
Association of long-term PM2.5 exposure with mortality using
different air pollution exposure models: impacts in rural and
urban California

Cynthia A. Garcia*, Poh-Sin Yap, Hye-Youn Park and Barbara L. Weller

California Air Resources Board, Research Division, Sacramento, CA, USA

(Received 8 January 2015; final version received 7 May 2015)

Most PM2.5-associated mortality studies are not conducted in rural areas where mor-
tality rates may differ when population characteristics, health care access, and PM2.5
composition differ. PM2.5-associated mortality was investigated in the elderly resid-
ing in rural–urban zip codes. Exposure (2000–2006) was estimated using different
models and Poisson regression was performed using 2006 mortality data. PM2.5
models estimated comparable exposures, although subtle differences were observed
in rate ratios (RR) within areas by health outcomes. Cardiovascular disease (CVD),
ischemic heart disease (IHD), and cardiopulmonary disease (CPD), mortality was sig-
nificantly associated with rural, urban, and statewide chronic PM2.5 exposures. We
observed larger effect sizes in RRs for CVD, CPD, and all-cause (AC) with similar
sizes for IHD mortality in rural areas compared to urban areas. PM2.5 was signifi-
cantly associated with AC mortality in rural areas and statewide; however, in urban
areas, only the most restrictive exposure model showed an association. Given the
results seen, future mortality studies should consider adjusting for differences with
rural–urban variables.

Keywords: air pollution; fine particles; rural; cardiovascular; mortality

Introduction

Exposure to particulate matter (PM) air pollution is a leading risk factor for premature
mortality globally (Lim et al. 2013). An extensive body of epidemiological research has
established a strong association between chronic exposures to fine PM less than 2.5 μm
in diameter (PM2.5) and cardiovascular and all-cause non-accidental mortality (Dockery
et al. 1993; Pope et al. 2002; Pope 2004; Laden et al. 2006; Miller et al. 2007; Chen
et al. 2008; Puett et al. 2009; Ostro et al. 2010; Crouse et al. 2012; Lepeule et al. 2012;
Cesaroni et al. 2013; Hoek et al. 2013). In fact, the U.S. EPA (2009) Integrated Science
Assessment (ISA) recently concluded that a causal relationship exists between long-term
PM2.5 exposure and cardiovascular effects and mortality (U.S. EPA 2009). These epi-
demiological studies have been conducted mainly in urban areas with very few rural
areas included since most regulatory air pollution monitors are sited in populated areas.
However, the responses to PM2.5 exposure in rural areas may be different from those in
urban areas. For example, there are differences in population characteristics (Hart et al.
2005; Johnson et al. 2005) and access to health care (Laditka et al. 2009; Probst et al.
2011) between rural and urban areas, which may result in increased susceptibility to
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PM2.5 impacts. These factors and others may drive a phenomenon described as the
“non-metropolitan mortality penalty,” a recently observed pattern, in which mortality
rates are higher in rural compared to urban areas (Cosby et al. 2008; Cossman et al.
2010).

In addition, differences exist between particle chemical and physical composition in
rural vs. urban areas, which may be due to variations in sources and seasonality
differences (Chow et al. 1994; Motallebi et al. 2003; Eiguren-Fernandez et al. 2004;
Rinehart et al. 2006; Chen et al. 2007; Hu et al. 2014). Different methodologies used to
estimate long-term PM2.5 exposure may also influence the statistical estimation of the
health impacts because each model results in a unique pattern of non-differential mis-
classification bias inherent to its structure, especially in rural areas where air pollution
monitors are sparser. For these reasons, a comparison is warranted of the long-term
health impacts of ambient PM2.5 exposure in rural vs. urban areas.

The elderly is the target population in this study because the health outcome of
interest is cardiovascular disease related, and advanced cardiovascular disease (CVD) is
rare in populations younger than 65 years of age. Air pollution-related health studies
that have the youngest populations tend to show little if any effect of PM2.5 exposure
(McDonnell et al. 2000) compared to studies where the bulk of the population included
is around 60–75 or 80 years of age at the time of death (Krewski et al. 2000, 2009;
Eftim et al. 2008; Jerrett et al. 2011, 2013). The effect increases to a peak in the age
range of 65–75 years, and then declines (Zeger et al. 2008). Moreover, the elderly is a
subpopulation that has been shown to be sensitive to PM exposure (Simoni et al. 2015).

One air pollution cohort study of farmers and their spouses residing in Iowa and
North Carolina has specifically examined mortality and chronic PM2.5 exposure in rural
areas. An association was found between long-term exposure to PM2.5 and cardiovascu-
lar mortality only among males and was strongest for participants whose residential
location did not change, and who therefore likely had the most precise exposure esti-
mates. All-cause mortality was not associated with PM2.5 in the cohort as a whole.
Also, an inverse relationship between all-cause mortality and PM2.5 exposure was seen
among women (Weichenthal et al. 2014); however, this finding was not robust to sensi-
tivity analyses.

In this study, we investigated impacts of long-term PM2.5 exposure in rural vs.
urban areas in California on mortality from CVD, ischemic heart disease (IHD), car-
diopulmonary disease (CPD), and on all-cause non-accidental (AC) mortality in an
elderly population. We also assessed the effects of different methodologies used to esti-
mate PM2.5 exposure.

Methods

Air pollution data

Ambient PM2.5 concentrations from 2000 to 2006 collected at 116 fixed monitoring
sites were extracted from California’s National, State, and Local Air Monitoring Net-
work (NAMS/SLAMS) and the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) network (Figure 1). Seven-year (2000–2006) average concentrations
of PM2.5 were calculated from monthly averages and were assigned to zip code cen-
troids using three different exposure models: (1) the closest monitor, (2) inverse distance
weighting (IDW), and (3) kriging.

146 C.A. Garcia et al.



The closest monitor model assigned the seven-year average PM2.5 concentration of
the closest-fixed monitor to zip code centroids as a proxy for participants’ exposures.
This model was implemented using three different forms. First, the model was imple-
mented with no restriction of the distance between the nearest fixed monitor and the zip
code centroid (unrestricted). The next two forms of the model were implemented using
a restriction of a radius around the fixed monitor of 50 and 10 km. Therefore, all of the
zip code centroids located within these radii (either 50 or 10 km) were included in the
analysis and were assigned the seven-year average PM2.5 concentration from the nearest
fixed monitor.

The IDW model assigned seven-year average PM2.5 concentrations to zip code cen-
troids by creating an interpolated pollution surface using the Geostatistical Analyst
extension of ArcMap version 10.0 (ESRI, Redlands, CA). The IDW model was applied
with a 50-km restriction for consistency with other studies and monitoring siting criteria
(Ozkaynak et al. 2007; U.S. EPA 2009; Jerrett et al. 2011; Lipsett et al. 2011) and was
set to include concentration of one monitor station regardless of the distance for areas
that had no fixed monitor within a 50-km radius.

Figure 1. (Color online) California rural and urban zip codes are depicted with the locations for
California’s PM2.5 fixed monitoring networks (National, State, and Local Air Monitoring Network
and the IMPROVE network).
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The universal kriging model, like the IDW model, assigned seven-year average
PM2.5 concentrations to zip code centroids by creating an interpolated pollution surface.
Universal kriging was used since in California, there is a prevailing wind trend (Chow
et al. 1994; Motallebi et al. 2003; Eiguren-Fernandez et al. 2004; Rinehart et al. 2006)
which can be captured by the polynomial deterministic function. Geostatistical Analyst
extension of ArcMap version 10.0 (ESRI, Redlands, CA) was used to run the universal
kriging model.

Study population

The study population included all those aged 65 and older (65 +) in California who died
in 2006. Mortality data were obtained from the Death Statistical Master File from the
California Department of Public Health. The following International Classification of
Diseases (WHO 1980), 10th Revision (ICD-10) categories were used to define the mor-
tality outcomes of interest: CVD (I00-I99), IHD (I20-I25), CPD (I00-I99 and J00-J98),
and all-cause non-accidental (A00-R99, excluding V01-V99).

Zip codes were included in the analysis if they had a total of 30 or more inhabitants
(Hogg et al. 1993) aged 65 +, for a total of 1535 zip codes in California. Total mortality
for California at the zip code level was calculated for AC and cause-specific mortality
by summing the death counts for the 65 + population. Several contextual variables of
ethnicity (percentage white, black, and Hispanic) and socioeconomic status (SES) were
examined as potential predictors, along with two composite SES variables (Table 1).
The SES variables were selected based on the Public Health Disparities Geocoding Pro-
ject Monograph guidelines for area-based (contextual) monitoring of socioeconomic
inequalities in health (Krieger 1992; Krieger et al. 2002, 2003). These variables were
derived from the 2000 Census for the entire population by zip code and were examined
to determine their potential for confounding the PM2.5–mortality relationship. We also
investigated to see if there were statistically significant differences in these variables
(α = 0.05) between rural and urban California (Table 1).

Statistical analysis

T-tests were performed to compare estimated concentrations of PM2.5 and SES vari-
ables in rural vs. urban regions for three exposure models, i.e. closest monitor, IDW,
and kriging. Poisson regression was performed to investigate relationships between mor-
tality and chronic PM2.5 exposure using different estimation methods of exposure. The
total 65 + 2006 estimated population at the zip code level was obtained from the
Community Sourcebook America (ESRI 2006), and was used as the offset for the Pois-
son regression in the analysis. The potential confounding effects of the contextual vari-
ables were examined based on the change-in-estimate criterion using a cut-off value of
10 %. Of 11 potentially confounding SES variables, we found the percent unemploy-
ment of the civilian labor force aged 16 years or older (unemployment), and the percent
of persons aged 25 and older with less than a high school education (low education), to
be statistically significant predictors of mortality and therefore included them in the final
regression models. To compare our results with those of other studies, rate ratios (RRs)
for PM2.5 were scaled to increments of 10 μg/m3. We applied the U.S. Census Bureau’s
definition of an urban census tract (i.e. having a population density equal to or greater
than 500 people per square mile) to California’s zip codes, resulting in 732 urban and
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803 rural zip codes (Figure 1). We conducted stratified analyses of rural vs. urban zip
codes, including unemployment and low-education variables in the final models. For the
statewide model, we added a rural–urban indicator variable (Crouse et al. 2012).

Results

Air pollution

This study was designed to investigate PM2.5-associated mortality in rural and urban
locations. The performance of various exposure models used to estimate air pollutant
concentrations was also investigated. The exposure models ranged from simple inter-
polation approaches, such as the closest monitor and IDW, to a more sophisticated geo-
statistical technique, universal kriging, which is purely spatial and accounts for patterns
of space–time dependence. Depending on the exposure model used, the average concen-
trations of PM2.5 in urban areas ranged from 15.44 to 15.86 μg/m3 and in rural areas,
the average concentrations of PM2.5 ranged from 10.16 to 10.64 μg/m3 (Table 2).
PM2.5 concentrations were statistically significantly higher in urban areas than rural
areas, with a mean difference of approximately 5 μg/m3 for all three exposure models.

Table 1. Area-based demographic variables from the 2000 U.S. Census evaluated for the analysis
of PM-associated mortality in rural vs. urban areas in California.

Demographic characteristic California Rural Urban
Total N ** 33,292,571 8,265,963 25,026,608

Single variables
% white population* 68.93 ± 21.07 77.83 ± 17.00 59.13 ± 20.76
% black population* 4.44 ± 8.64 1.83 ± 3.44 7.30 ± 11.31
% Hispanic population* 24.59 ± 22.44 20.52 ± 21.45 29.06 ± 22.67
% persons employed predominantly in
working class-occupations i.e.
nonsupervisory employees*

65.16 ± 14.85 68.04 ± 12.67 62.02 ± 16.35

% unemployment (civilian labor force aged
16 years or older)*

7.96 ± 6.24 8.84 ± 6.59 6.99 ± 5.67

% households with an income < 50 % of the
U.S. median household incomes*

21.54 ± 12.18 23.47 ± 12.20 19.42 ± 11.82

% persons below the federally defined poverty
level ($17,050)

14.11 ± 9.88 14.55 ± 9.67 13.62 ± 10.09

% persons aged ≥ 25 years with < high
school education*

43.39 ± 18.75 45.62 ± 17.20 40.94 ± 20.04

% house households containing > 1 person
per room*

49.29 ± 26.05 40.00 ± 19.66 59.48 ± 28.30

Composite variables
Factor pertaining to economic resources
(Factor 1)a,c

100.00 ± 25.00 86.90 ± 16.12 114.37 ± 25.12

Townsend indexb,c 0.31 ± 1.74 −0.01 ± 1.46 0.66 ± 1.93

aFactor 1 contained nine variables, specifically working class, unemployment, low income, median family
income, below poverty level, adults who rent their homes or apartments, adults that do not own cars, low
education, and crowding.
bTownsend index is a measure of economic and social deprivation consisting of a standardized Z score
combining data on percent crowding, percent unemployment, percent of individuals who do not own cars, and
percent of adults who rent their home or apartment.
cHigher scores represent higher degrees of deprivation or economic disadvantage.
*Statistically significant differences between rural and urban zip codes (p < 0.05).
**Total census population from 1535 zip codes with a minimum of 30 inhabitants aged 65+.

International Journal of Environmental Health Research 149



This difference was also observed for the closest monitor model restricted to a 10-km
radius, which included fewer zip codes than the other models (Table 2).

Population demographics

Selected single and composite contextual SES variables at the zip code level were ana-
lyzed to identify differences between these variables in urban vs. rural areas. Rural and
urban locations had non-significant differences in the percentages of persons below the
federally defined poverty level (Table 1). However, in rural locations, the percentages of
the white population, those employed in working-class occupations, adults with less
than a high school education, unemployed people, and lower income households were
significantly higher when compared to urban locations. There were statistically signifi-
cant higher percentages of blacks and Hispanics, and crowded households (more than
one person per room) in urban compared to rural locations (Table 1). These observed
differences between the rural and urban populations of California are comparable to dif-
ferences reported for rural and urban populations in other parts of the U.S. (Probst et al.
2011).

Mortality totals by health outcome and by study area

The total study population who died in 2006 by studied area was: statewide
N = 162,124, rural N = 46,753, and urban N = 115,371. The total study population who
died in 2006 by health outcome and by study area was for CVD: statewide N = 69,436,
rural N = 19,646, and urban N = 49,790; for IHD: statewide N = 37,781, rural
N = 10,245, and urban N = 27,536; for CPD: statewide N = 89,219, rural N = 25,578,
and urban N = 63,641; for AC mortality: statewide N = 161,535, rural N = 46,549, and
urban N = 114,986.

Mortality RRs

The RRs for mortality in California in rural and in urban regions and statewide are
shown in Figure 2(a)–(d). The magnitude of the associations between PM2.5 exposures
and AC mortality and cause-specific mortality (i.e. CVD, IHD, and CPD) varied

Table 2. Means and standard deviations of estimated long-term PM2.5 concentrations
(2000–2006 average) by zip code for different exposure models in California.

Modeled
(PM2.5 μg/m3)

California Rural* Urban*

Zip code
N (%) Mean

Std
Dev

Zip code
N (%) Mean

Std
Dev

Zip code
N (%) Mean

Std
Dev

Closest monitor 1535 (100) 12.68 5.26 803 (100) 10.16** 4.72 732 (100) 15.44** 4.35
50 km 1442 (94) 12.92 5.22 710 (88) 10.32** 4.74 732 (100) 15.44** 4.35
10 km 528 (34) 14.99 4.63 85 (11) 10.51** 3.85 443 (61) 15.86** 4.26
IDW 1535 (100) 12.94 4.70 803 (100) 10.64** 4.16 732 (100) 15.45** 3.90
Kriging 1535 (100) 13.06 5.01 803 (100) 10.58** 4.00 732 (100) 15.77** 4.58

*Percentages are based on the total number of zip codes and statistically significant differences are seen
between urban and rural using t-test (p < 0.05).
**Differences were statistically significant for all models.
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depending on the exposure model used to generate the PM2.5 estimates. From the strati-
fied analysis, the adjusted RRs for mortality (per 10 μg/m3 increment of PM2.5) for
rural areas varied from 1.09 to 1.24 for CVD, 1.16 to 1.30 for IHD, 1.08 to 1.21 for
CPD, and 1.08 to 1.14 for AC. In urban areas, the adjusted RRs for mortality (per
10 μg/m3 increment of PM2.5) were somewhat lower and varied from 1.06 to 1.12 for
CVD, 1.21 to 1.29 for IHD, 1.04 to 1.09 for CPD, and 0.99 to 1.02 for AC. The state-
wide mortality RRs after adjusting for unemployment, low education, and a rural–urban
indicator ranged from 1.07 to 1.13 for CVD, 1.20 to 1.28 for IHD, 1.06 to 1.10 for
CPD, and 1.01 to 1.03 for AC per 10 μg/m3 increase of PM2.5 concentration. In all
three regions, i.e. rural and urban areas, and statewide, the relationships between chronic

Figure 2. (a–d) Adjusted RRs of PM2.5-associated specific-cause and all-cause mortality for all
of California, and rural and urban areasa.
Note: aAny zip code with a population of less than 500 people per square mile in the 2000 Cen-
sus was designated as rural. Models for all of California were adjusted for urban and rural, unem-
ployment, and low education. Models for rural and urban areas were adjusted for unemployment
and low education.
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PM2.5 exposure (with all exposure models) and all mortality categories studied (CVD,
IHD, CPD, and AC) were found to be statistically significant, with one exception: in
urban areas, a significant association was found for AC mortality only with the closest
monitor model restricted to a 10-km radius. Interestingly, the magnitude of association
for all the models was higher for CVD, CPD, and AC mortality in rural California than
in urban areas, but similar for IHD mortality in both rural and urban areas.

Discussion

This assessment found significant associations in the elderly between cause-specific
mortality (CVD, IHD, and CPD) and long-term PM2.5 exposure within both rural and
urban areas of California as well as statewide. The rural–urban differences that we
observed for all outcomes, but less so for IHD mortality, could have been impacted by
residual confounding from unmeasured factors, particularly within the urban areas. For
example, it is possible that mortality in urban areas could be lower in part because of a
higher quality of and better access to health care, including faster emergency response
times (Stults et al. 1984; Grumbach et al. 2003; Eberhardt and Pamuk 2004; Vukmir
2004; Glover et al. 2004; Probst et al. 2004; Trivedi et al. 2013). Observed rural–urban
disparities could also result from differences in individual-level health behaviors, such
as physical activity, diet, or smoking (Glover et al. 2004; Patterson et al. 2004;
Doescher et al. 2007; Trivedi et al. 2013). Individuals in rural and urban areas may also
differ in their levels of knowledge of heart attacks and stroke (Swanoski et al. 2012)
and in ways to prevent them. The accumulated health and SES disparities listed above
may lead to the “non-metropolitan mortality penalty,” where higher death rates are
observed in rural than in urban areas (Cosby et al. 2008; Cossman et al. 2010), hence
masking the overall association between particulate pollution and mortality in urban
areas. Some investigators are beginning to recognize the need to control for this penalty
in epidemiological studies (Pope et al. 1995; Krewski et al. 2000; Crouse et al. 2012)
by adjusting their models with a rural/urban factor. For IHD mortality, however, we
found similar PM2.5-associated impacts in urban and rural regions. Hence, these unmea-
sured factors may not be as important for IHD mortality in either rural or urban regions.
Another possibility is that the relatively smaller sample size for IHD mortality and the
greater variability seen in the results may have affected our ability to detect a difference
in IHD mortality between rural and urban areas.

The results for AC mortality were complex. The statewide RRs found in this assess-
ment for AC mortality are similar to those in other studies, in that the AC mortality
RRs are not as strong as those for IHD mortality (Jerrett et al. 2005; Ostro et al. 2010;
Lipsett et al. 2011; Crouse et al. 2012). On the other hand, one California statewide
study (Jerrett et al. 2011, 2013) found higher RRs for both AC and CVD mortality com-
pared to those in this report, possibly because the investigators were able to control for
individual as well as contextual factors. Still other studies (Lipsett et al. 2011) reported
mixed findings (i.e. attenuated or no associations) in AC mortality, including the one
study in rural areas in Iowa and North Carolina that did not find an AC mortality effect
in male farmers, but did observe an association with PM2.5 exposure and CVD
(Weichenthal et al. 2014). AC mortality includes causes that have not been linked to air
pollution by plausible biological mechanisms, in contrast to CVD, CPD, or IHD, for
which clear associations have been observed with chronic air pollution exposure (Pope
et al. 2004; Krewski et al. 2009; Ostro et al. 2010; Lipsett et al. 2011; Crouse et al.
2012). In addition, where we observed the weakest associations for AC mortality in
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urban areas, subtle differences in exposure models were seen; in this case, an associa-
tion with AC mortality was observed with the closest monitor model only when it was
restricted to 10 km. However, significant results were found for AC mortality in rural
areas with all exposure models.

Chemical and physical compositional differences have been reported between rural
and urban PM, and it is possible that the long-term health impacts of ambient PM2.5 in
rural and urban areas, such as the mortality effects seen in the current assessment, could
be affected by these differences (Chow et al. 1994; Motallebi et al. 2003; Eiguren-
Fernandez et al. 2004; Rinehart et al. 2006; Chen et al. 2007; Hu et al. 2014). Since the
concentration of PM2.5 estimated for rural areas was consistently lower than that in
urban areas, another possibility is that the rural–urban differences we observed may be
due to a non-linear exposure–response curve for PM2.5. Various exposure–response
models have been considered for relating PM2.5 to mortality (Daniels et al. 2000;
Schwartz et al. 2008; Pope et al. 2009; Pope, Brook et al. 2011; Pope, Burnett et al.
2011; Cox 2012; Crouse et al. 2012), and a no-threshold model with log-linearity for
PM-related mortality has been adopted by a number of investigators and policymakers
(U.S. EPA 2010). However, heterogeneities in the shapes of model curves across study
populations are still poorly understood (U.S. EPA 2010), particularly for different age
groups, and in this regard, we cannot exclude the possibility that the rural–urban differ-
ences in PM-related mortality observed could be a result of a non-linear characteristic
of exposure–response models to increasing PM concentrations.

The results of this assessment also seem to indicate that the PM2.5 concentrations
estimated by simpler exposure models, such as the closest monitor and IDW, were not
greatly different from the more complex universal kriging model for the statewide
assessment, or for the rural and urban regions, but may have contributed to the slight
differences observed in the RRs within the studied areas by health outcomes. This result
may be due in part to monitor density heterogeneity shown in Figure 1 (Wong et al.
2004). Even though the density of PM2.5 monitors in California is greater than in other
areas of the country, the network is not consistently distributed throughout the state,
with the less-urbanized regions generally having lower monitor density. This inconsis-
tent monitor density may influence how efficacious the IDW and kriging models are in
predicting PM2.5 exposure in rural areas vs. in urban areas, as these models function
best when the monitoring data adequately capture significant spatial differences. This
also might be the plausible reason the IDW, which defaults to weighted distance from
the available monitoring stations, provide a higher strength of association in urban than
in rural area and vice versa for universal kriging. However, we feel there is no definite
interpretation for the differences observed in these exposure models. Future research
should focus on quantifying the variations in performance between different exposure
models under different scenarios (e.g. rural vs. urban) to identify if certain models are
better suited for use in specific environments, given the heterogeneity of the density of
air pollution monitor networks.

As an ecological study, there are limitations to this assessment that should be con-
sidered when interpreting the results. Assigning estimated PM2.5 values to the zipcode
level as a proxy measure for personal exposure likely resulted in non-differential mis-
classification of exposure, which can produce a bias toward null findings. However,
considering the larger size of zip codes and lower monitoring station density in rural
areas it is likely that non-differential misclassification bias occurred to a greater extent
in the rural areas, so that the RR might have been biased toward the null more so than
in the urban areas. Previous research (Lepeule et al. 2012) has shown that exposure
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estimates using residential address information may not reduce bias on the effects of
exposure on health outcomes, but others have emphasized the need for exposure models
based on residential locations (Su et al. 2009). An additional limitation is that the analy-
ses relied on readily available data from the California death master file, and no
information was available on potential individual-level confounders, such as previous
occupational exposures, cigarette smoking histories, and noise exposure at the individual
residence. In addition, air pollution from indoor sources, including wood smoke, which
can be an indoor as well as an outdoor pollution source, was not accounted for in the
study. Better methodology of estimating indoor and outdoor exposure is warranted in
future research.

This study found significant associations between PM2.5 and mortality in the elderly
and found that the impacts of PM2.5 on mortality were higher in rural areas for all
health endpoints examined except for IHD. Though further research in this area would
be helpful, significant differences were observed in the association between PM2.5
exposure and mortality in rural compared to urban environments, which suggests that
residence in rural vs. urban locations should be considered in future epidemiological
studies and that a rural–urban variable(s) should be used to adjust for these potential dif-
ferences. Only subtle differences within the areas studied were seen in the RRs with the
different models of exposure estimation used in this study. The results from this study
provide evidence for the existence of rural–urban variability in the health impact of
PM2.5 exposure and points to the continued need for regulations to improve air quality
and health not only in urban, but also in rural areas.
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