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Abstract

Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of 

differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily 

accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors 

(CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with 

the activating machinery of a T cell, enabling antigen recognition independent of major 

histocompatibility complex restriction, while retaining the desirable antitumor properties of a T 

cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages 

over other immune therapies for lymphomas. We review current clinical trials in the field and 

consider strategies to improve the in vivo function and safety of immune cells expressing CARs. 

The ultimate driver of CAR development and implementation for lymphoma will be the 

demonstration of their ability to safely and cost-effectively cure these malignancies.
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HUMAN LYMPHOMAS

Human lymphomas have historically been separated into non-Hodgkin and Hodgkin 

lymphoma (NHL and HL). NHL includes a broad group of lymphoid malignancies that arise 

from clonal expansions of B, T, or natural killer (NK) cells at various stages of 

differentiation. B cell lymphomas are usually derived from germinal center or postgerminal 

center B cells, whereas T and NK cell lymphomas may arise at any stage of normal T or NK 

cell lymphopoiesis. Although malignant cells acquire genetic abnormalities, they also retain 
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many of the phenotypic characteristics of their normal counterparts. Target antigens for 

immunotherapy are, therefore, generally expressed on both lymphoma cells and their 

nonmalignant counterparts (1).

In contrast, the malignant Reed-Sternberg (RS) cells of HL have an unusual expression of 

hematopoietic markers that has no normal counterpart. Although the cell from which HL 

originates was long debated, microdissection studies recently showed that RS cells possess 

clonal heavy- and light-chain immunoglobulin (Ig) gene rearrangements, and thus HL is 

likely derived from crippled germinal center cells (2). HL also differs from NHL in that the 

malignant RS cells are relatively rare, and the more prominent, nonmalignant, infiltrating 

cells in the microenvironment play an important role in HL biology (2).

SUITABILITY OF NON-HODGKIN AND HODGKIN LYMPHOMA FOR 

IMMUNOTHERAPY

Despite their biological differences, both HL and NHL have proven to be good targets for 

immunotherapy. Both lymphomas occur in the immune-rich lymphoid tissues and are 

therefore easily accessible to antibodies and cell-based immunotherapy. Moreover, T cells 

targeted to tumor-associated antigens expressed by B cell lymphomas are likely to receive 

the costimulation they require if they are to pass through immune checkpoints, as B cells are 

excellent antigen-presenting cells. In addition, lymphomas express both lineage-restricted 

(e.g., CD19) and unique (e.g., Ig idiotype) tumor antigens that can be targeted by antibodies 

and/or effector cells (3). Finally, 35–45% of all human lymphomas are associated with 

persistent infection with Epstein-Barr virus (EBV), so that antigens associated with viral 

latency can be detected in many patients with HL or with many NHL subtypes, including 

Burkitt lymphoma, NK/T cell lymphomas, and diffuse large B cell lymphoma (DLBCL). 

These viral antigens can be successfully targeted with EBV-specific T cells (4, 5).

Although the majority of target antigens on human lymphomas include lineage-restricted 

antigens that are also present on normal B cells and some T cells, eradication of normal as 

well as malignant lymphocytes may be considered an acceptable toxicity. Hence, antibodies 

to CD20 are included in most B cell lymphoma treatment regimens, and the expression of 

CD30 both on the RS cells of HL and on a subpopulation of activated T and NK cells has 

not prevented the use of CD30 antibody to treat HL (6).

HOW CAN CAR-T CELLS BUILD UPON LYMPHOMA IMMUNOTHERAPY?

Chimeric antigen receptors (CARs) were first developed in the mid-1980s (7). In 1993, the 

Eshhar group (8) modified the concept to use (a) an extracellular domain (ectodomain) from 

a single-chain variable fragment (scFv), composed of the antigen-binding regions of both 

heavy and light chains of a monoclonal antibody (mAb); (b) a transmembrane domain; and 

(c) an intracellular domain (endodomain) with a cell-signaling component derived from the 

T cell receptor (TCR) ζ chain (Figures 1 and 2). Most subsequent CARs have followed this 

same structural pattern, with incorporation of accessory or costimulatory signaling 

components (Figure 2). In contrast to conventional T cells, which rely on their native TCRs 

for tumor antigen recognition, CAR-T cells recognize unprocessed antigen and therefore kill 
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tumor cells independently of their expression of major histocompatibility complex (MHC) 

antigens.

Design of CAR Ectodomains

To date, all CARs in use for lymphoma have been based on scFvs (Table 1), whose 

effectiveness depends in part on the affinity of the CAR itself and on the properties of the 

antigenic epitope recognized. For instance, CARs containing high-affinity scFvs for ROR1 

confer greater effector function to T cells than those containing low-affinity scFvs (9). 

However, the location of the recognized epitope on the antigen also affects CAR function 

(10, 11). For example, T cells expressing a CAR with an scFv that recognizes a membrane-

proximal epitope on CD22 have greater antileukemic activity than CAR-T cells recognizing 

a distal epitope (10).

Other components of the ectodomain may also influence CAR effectiveness, such as the 

presence of flexible linker sequences in the scFv and the type of elements connecting the 

ecto- to the endodomain (hinge and transmembrane regions). The hinge and transmembrane 

regions can affect CAR-T cell function profoundly by modifying the length and flexibility of 

the resulting CAR, its cell surface density, its tendency to self-aggregate and produce T cell 

exhaustion by tonic signaling, and its potential binding to molecules other than the intended 

target antigen. For example, a CD19-specific CAR with a CD3-ζ transmembrane domain is 

less stable over time on the cell surface of T cells than a CD19-specific CAR with the same 

scFv but a CD28 transmembrane domain (12) (G. Dotti, B. Savoldo, unpublished data). 

Also, for instance, CD19-CARs with a hinge derived from the IgG4 CH2–CH3 region are 

functional in vitro but may have impaired antitumor activity in vivo due to interaction 

between the Fc domain within the hinge and Fc receptor-bearing myeloid cells (13).

Design of CAR Endodomains

Upon antigen recognition, CAR endodomains transmit activation and costimulatory signals 

to T cells. T cell activation relies on the phosphorylation of immunoreceptor tyrosine-based 

activation motifs (ITAMs) present in the cytoplasmic CD3-ζ domain of the TCR complex 

(14). In addition to this stimulus from TCR engagement (signal 1), T cells require 

costimulation (signal 2) for sustained growth and function, as TCR stimulation without 

costimulation induces T cell anergy. The endodomain of early CARs contained only the 

CD3-ζ signaling component (Figure 1). To improve CAR-T cell function and persistence, 

costimulatory endodomains (such as CD28, OX40, or 4-1BB) were incorporated into so-

called second- (and even third-) generation CARs (Figure 2) to ensure the transgenic T cells 

are fully activated after engaging their specific target (15–19).

The superiority of second- over first-generation CAR-transduced T cells was decisively 

demonstrated in a study comparing the two constructs head to head (12). This phase I trial 

treated subjects with refractory or relapsed B cell lymphomas, mostly DLBCL, who were 

simultaneously infused with two autologous T cell products. Both products were retrovirally 

transduced with a CD19-CAR, but one CAR encoded both the CD28 and ζ endodomains 

whereas the other included only the ζ endodomain. This strategy allowed direct 

measurement of the consequences of adding a CD28 costimulatory endodomain to CAR-
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redirected T cells in the same subject and established that T cells bearing a second-

generation CAR that contains the CD28 endodomain have enhanced in vivo proliferation 

and survival compared to T cells expressing a first-generation CAR lacking CD28. The 

contribution of costimulatory domains is discussed in detail in the section on CD19-CAR 

trials. All the subsequent studies described in the “Lymphoma Antigens Targeted in Current 

Clinical Trials” section used second-generation CARs, except where indicated.

Advantages and Disadvantages of Using CARs

Even though mAbs such as CD20 have been highly successful in the treatment of 

lymphomas, T cells expressing CARs directed at the same or related antigens additionally 

offer the potential benefits of active trafficking to tumor sites, in vivo expansion, and long-

term persistence. Moreover, because CAR-T cells have MHC-unrestricted activity, they can 

circumvent some of the major mechanisms by which tumors avoid MHC-restricted T cell 

recognition, such as the downregulation of human leukocyte antigen (HLA) class I 

molecules and defective antigen processing (20–23). Finally, CARs can target nonprotein 

antigens, which allows them to recognize lymphoma tumor antigens derived from 

carbohydrates or glycolipids, which are not detectable by conventional TCRs.

T CELL EXPRESSION OF CARS

Although it is possible to transiently express CARs in T cells by transfecting them with 

naked DNA plasmids or mRNA (for instance, to more safely test them for toxicity, since any 

adverse effects should reverse once the transgene is eliminated), in most instances the goal is 

to obtain sustained expression to ensure durability of response (24). Replication-defective 

retroviruses (gammaretroviruses or lentiviruses) can integrate a reverse-transcribed sequence 

into the host cell DNA through the action of a viral integrase, thus becoming part of that 

cell’s genome (25). Because retroviral production under good manufacturing practices is 

time consuming and expensive, some groups have adopted nonviral methods for permanent 

transduction, specifically transposon-based systems, including Sleeping Beauty (26) and 

PiggyBac (27), which lead to stable integration of the transgene, although these systems may 

be less effective overall.

Ideally, CAR molecules should be grafted onto a subset of T cells that can traffic to tumor 

sites, receive appropriate costimulation, and expand and persist in vivo. Lymphoma studies 

have focused on αβ-TCR+ T cells, and investigators are now trying to use phenotypic 

profiling to identify the optimal subset within this population (28, 29). T cells with a 

memory-associated phenotype may be optimal for in vivo persistence, and investigators 

have used positively selected cells expressing a central memory–associated marker (CD62L) 

to express CD19-directed CARs in a clinical study at the Fred Hutchinson Cancer Research 

Center. More recently, a T cell subset has been identified with even greater proliferative 

potential and longer survival in vivo (28). These T stem cell memory populations can 

differentiate into memory and effector populations, but their ultimate value in human CAR 

studies has not yet been established.

An alternative to T cell selection based on surface phenotype is to physiologically select T 

cells that have an established capacity to act as effector T cells, enter the memory pool, and 
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re-expand on re-exposure to antigens in vivo. Virus-specific T cells (VSTs) have these 

abilities (5, 30). VSTs also express chemokine receptors that should allow them to traffic to 

sites of lymphoma (31). Moreover, the ability of CAR-VSTs to interact through their native 

TCR with viral antigens on professional antigen-presenting cells may provide a range of 

costimulatory signals that enhance their persistence after adoptive transfer and that increase 

their activity against tumor targets, which is mediated through their transgenic CAR (32).

In addition to CAR gene expression in αβ T cells, T cells with γδ-TCR may also be 

amenable to transduction with a CAR and provide additional functionality (33). Similarly, 

other lymphocyte populations may offer specific advantages and can also be transduced 

using the same methods. For instance, invariant-chain TCR T cells (or NK-T cells) may 

have preferential tumor trafficking properties and inherent activity against tumor-associated 

macrophages, while NK cells may have additional intrinsic antitumor lytic potential (34). 

None of these alternative cell sources has been used yet for CAR therapy of lymphoma.

CHOICE OF LYMPHOMA ANTIGEN FOR CAR TARGETING

Unlike the native TCR, the majority of ScFv-based CARs only recognize intact target 

antigens expressed directly on the cell surface, rather than peptide fragments from processed 

proteins that are presented in association with MHC molecules. This limited recognition 

hinders CAR-T cells’ ability to detect most truly tumor-specific antigenic epitopes (since 

these are usually derived from internal mutant oncogenes and translocations). Unfortunately, 

normal B or T cells also express the majority of lymphoma target antigens suitable for CAR 

recognition.

CAR-T cells can, for example, be used to target a highly and consistently expressed lineage-

specific antigen (e.g., CD19, CD20, CD22) resulting in elimination of malignant B cells. 

However, because these antigens are also expressed by their normal counterparts, B cell 

ablation is a frequent side effect, albeit relatively benign because replacement therapy using 

intravenous Ig is feasible. In general, however, it might be preferable to target more 

restricted lineage-associated antigens, such as BCMA (B cell maturation antigen), which is 

predominantly expressed by plasma cells and subsets of mature B cells (35). As another 

example, in many B cell malignancies it is possible to target either the κ or the λ light chain 

associated with all cells of the (clonal) malignancy, and this is desirable to spare normal 

(polyclonal) B cells expressing the reciprocal light chain and maintain immune function 

(18).

The argument in favor of targeting an entire lineage is less acceptable for T cell lymphomas 

because T cell function is less amenable to replacement therapies than that of B cells. 

Nonetheless, as discussed below, a more selectively expressed T lineage marker, such as 

CD30, may be acceptable, particularly if expression is high on the tumor cells.

Targeting single antigens carries the inherent risk of immune escape (36–38), which can be 

reduced by targeting multiple antigens. Expressing multiple CARs in T cells also has the 

potential to increase safety by generating T cells that recognize a unique antigen pattern that 

is only present on tumor cells or their associated stroma (39).
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LYMPHOMA ANTIGENS TARGETED IN CURRENT CLINICAL TRIALS CD19

With the important exceptions of hematopoietic stem cells and plasma cells, CD19 is 

expressed during all stages of B cell differentiation and is maintained on the vast majority of 

cells that have undergone neoplastic transformation (40), such as in B cell NHL and chronic 

lymphocytic leukemia (CLL). Most of the initial CAR-T cell trials in B cell malignancies, 

including NHL and acute lymphoblastic leukemia (ALL), targeted this antigen. Results in 

NHL, albeit impressive, have not been as striking as in ALL, for which complete remission 

rates of ~90% have been described (41, 42).

CAR ζ-chain signaling is insufficient for CAR T cell persistence

Early experience treating B cell malignancies with CD19-CAR T cells demonstrated the 

feasibility of the approach but also its lack of objective antitumor effects. All of these trials 

used first-generation CARs with a single signaling domain (derived from the ζ chain of the 

TCR complex) (43). In one of these studies, two patients with refractory follicular 

lymphoma received T cells expressing a CD19-CAR after undergoing treatment with 

lymphodepleting doses of fludarabine. The T cells had undergone polyclonal activation with 

a CD3 antibody (OKT3), plasmid electroporation, and hygromycin selection (for which the 

plasmid also encoded a resistance gene). After CAR-T cell infusion, patients received low-

dose subcutaneous interleukin (IL)-2 injections. Transferred T cells were detectable by 

polymerase chain reaction (PCR) for fewer than seven days. As expected given the cells’ 

limited persistence, neither clinical responses nor overt toxicities were observed. Of note, 

cellular antitransgene immune rejection responses were documented in both patients, 

although whether this activity was directed at the CAR or the hygromycin resistance gene is 

unknown (43).

Results from such trials using first-generation CAR-T cells demonstrated that a single 

stimulatory domain was insufficient to fully activate the chimeric T cells and confirmed that 

host lymphopenia also facilitates expansion of adoptively transferred T cells. Lymphopenia 

creates “space” for the oncoming adoptively transferred cells and enhances their homeostatic 

expansion while also depleting the endogenous regulatory T cells, which normally secrete 

inhibitory cytokines [e.g., transforming growth factor β (TGFβ) and IL-10] that limit effector 

T cell expansion (44). Additionally, T cell growth homeostatic cytokines, such as IL-7 and 

IL-15, which ordinarily exist in limiting amounts, may become readily available owing to 

less competition and increased production by lymphopoietic stromal cells (45).

An early report from a trial using a second-generation, CD28-containing CD19-CAR 

described one patient with advanced follicular lymphoma, who was treated with a 

preparative chemotherapy regimen followed by autologous T cells retrovirally modified to 

express the CAR. The patient’s tumor underwent partial regression, and B cells were absent 

from circulation for at least 39 weeks after T cell infusion, despite recovery of other blood 

series. The CD19-CAR transgene was detected in the peripheral blood up to 27 weeks after 

infusion (46). Nonetheless, in vivo expansion of these second-generation CAR T cells was 

still modest, and clinical responses were limited. In another trial of six patients with 

DLBCL, only two had transient stable disease and four had disease progression. The 
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inadequate activity suggested that alternative costimulatory domains (or a different CAR 

design) might be necessary for more potent activation of chimeric T cells.

Later-acting costimulatory domains may be more efficacious than CD28

Although costimulatory signals from CD28 seemed to improve expansion and persistence, a 

trial using a second-generation CAR incorporating 4-1BB (CD137) as an alternative 

costimulatory domain (47) reported the most dramatic expansion and clinical activity in 

indolent B cell malignancies. CD28 costimulation is usually provided physiologically by 

professional antigen-presenting cells and represents an “early” costimulatory signal, but 

“late” costimulatory molecules, including members of the tumor necrosis factor receptor 

(TNFR) family such as OX40 (also known as CD134) and 4-1BB (CD137), also play crucial 

roles. After binding to their specific ligands, these molecules recruit TNFR-associated-factor 

(TRAF) adapter proteins, which represent an entirely distinct activation pathway from CD28 

costimulation and may be associated with more potent activation of T cells (48), at least in 

certain disease settings.

The first three patients reported from this second-generation, 4-1BB-containing CD19-CAR 

trial had large-burden, relapsed B cell CLL. They were infused with autologous CAR-T cells 

after receiving lymphodepleting chemotherapy (47, 49). In contrast to other trials, a 

lentivirus was used to transfect T cells. These CAR-T cells had a >1,000-fold expansion in 

vivo, trafficked to bone marrow, and continued to express functional CARs at high levels for 

at least six months. Despite large tumor burdens, results were impressive: two long-term 

complete remissions and one prolonged partial remission were seen in the three CLL 

patients treated. Each infused CAR-T cell was calculated to have eradicated at least 1,000 

CLL cells on average. Significant adverse effects were noted, however, including an acute 

systemic inflammatory response syndrome (fever with hypotension, respiratory distress, or 

tumor lysis syndrome) as well as late on-target, off-tumor toxicities, namely B cell aplasia 

associated with decreased numbers of plasma cells and hypogammaglobulinemia (see the 

section on toxicities below).

Nonetheless, the issue of whether late costimulatory domains are always better than early 

ones is far from being settled. CD28-containing CD19-CARs have continued to show 

encouraging activity in other trials, reports from which have reinforced the need for 

lymphodepletion prior to CAR-T cell infusion, at least in the autologous setting. For 

example, the outcomes of seven additional patients were described in an update (50) to the 

single-patient report (46) mentioned in the previous section and, more recently, the same 

group published results in 13 other NHL patients (51). Nine patients achieved complete 

remission, which lasted up to 23 months. Adverse events included long-term depletion of 

normal B cells and prominent elevations in serum levels of inflammatory cytokines, which 

appeared to correlate with the severity of acute toxicities (fever and hypotension). In 

addition, central nervous system toxicity, of unclear etiology, was observed in some 

patients.

A similar second-generation, CD28-containing CAR was used in another trial in which eight 

CLL patients (and one ALL patient) were treated (52). All patients tolerated the CAR-T cell 

infusions well, but one patient had rapid clinical deterioration and died less than 48 h after 
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CAR-T cell infusion (see section on toxicities below). Some of the other patients developed 

fever with or without hypotension a few days after T cell infusion. One of the patients with 

CLL had a partial response, and none developed B cell aplasia. Persistence of infused CAR-

T cells was inversely proportional to the tumor burden but enhanced by prior 

cyclophosphamide administration, further favoring the use of lymphodepleting 

chemotherapy before CAR-T cell infusion.

All the CD19-CAR trials described above used cell products generated from autologous T 

cells. Two additional protocols, summarized in Table 2, employed allogeneic cells (53, 54).

CD20

A first-generation CAR targeting CD20 has been used in a few studies. In one of these, 

seven patients with follicular or mantle cell lymphomas received CD20-specific CAR-

modified T cell infusions, with minimal toxicities. T cells were subjected to polyclonal 

activation, plasmid electroporation, and neomycin selection. The modified T cells persisted 

in vivo up to nine weeks in patients, who also received low-dose subcutaneous IL-2 

injections. Two patients had continued complete responses, one achieved a partial response, 

and four had stable disease (55). In another study, two patients with recurrent DLBCL were 

treated with cloned CD8+ T cells expressing another first-generation CD20-CAR (and 

neomycin resistance) after autologous hematopoietic stem cell transplantation. Neither 

clinical responses nor overt toxicities were observed. In that trial, the transferred T cells 

were detectable by PCR for fewer than seven days (43).

CD30

Almost all HLs and some NHLs express the CD30 antigen at both diagnosis and relapse, 

and mAbs targeting CD30 produce objective antitumor responses. The effects of mAbs, 

however, appear to be limited in duration, encouraging the substitution of CD30-CARs on 

longer-lived T cells. A phase I dose escalation study of activated autologous CAR-CD30-T 

cells treated nine patients with relapsed/refractory EBV1/N CD30+ HL or NHL (seven with 

HL and two with CD30+ anaplastic large cell lymphoma). Eight of these patients had either 

relapsed or progressed after treatment with the CD30 mAb brentuximab. CAR-T cell 

infusions produced no attributable adverse events; in particular, the frequency of T cell 

precursors targeting cytomegalovirus, EBV, adenovirus, and influenza virus remained 

unchanged by treatment (assuaging an important concern, since CD30 is upregulated on 

some activated T cells). The molecular signal from the CAR-T cells peaked at one week 

following infusion, but decreased by four weeks. Of eight evaluable patients, six weeks after 

treatment, four patients had stable disease, one had a complete response, and one had a 

partial response, while three had disease progression (56; C. Ramos, G. Dotti, B. Savoldo, 

unpublished data).

κ Light Chain

As mentioned above, by taking advantage of the clonal restriction of mature B cell 

malignancies, which express either a κ or λ light Ig chain, it may be feasible to target B cell 

malignancies more selectively. A CAR specific for the κ light chain, for example, should 
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selectively target κ+ lymphoma cells and spare the normal B cells expressing the 

nontargeted λ light chain, thus minimizing damage to humoral immunity. To assess the 

value of this approach, nine NHL/CLL patients were treated with a κ-directed CAR (57). 

Infusions were well tolerated without side effects. A CAR-κ-specific Q-PCR assay showed 

that molecular signals peaked 1–2 weeks after infusion and remained detectable for at least 

six weeks and up to nine months. Of the seven patients with relapsed NHL, two entered 

complete remission (after two and three infusions), one had a partial response, and four 

progressed; and both patients with CLL progressed before or shortly after the six-week 

evaluation. These data indicate that infusion of CAR-κ-T cells is safe and can be effective in 

patients with κ+ lymphoma (57). We are currently preparing studies with modified light-

chain CARs and with increased conditioning.

OVERALL SAFETY OF CAR-T CELLS FOR LYMPHOMA

Although the results of several of the above studies confirm the promise of CAR-T cell 

therapy for lymphoma, they also reveal two concerns. The first is that significant, even fatal, 

treatment-related toxicity may occur, and the second is that the effectiveness of the approach 

for lymphoma appears lower than for acute B cell leukemia. In order for the therapy to 

succeed, both the safety and efficacy of CAR-T cells will need to be improved.

Toxicities

The most striking acute safety concern is an example of an on-target toxicity, namely 

systemic inflammatory response syndrome (SIRS) or cytokine release syndrome (CRS). 

This toxicity is attributable to rapid and extensive activation of infused CAR-T cells upon 

antigen engagement, with general perturbation of the immune system, and the associated 

release of high levels of proinflammatory cytokines, such as TNFα and IL-6 (49, 58). To 

reduce the likelihood or severity of CRS, investigators are modifying T cell dose escalation 

and have introduced the prompt use of antibodies blocking the effects of TNFα and IL-6.

Longer-term on-target toxicities are attributable to the consequences of destruction of the 

normal tissues expressing the targeted antigen, such as B cell aplasia and ultimately 

hypogammaglobulinemia (41, 47, 49, 55, 58–60). On-target toxicity may be reduced by 

targeting antigens that are more restricted in their expression, such as the κ light chain of Ig 

as described above (57), or by targeting multiple antigens when their combination occurs 

only in tumor cells. Alternatively, patients may receive T cells with only transient 

expression of the CAR, for example after electroporation of mRNA encoding the receptor 

(61–63). Unlike T cells transduced with a genome-integrating vector, in which each 

daughter cell contains the same transgene, translated to the same level, mRNA-transduced T 

cells express the transgene for a finite period of time (depending on the stability of the 

mRNA and the translated protein); moreover, levels of expression diminish as the cells 

divide, and the transcripts become progressively diluted. However, since CAR-T cells may 

expand 1,000–10,000-fold over 7–10 days, this dilutional effect may take place too quickly 

for the therapy to be effective.

There are also concerns about toxicity from the gene delivery system, in particular the 

insertional mutagenesis induced by gamma-retroviral vectors (47, 49, 58, 64) that has led to 
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T cell leukemias following retroviral vector–mediated gene transfer to CD34+ hematopoietic 

progenitor cells (65). Alternatively, there may be transduction of circulating tumor cells 

during preparation of the CAR-T cells, and it is conceivable that such inadvertent “marking 

experiments” would introduce a new driver mutation (66). Insertional mutagenesis leading 

to uncontrolled proliferation of T lymphocytes (including CAR-T cells) has not yet 

occurred, perhaps because integration is occurring into more differentiated cells with fewer 

developmental pathways open to disruption by integration events. Although oncogenicity 

from retroviruses is currently only a hypothetical concern for CAR-T cells, there is 

considerable interest in developing vector systems that retain significant genomic integration 

capacity but are based on DNA plasmids such as the transposon/transposase systems, which 

may be less likely to integrate in critical sites in the genome (67, 68).

Safety Switches

The specific measures outlined above may all be beneficial, but the inherent potential of T 

cells to persist and expand means that the associated toxicities may show corresponding 

persistence and worsen with time. Thus, there is a strong incentive to use engineered T cells 

that also express a suicide or safety switch along with the CAR. These cells retain their long-

term capacity for engraftment, expansion, and expression, but can be eliminated quickly by 

the activation of the suicide gene in the event of toxicity. Investigators have developed a 

safety switch based on the caspase-9 molecule that rapidly induces apoptosis in the cell upon 

exposure to an otherwise bioinert small molecule (chemical inducer of dimerization) (69, 

70). Other studies use transfer of the herpesvirus thymidine kinase enzyme that 

phosphorylates a prodrug such as ganciclovir to an inhibitory nucleoside, or transduce the T 

cells with a surface-expressed protein that can be targeted in vivo by a lytic mAb, but these 

may act more slowly or less completely than the caspase-based system.

INCREASING EFFICACY OF CARS

Malignant cells and their supporting stroma have developed a multiplicity of means to evade 

or subvert the immune system. Many tumors, including most lymphomas, secrete 

immunosuppressive cytokines, attract immunosuppressive cells, inhibit dendritic cell 

maturation, express molecules on the cell surface that suppress immune cells, and create a 

metabolic environment that is immunosuppressive (Figure 3). Although T cell costimulation 

mediated by CD28 or 4-1BB endodomains in CAR molecules may mitigate some of the 

above inhibitory effects, other causes of T cell anergy are more difficult to overcome (71).

Three broad approaches have been adopted as countermeasures to overcome tumor 

immunosuppression: (a) increasing the level of CAR-T cell activation or decreasing 

physiological downregulation by checkpoint molecules; (b) engineering the CAR-T cells to 

be resistant to the inhibitory cytokines used by the tumor; and (c) targeting the cellular 

components of tumor stroma. Any one countermeasure may affect more than one 

mechanism of tumor immunosuppression (Figure 3).
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Overcoming Checkpoint Inhibition

Inhibiting downregulatory signals with mAbs enables CAR-T cells to overcome the “false” 

checkpoint signals presented by many lymphomas. Antibodies that block the cytotoxic T 

lymphocyte–associated antigen 4 (CTLA-4), the programmed death 1 (PD-1) receptor, or 

the PD-1 ligand (PD-L1) in the tumor microenvironment have produced encouraging 

clinical results as single agents, for example in HL (72). Several investigators are now 

combining these agents with CAR-T cells in patients with lymphoma.

As an alternative or complementary solution, it is possible to supply immunostimulatory 

signals that reduce the inhibitory effects of the checkpoint signals on the CAR-T cells. For 

example, IL-15 is mainly produced by monocytes, macrophages, and dendritic cells. IL-15 

promotes the proliferation of T lymphocytes and also prevents apoptosis and exhaustion (73, 

74), reverses anergy (73), stimulates long-lasting antigen-experienced memory cells (75), 

and overcomes Treg-mediated inhibition (76–79). IL-15 can be used either as a growth 

factor for the ex vivo expansion of CAR-T cells, where it may “imprint” long-lasting 

resistance to Tregs (80, 81), or as a recombinant protein in vivo to support T cell expansion 

after adoptive transfer (80), thereby enhancing the antitumor activity of adoptively 

transferred T cells. CAR-T cells can be genetically modified to produce their own IL-15 and 

achieve the hoped-for benefits at the tumor site while avoiding the toxicity associated with 

systemic administration of the cytokine (76, 78). Local production of cytokines such as IL-7 

and IL-12 may be equally beneficial.

Overcoming Inhibitory Cytokines

CAR-T cells can be engineered to be resistant to inhibitory cytokines, such as IL-4 and 

TGFβ, which are widely used by tumors as an immune evasion strategy. For example, TGFβ 

promotes tumor growth and limits effector T cell function through SMAD-mediated 

pathways, resulting in decreased expression of cytolytic gene products such as perforin, 

decreased cell proliferation, and increased apoptosis (82, 83). These detrimental effects can 

be negated by modifying T cells to express a dominant-negative TGFβ receptor type II 

(TGFβ-DNR), which lacks most of the cytoplasmic component including the kinase domain 

(84, 85). DNR expression interferes with TGFβ signaling, thereby blocking TGFβ-induced 

SMAD2 phosphorylation so that T cell effector function is sustained even in the presence of 

TGFβ. This approach has shown benefit in patients with relapsed/resistant EBV-associated 

HL/NHL who were treated with TGFβ-resistant T cells specific for EBV antigens. Clinical 

benefit was observed, including complete responses (85), even in patients who had failed 

treatment with EBV-specific T cells expressing only wild-type TGFβ receptor type II. Other 

lymphoma studies in which the TGFβ-DNR is expressed in CAR-T cells are now being 

planned.

Targeting the Cellular Components of Tumor Stroma

Lymphomas have a stromal compartment that supports tumor growth directly through 

paracrine secretion of growth factors and provision of nutrients, and that also contributes to 

tumor-induced immunosuppression (86–89). This compartment may be a suitable target for 

CAR-T cell therapy, but as yet no clinical trials have been reported.
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HOW WILL CAR-T CELL THERAPY DEVELOP?

CAR-T cells will require a new approach to drug development and distribution. The 

conventional pharmaceutical model was created for items that have low manufacturing 

costs, are sold at high prices, and ameliorate rather than eradicate diseases. Unlike most 

pharmaceuticals, CAR-T cells have the potential to be “one and done” therapy, meaning a 

single treatment could prove curative. CAR-T cells are also expensive to manufacture. 

Moreover, we will likely need to combine CAR therapy with other expensive targeted 

therapies such as checkpoint antibodies for optimal results, making it difficult to know how 

to price and pay for these agents.

The complexity of CAR therapies also implies that their development will require multiple 

small-scale iterations of clinical trials followed by modifications and further clinical trials—

akin to the beta testing and version upgrades of the software industry rather than the pattern 

for conventional therapeutics, in which interruption of progression through phases I–III 

tends to be a terminal event for the agent rather than an opportunity for an upgrade. The 

ultimate driver of the development and implementation of CAR-T cells in lymphoma will be 

demonstrating their increasing success in safely and cost-effectively curing disease.
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Figure 1. 
The basic structure of first-generation chimeric antigen receptors (CARs). The most 

common CARs combine the extracellular antigen-recognition site of a monoclonal antibody 

and the intracellular domains of a T cell receptor (TCR) complex molecule. Clustering of 

CARs induced by antigen binding on the surface of tumor cells initiates signal transduction 

that leads to T cell activation and killing of tumor cells.
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Figure 2. 
Three generations of chimeric antigen receptors (CARs). First-generation CARs include an 

extracellular domain (ectodomain), usually derived from a single-chain variable fragment 

(scFv), composed of the antigen-binding regions of both heavy and light chains of a 

monoclonal antibody; a transmembrane domain; and an intracellular domain (endodomain) 

with a cell-signaling component derived from the T cell receptor, usually the ζ chain. Most 

subsequent CARs have followed this same structural pattern, with incorporation of one 

(second-generation CARs) or more (third-generation CARs) accessory or costimulatory 

signaling components, such as CD28, CD137 (4-1BB), and CD134 (OX40). These 

additional costimulatory endodomains improve T cell activation and proliferation, and thus 

may promote killing of target tumor cells.
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Figure 3. 
Tumor strategies for immune evasion. Malignant cells and their supporting stroma secrete 

immunosuppressive cytokines, such as transforming growth factor β (TGFβ); attract 

immunosuppressive cells, such T regulatory cells (Tregs) and myeloid-derived suppressive 

cells (MDSCs); inhibit dendritic cell (DC) maturation; express immunosuppressive 

molecules on their surface, including Fas ligand and PD-L1 (programmed death 1 ligand); 

and create a metabolic environment that is immunosuppressive, including high lactate levels, 

low tryptophan levels, and high kynurenine levels [through the activity of indoleamine 2,3-

dioxygenase (IDO) in tumor cells and immature DCs], as well as low arginine levels 

(through the activity of arginase in MDSCs). Malignant cells and stroma also secrete 

vascular endothelial growth factor (VEGF), which promotes tumor vascularization and 

growth via recruitment of endothelial cells. Possible countermeasure strategies include 

increasing the level of CAR-T cell activation or decreasing physiological downregulation 

(e.g., by autocrine production of IL-15 or inclusion of additional costimulatory domains); 

engineering the CAR-T cells to be resistant to tumor immune evasion strategies (such as 

expressing a dominant negative receptor for TGFβ in CAR-T cells); and targeting the 

cellular components of tumor stroma [cancer-associated fibroblasts (CAFs) and endothelial 

cells] using an additional CAR.
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Table 1

Chimeric antigen receptor (CAR) targets in development or in use for lymphomas

Antigen Malignancy lineage CAR ectodomain Clinical trial

BCMA B cell scFv Unavailablea

CD19 B cell scFv See Table 2

CD20 B cell scFv See Table 2

CD22 B cell scFv Ongoing (90)

CD30 B cell and T cell scFv See Table 2

CD70 B cell and T cell CD70 ligand Unavailable

ROR1 B cell scFv Ongoing (91)

κ B cell scFv See Table 2

a
Clinical trial available only for multiple myeloma.
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