coding regions. In essence, proteogenomics is a standard pro-
teomics search except that the search is carried out against a
combined database of known genes and known noncoding
regions. It has most value when genomes are poorly annotated:
for well-annotated genomes, the distributions of the novel and
decoy hits are almost identical,[38] and the human genome is
the best-annotated higher eukaryote genome.
Between them the two studies identified more than a thou-

sand novel protein-coding regions from proteogenomics studies.
The Wilhelm study identified 430 novel peptides using just 1%
of the spectra from ProteomicsDB and mapped them to 404
noncoding genes. The Kim paper identified 808 novel coding
regions. They found 44 new coding genes and 216 events that
added exons to known gene models.
Nesvizhkii recently wrote that the identification of peptides that

map to novel coding sequences requires a higher burden of proof.
[37] The only filter used in the Wilhelm study was that each PSM
had to have a minimum delta score of 10. Delta scores measure the
difference between the best scoring peptide and the next best
scoring peptide in a spectrum. This unfortunately falls short of
filtering all poor quality spectra as Figure 6 shows because delta
scores do not have the same discriminating power when the
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number of candidate peptides is small, as will be the case with
many poor spectra.[34] Almost all the novel coding genes were
identified by a single peptide and most were pseudogenes.
Practically all of the novel peptides identifications in this study
were identified from poor spectra or were probable single amino
acid variants or were misidentified post-translational modifica-
tions. Indeed, the authors have observed that there is an over-
representation of modified peptides among those that identify
noncoding regions in both studies (see supplementary material).
With the exception of ORF1, a retroviral open reading frame with
many copies in the human genome, there is not enough evidence to
support the identification of any of the 404 noncoding genes in the
Wilhelm paper.
While the Kim study did not require a higher burden of

proof to identify novel coding peptides, they did compare the
spectra for the best scoring peptides with spectra from synthetic
peptides. The Kim study interrogated almost three-times as
many spectra as the Wilhelm study, and some of the candidate
novel coding regions are plausible. However, the authors chose
to search against the RefSeq annotation of the human genome,
and many of the “new” coding regions they found have been
annotated as coding in other databases for a number of years.
For example, the gene MYO1B, a pseudogene in RefSeq, has
been annotated as coding by UniProt since 2007. The “new”
uORF in CHTF8 highlighted in the paper has been annotated
as a splice variant in both the UniProt and Ensembl/
GENCODE databases since 2010. These are interesting for
RefSeq because they are missing in their annotation, but they

are not new coding regions. Despite this, the Kim study did
map two or more peptides to 27 coding regions that were novel
to all annotations. It is notable that, 25 of these 27 potential
novel coding regions are extensions to existing gene models
rather than new coding genes (see Table 1).

The use of synthetic peptides
Synthetic peptides have been used in both these studies to
validate peptide identifications for subsets of potential coding
genes. Although the use of synthetic peptides for validation is to
be applauded, there are pitfalls with their use in large-scale
studies. First of all if the synthetic peptides are just a sample
of the subset to be validated, it should be made clear whether
the sample is representative or is made up of the peptide most
likely to be positively validated from the subset. The samples
used in both these studies are of the second type – those most
likely to be validated (because they either have higher scores or
more PSM), but this is not clear from their context in the two
papers. Second, the spectra from the synthetic peptide are gen-
erally compared to the experimental spectra by the human eye
and this is open to interpretation. The authors’ interpretation of
the spectra from the two analyses differs from those of the other
authors (see supplementary material).
After manual comparison of the spectra from these synthetic

peptides against the experimental data, the authors found several
problems. In many cases, the information obtained from the spectra
generated from the synthetic peptides could not be used for

Figure 6. Poor spectrum with a delta score of>10. One of two poor spectra that identify peptide GQGVPISCK for gene
LINC00346. This peptide was identified with Mascot delta score of 17.95, but the Mascot score was just 24.02, a score that is
worse than the 5% local peptide cutoff used in the main study. Again few ions in the two series are identified.
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experimental validation due to a very poor correlation and fragmen-
tation quality.
In other cases, the synthetic peptides were acquired without

taking into account all post-translational modifications or ITRAQ
labeling [39] was found in the experimental identification, which
thus impaired the ability to make a correct assessment.
The authors validated 89 of the 98 comparisons between experi-

mental and synthetic spectra from the Kim analysis. Just 30 of these
peptides were not previously identified by UniProt or GENCODE
and were reported in the supplementary material. In the Wilhelm
analysis, the authors validated just 18 of 53 synthetic-experimental

spectra comparisons that were supposed to confirm the identifica-
tion of “uncertain” annotated UniProt coding genes. If isobaric
peptides were taken into account, 8 of these 18 peptides alsomapped
to known coding genes and 4 of the remaining 10 peptides were just
7 residues in length and may be explained by SNPs.

The draft maps of the human proteome
Both the Wilhelm and Kim papers claimed to have a draft map
of the human proteome. The Wilhelm analysis combined results
from their Human_body_map tissue and fluid experiments with
a number of experiments on cell lines to determine that each
“organ” had its own specific pattern of gene expression. This
pattern matched the specific biology of the organ according to
the gene ontology (GO) analyses they carried out (e.g., platelets
were enriched in platelet growth factors).
One problem with the Wilhelm data is that the numbers of

tissues and cell lines that were used to build the map and how
they were combined is not fully clear. Within the same para-
graph, the authors state that they used 42 tissues and cell lines
for the principal component analysis and investigated 47
“organs and fluids” to analyze the 100 most expressed proteins.
This in turn contrasts with the 45 “tissues” listed in the supple-
mentary material and the 43 organs/fluids illustrated in
extended Figure 6. The authors then describe how they com-
plemented the 27 tissues and fluids from their
Human_body_map set with data from other experiments, but
in the supplementary material the Human_body_map set is
made up of 30 tissues and fluids, while the peptides deposited
from the Human_body_map experiments come from 34 differ-
ent tissues and fluids.
As well as the confusion with the numbers, there are two

problems with the use of the Wilhelm data as a map of the
human proteome. The first problem is that none of the experi-
ments from the Human_body_map tissue data had any repli-
cates. Individual proteomics experiments rarely have high
peptide coverage, and this sparseness of peptide coverage in
individual experiments means that it is difficult to draw many
conclusions from single tissue-specific experiments. Peptides
may be detected for a gene in one replicate, but not in another.
For example, the authors compared two replicates from the Kim
study that had undergone the same experimental procedure
(both from adult heart); just 29% of the peptides identified
were found in both studies. Without multiple replicates, the
authors cannot be sure whether a protein is expressed; the
absence of peptides could be because the protein is expressed
in limited quantities or not at all, or because the peptides were
present in the mixture, but not detected.
Secondly, the experiments that supplemented the

Human_body_map tissue data came from experiments on cell
lines rather than tissues. Although the Wilhelm paper carried out
comparisons between tissues and cell lines to show that they are
similar, these extra experiments were not only carried out on cell lines
but also by a number of different groups and using a range of
different instruments.

Table 1. A list of the novel coding regions identi-
fied from the Pandey analysis by more than one
peptide that is not already annotated in one of
the main genome databases.
Gene Type Peptides Notes

AAK1 Gene extension 10 Extended
version now
in Ensembl

ABR Gene extension 2

AIM1 Gene extension 2

BEGAIN Gene extension 2

EIF4G3 Gene extension 2

GLUL Gene extension 2

HECTD4 Gene extension 2

HNRNPA2B1 Gene extension 3

KHDRBS3 Gene extension 4

KSR1 Gene extension 2

NPLOC4 Gene extension 2

TPST2 Gene extension 2

VKORC1L1 Gene extension 2

ADPRHL1 Novel coding exons 3

EPB41 Novel coding exons 4

EPB41L1 Novel coding exons 2

EPB41L3 Novel coding exons 7

MYO18A Novel coding exons 6

NCAM1 Novel coding exons 5

SORBS1 Novel coding exons 11

SORBS2 Novel coding exons 2

GSG1 Other ORF 2

HNRNPUL1 Other ORF 3

HNRNPUL2 Other ORF 2

IMPDH1 Other ORF 2

LOC100421372 Pseudogene 2

We were not able to check the spectra for the peptides that identified these
regions or whether these new regions have other evidence to support their coding
potential.
ORF: Open reading frame.
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By way of contrast, the Kim paper does provide replicates for
the tissues, and only interrogates tissues and hemopoietic cells.
There is a serious issue with the validity of many of the peptide
identifications, four of the experiments they deposited do not
identify any peptides, one of the “monocyte” experiments is an
identical copy of another and the third “monocyte” experiment
seems to not have been properly purified, but the Kim study could
be described as a draft of the human proteome. The authors have
generated a filtered set of peptides based on the advice in the
paper; they are available as supplementary material (Table S1).

What we have learned from the publication of the two
drafts
Both these collaborations are the fruits of a huge amount of time and
effort, and the fact that the data they have generated is available to
the wider community is to be applauded. Despite the noise in the
data, the two studies did identify peptides for known coding genes
that have not previously been identified in proteomics experiments
and that are likely to be tissue-specific or at least not usually
identifiable in cell lines. The authors recently carried out an analysis
of the data from Kim experiment and the Human_body_map set
from the Wilhelm experiment and compared that with the peptide
data from six large-scale analyses that largely identified peptides in
cell lines rather than tissues.[,41] The authors generated conservative
subsets of peptides from all eight studies in order to remove as much
noise as possible and compared genes identified by the six large-scale
cell line studies with genes detected in the Human_body_map set
and the Kim study. They found genes that were almost exclusively
found in the Kim study and the Human_body_map set (Table S2)
and 237 genes that were almost exclusively found in the six large-
scale cell-line-based proteomics studies (Table S3). These two sets of
genes have been made available in the supplementary material.
For the most part, the genes found in the Kim andWilhelm data

sets but not in any of the cell line experiments tended to be tissue
specific. For example, CYP17A1 (steroid 17-alpha-hydroxylase/
17,20 lyase) is known to be adrenal and testis specific and there
was reliable peptide evidence for CYP17A1 in adult and fetal ovary
and testis, along with adult adrenal glands, strongly suggesting that
CYP17A1 is ovary-specific too. The gene TG (thyroglobulin) is
annotated as thyroid specific, but there was peptide evidence in
many tissues in the Kim analysis, especially in kidney, esophagus,
heart and ovary. The Kim analysis did not include thyroid tissue, but
the Human_body_map set from the Wilhelm paper did and found
61 reliably identified peptides for TG found in thyroid. CADPS2
(calcium-dependent secretion activator 2) is supposed to be widely
expressed, but most reliable peptide evidence was in frontal cortex.
There were also genes identified with many peptides solely in the
Kim experiment such as ABCA4 (retinal-specific ATP-binding cas-
sette transporter) for which the authors identified 48 reliable pep-
tides, all in retina samples, and SMC1B (structural maintenance of
chromosomes protein 1B), a meiosis-specific component of the
cohesin complex for which there were 38 peptides in ovary and
testis.
The authors carried out a GO term analysis using the DAVID

functional analysis tool [42] (Table 2) for the enriched peptides. The

most significantly enriched terms for the 322 tissue-expressed genes
(one term from each of the most enriched clusters) were “sensory
perception of light stimulus” (27 genes) and “neurological system
process” (48 genes). Among the 237 genes identified in cell line
experiments, but not in tissues were cell cycle-specific proteins such
as BRCA2 (breast cancer type 2 susceptibility protein), BRCA1
(breast cancer type 1 susceptibility protein), AURKA (aurora kinase
A) and ERCC6L (DNA excision repair protein ERCC-6-like), and
DNA repair proteins such as KDM4A (lysine-specific demethylase
4A). The significantly enriched terms for the cell line-expressed
genes included “cell cycle” (58 genes), “DNA metabolic process”
(45 genes) and “chromosome organization” (36 genes).

The potential impact of the Kim and Wilhelm papers on
medical and clinical proteomics
With the improvement in proteomics technologies, MS has
become an increasingly useful tool for biomedical research,
although there is still some way to go before proteomics will
be as widely used as gene expression studies. MS-based proteo-
mic studies can help in diagnosis by finding disease-related
mutations and biomarkers, such as alternative splice variants.
How genomic alterations in tumors and other diseases correlate
with proteomics data is still a major unexplored question.
The two Nature studies should have been an important advance

because they generated freely available tissue-based maps of the

Table 2. A list of the most significant GO terms
from those genes that appeared only in cell line
experiments and those that appeared in the Kim
and Wilhelm tissue-based analyses.
Tissue-detected genes Numbers Benjamini

Sensory perception of light stimulus 27 1.30E-13

Neurological system process 48 6.40E-08

Sexual reproduction 22 4.10E-04

Plasma membrane part 60 7.90E-04

Cell–cell signaling 24 1.70E-03

Gated channel activity 18 1.70E-03

Cell line detected genes

Cell cycle 58 5.30E-18

DNA metabolic process 45 1.60E-16

Chromosome organization 36 1.70E-10

Spindle 19 8.40E-10

Nuclear lumen 56 8.40E-09

Helicase activity 16 7.90E-07

Nucleotide binding 73 8.70E-07

Regulation of cell cycle 22 4.40E-05

Chromatin organization 23 9.00E-05

A complete list of the experiments is in references [] and [39]. Only one GO term is
taken from each of the clusters generated by DAVID. Numbers shows the numbers
of genes that were annotated with the GO term and Benjamini shows the
Benjamini value associated to that GO term.
GO: Gene ontology.
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human proteome. If these had been of higher quality, they might
have provided a baseline of healthy protein expression, which might
then have been used by researchers in conjunction with other large-
scale studies such as the Human Proteome Atlas [43] and the
Clinical Proteomics Tumor Analysis Consortia ([44]) to find pat-
terns typical of cancers and other diseases and to help make sense of
predictions from genome-wide association studies.
Currently, just one group has used the data to help make clinical

predictions.[,46] The first paper used the Human Proteome Map
from the Kim analysis to predict tissue specificity for 10 possible
previously uncharacterized pancreatic cancer targets. The tissue
specificity of four of these was supported only by peptides erro-
neously identified from dubious PSM. The second paper found
proteomics evidence for 20 novel Ebola virus-associated proteins
from the Kim and Wilhelm studies. At least eight proteins that
were supposed to be present in fluids or in tissues related to Ebola
(skin, kidney, liver and retina) were identified via poor spectra.
Two examples stand out. The expression of a killer cell immuno-
globulin-like receptor (KIR2DL4) was highest in urine in
ProteomicsDB (from the Wilhelm analysis). But this result is
supported by just a single peptide from a dubious PSM, while
KIR2DL4 is not detected anywhere else, not even in NK cells.
BORA, protein aurora borealis, was found uniquely in platelets.
BORA is required for the activation of aurora kinase at the onset of
mitosis, yet platelets have no cell nucleus. It should be noted that
the authors in these two papers used ProteomicsDB without even
the extra filtering step that was introduced in the Wilhelm analysis.
One of the main objectives of medical proteomics is the identi-

fication of disease biomarkers, peptides that are specific to a
disorder or a number of disorders.[,48] Here proteomics searches
of healthy and diseased tissues can help identify peptides unique to
the condition being interrogated. Clearly a reliable tissue-based
map of the human proteome would be a first step to understand
functional differences between diseased and healthy tissues. An
understanding of tissue specificity from such a catalogue of the
human proteome would be particularly valuable when narrowing
down candidate disease biomarkers from large-scale proteomics
studies. This catalogue is clearly not yet in place, but these two
papers are likely to inspire further research in this direction and
the Biology/Disease-driven HPP [49] may provide the mechan-
isms to support this research. A catalogue of genes and peptides for
known healthy tissues would open the door to proteomics searches
for biomarkers for a multitude of diseases and cancers.
Differences in gene expression at the protein level, such as

changes in signaling pathways that are only found in disease
tissues, might also be exploited in the search for biomarkers. In
this analysis, the authors found 237 genes that standard proteo-
mics experiments detected in immortal cells, but not in healthy
tissue. One example is ERCC6L, a known cell cycle protein.
RNAseq data from the Human Protein Atlas [43] backs this up
– there is ample RNAseq evidence for ERCC6L in cell lines, but
very little evidence in healthy tissues. It may be that proteomics
experiments can be used not only to detect biomarker peptides
for disease but also to detect the overexpression of a panel of
genes specific for a certain condition.

Proteogenomics studies could also identify novel peptide bio-
markers such as single-nucleotide variants, aberrant gene fusions,
alternative splice variants, post-translational modifications and
even noncoding genes. Unless they are designed with care,
[,38,50] proteogenomics studies can generate large numbers of
false positive identifications,[,52] but they can still have value for
identifying biomarkers especially when combined with targeted
proteomics,[53] and large-scale proteogenomics studies claim to
have identified new cancer-specific peptides.[44]

Expert commentary
The high-profile nature of the publications means that they have
generated a lot of interest (between them they have >450 references
in little more than a year). The two associated databases provide
almost unrestricted access to peptide, protein and tissue data, and
ProteomicsDB also integrates RNAseq data and useful analysis tools.
However, the lax use of FDR filters in the two Nature studies

leads both papers to vastly overestimate the numbers of coding and
noncoding genes that were identified from the experiments. This
will have far-reaching consequences including the wasting of anno-
tators and researchers time and resources, and the propagation of
false positive identifications in databases. The data will obscure real
biological insights, such as the >300 proteins identified solely in
tissue-based proteomics studies and has already been used to justify
unjustifiable scientific hypotheses.[,54] In the long term, this will
undermine confidence in large-scale proteomics data.[32]
Much of the data generated by these two experiments is of

poor quality and the danger is that users of the ProteomicsDB
and Human Proteome Map databases will be unaware that
many thousands of gene identifications and as many as 50%
of the peptide identifications are dubious and will use the data
without any knowledge of its origin or quality.
Beyond the two papers, the most important issue in large-scale

proteomics experiments is the inappropriate use of the standard
target-decoy strategy to effectively estimate false positive rates.
There are substantial issues with the narrowness of the mass pre-
cursor windows used by modern high-resolution mass spectrometers
[33,34] and with the identification of post-translational modifica-
tions.[34] In large-scale experiments, this is exaggerated by the way
in which multiple smaller experiments are combined to make one
large-scale experiment [24,25] and in proteogenomics analyses by
the size of the search databases.[37] These problems are not limited
to the two Nature papers discussed in this review and ideally the
community should come up with standards to deal with the growing
level of false positive identifications in large-scale experiments. Some
work has been carried out in this area,[,25] but there is still no agreed
simple way to do this.
Until the proteomics community agrees on a solution to the

problem, we would suggest that large-scale proteomics studies (and
the researchers that review the papers) follow these simple recom-
mendations. The study should use at least two search engines and
include the intersection of the PSMs identified, not the union.[31] If
trypsin is used as the cleavage enzyme, the authors should not allow
non-tryptic or semi-tryptic peptides (except to identify signal peptide
cleavage sites). Nondiscriminating peptides should be discarded,
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bearing in mind that leucine and isoleucine cannot be discriminated
by weight. Genes should be identified by at least two peptides unless
it can be shown that detecting more than a single tryptic peptide is
unlikely for that gene. Researchers should take care with post-
translational modifications [55]; we have found that acetyl and
deamidyl modifications in particular cannot be reliably identified.
Search databases for noncoding proteins should be of limited size –
the greater the size of the noncoding database the more likely it is to
find random (incorrect) matches.[,50] In addition, peptides that
identify new coding genes should be subject to more robust mea-
sures,[37] including the manual checking of all individual spectra.

Five-year view
The publication of these two papers has galvanized the proteomics
and annotation communities alike into a series of meetings to discuss
the potential implications. There are a series of initiatives underway
in the proteomics community to discuss how best to deal with the
clear problems in FDR calculations for large-scale experiments, while
the claims made for the novel coding regions provided the impetus
for bringing together representatives of proteomics and gene annota-
tion communities in a conference in Cambridge with a view to
drawing up guidelines for future large-scale proteomics experiments.
The conference was a first step in providing a guide as to how
proteomics experiments could be used to support the annotation
of coding genes and transcript across for the whole annotation
community.
Which genes and transcripts code for proteins and which do

not is a fundamental scientific question that is still not fully
answered. Although the catalogue of standard protein coding
genes is likely to be close to completion, there is some debate
about how many short open reading frames are protein coding
[56] and whether or not there are protein coding regions in long
intergenic RNA.[,58] While these are interesting questions, it

seems unlikely that current proteomics techniques can provide
much help since few of these potential new coding regions are
conserved. Standard proteomics experiments detect few peptides
for proteins that have evolved recently.[14]
While proteomics techniques will identify few new human pro-

tein coding genes, they still have an important role to play in
improving gene models. It is interesting to note that all but three
of the possible new coding regions we identified from the Kim
analysis would extend the gene model by adding coding exons,
rather than adding a whole new gene with coding potential. Large-
scale proteomics studies also have a role to play in identifying
common single amino acid variants and minor annotation errors,
[18] while we have shown that proteomics can help determine the
dominant cellular isoform for many genes.[40]
The two papers, particularly the Kim analysis, are a first attempt

to determine protein tissue specificity via proteomics technology.
A proper draft map of the human proteome would clearly require
a more rigorous study, but the high-profile nature of these two
studies will almost certainly inspire further large-scale tissue-based
experiments. It is to be hoped that these studies are more rigorous
than the Nature studies, include replicates to avoid the problem of
sparse peptide coverage and come with sufficient metadata to
allow easy data mining across the different experiments.[59]
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Key Issues

● The two “drafts of the human proteome” published by Nature substantially overestimate the numbers of protein coding genes they

identify.
● We believe that the Kim et al. study may have reliably identified <12,000 genes, it is not clear how many the (larger) Wilhelm et al.

analysis might have identified.
● The reasons for the inflated gene numbers are the incorrect use of nondiscriminating peptides and multiple problems with the

calculation of false discovery rates.
● A surprisingly large number of peptides in both studies are identified from poor spectra, and these identifications are likely to be

incorrect.
● This noise from the individual experiments that make up the two studies is amplified when the individual experiments that make up each

study are combined.
● Few of the novel coding regions identified by the Kim et al. study and almost none of the noncoding genes identified by the Wilhelm

et al. study are supported by sufficient peptide evidence to warrant further investigation by manual annotators.
● The use of synthetic peptides to confirm peptide identifications requires very careful manual assessment.
● Despite the abundant noise in these two analyses, we find that they do identify potentially interesting signals from the tissues they

interrogate.
● The two papers make their data freely available and the tissue-based nature of the experiments is likely to inspire further research.

The delineation of a baseline of healthy tissue-based expression for the human proteome could have profound implications for
biomedical researchers.
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