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Abstract

Aligning a pair of images in a mid-space is a common approach to ensuring that deformable image 

registration is symmetric – that it does not depend on the arbitrary ordering of the input images. 

The results are, however, generally dependent on the choice of the mid-space. In particular, the set 

of possible solutions is typically affected by the constraints that are enforced on the two 

transformations (that deform the two images), which are to prevent the mid-space from drifting 

too far from the native image spaces. The use of an implicit atlas has been proposed to define the 

mid-space for pairwise registration. In this work, we show that by aligning the atlas to each image 

in the native image space, implicit-atlas-based pairwise registration can be made independent of 

the mid-space, thereby eliminating the need for anti-drift constraints. We derive a new symmetric 

cost function that only depends on a single transformation morphing one image to the other, and 

validate it through diffeomorphic registration experiments on brain magnetic resonance images.

1 Introduction

Image registration – i.e., computation of a set of dense spatial correspondences among 

images – is a central step in most population and longitudinal imaging studies. Since linear 

transformation is usually not sufficient to account for cross-subject variation and temporal 

changes in the anatomy, deformable image registration often becomes a necessary part of 

the analysis pipeline. In pairwise deformable registration, the choice of the reference space 

in which the two images are compared affects the registration, making the resulting 

deformation field dependent on this choice. When the native space of one of the input 

images (say, the first image) is chosen as the reference, the registration becomes 

asymmetric, meaning that reversing the order of the input images will produce different 

spatial correspondences [1-11]. Pairwise registration has been proposed to be symmetrized 

by minimizing the average of two cost functions, each using one input image as the 
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reference space [1-4], yet integrating the mismatch measure non-uniformly in the native 

space of the interpolated image [11].

In a different approach to achieve symmetry, both images are deformed and compared in a 

mid-space, thereby making registration invariant with respect to the ordering of the images 

[5-10]. Such approaches essentially minimize their cost functions with respect to two 

transformations T1 and T2 that take the two input images to the mid-space. However, 

without additional constraints, this increases the degrees of freedom of the problem twofold, 

compared to the end result of pairwise registration that is the one transformation, 

, taking the second input image to the first. Furthermore, if the images are 

compared in the mid-space (that depends on T1 and T2), the optimization algorithm is given 

the liberty to update the mid-space so as to decrease the cost function without necessarily 

changing the final result T. For example, the algorithm can shrink the regions with 

mismatching image intensities to make the deformed images look more similar in the mid-

space, without necessarily making them more similar in the two native spaces. To alleviate 

these issues, additional constraints are used to keep the mid-space “in between” the native 

spaces of the two images. These anti-drift constraints, which are different from those 

regularizing the transformations, define the mid-space. They typically either restrict the 

space of possible T1 and T2 (resulting in fewer degrees of freedom), or penalize those values 

of T1 and T2 that move the mid-space away from the native spaces. The most common such 

constraints, proposed in the mid-space registration and atlas construction literature, are 

restrictions on T1 and T2 to have opposite displacement [7, 8, 12-14] or velocity [9, 10, 15] 

fields. In large deformation models, geodesic averaging of the deformations has also been 

proposed, which preserves the properties of the transformations [5, 6, 16]. The choice of the 

anti-drift constraints may bias the registration algorithm towards favoring a particular set of 

transformations, thereby affecting the resulting T.

Unbiased atlas construction techniques, when applied to a pair of images, can constitute 

mid-space pairwise registration, since the images are both deformed to the atlas space (i.e., 

the mid-space) [10, 16, 17]. In such a case, given that the desired output of pairwise image 

registration is the deformation field, but not the auxiliary atlas, one can substitute the atlas in 

the cost function with an analytical expression of the two deformed images, leading to an 

implicit-atlas cost function that is minimized with respect to the deformations. To that end, it 

was initially proposed to compare the deformed images to the atlas in the abstract mid-space 

[16]. A better justified generative model, however, progresses from the atlas to the images 

and compares the deformed atlas to the images (i.e., in the native image spaces) [18, 19], 

computing the atlas as a weighted average of the images [18]. Taking advantage of this 

native-space atlas construction resolves the issue of susceptibility to shrinkage-type 

problems, leading to a proper implicit-atlas cost function for mid-space pairwise registration 

[10]. Nevertheless, the registration still remains a function of two transformations taking the 

images to a mathematically defined mid-space.

In this work, we point out for the first time the key fact that implicit-atlas pairwise 

registration is inherently independent of the mid-space. We show that the cost function only 

depends on the overall image-to-image transformation T, implying that the individual 
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image-to-atlas transformations T1 and T2 are redundant and unnecessary to keep, and that 

anti-drift constraints are indeed not needed. We derive a new cost function that, in contrast 

to the existing mid-space approaches, can be minimized directly with respect to T, with no 

anti-drift constraints. The proposed cost function is general and can be used with any 

transformation model, such as the displacement and velocity fields.

We describe our methodology in Section 2, experimentally evaluate our approach on brain 

magnetic resonance images in Section 3, and conclude the paper in Section 4.

2 Methods

2.1 Mid-Space Approach to Registration Symmetry

Let  be the two d -dimensional input images to be registered, where . 

We want to compute the regular transformation T: Ω → Ω that deforms I2 so as to make I1 

and I2 ○ T most similar to each other; a task that is often done by minimizing a cost function 

with respect to T. The data term of the common sum of squared differences (SSD) cost 

function can be formulated for instance as  or . These two 

forms are not equivalent though, because the transformed image – which is different in each 

case – is integrated non-uniformly [1-4, 11], resulting in the registration asymmetry.

In a popular approach to derive a symmetric cost function, both images are deformed to a 

mid-space [5-10]. Consequently, these cost functions depend on two transformations, T1, T2: 

Ω → Ω, deforming images I1 and I2, respectively. The deformed images are then often 

compared in the mid-space through a cost function such as , and the 

output is eventually computed as . The mid-space cost function is by definition 

invariant with respect to the ordering of the images.

With no additional constraints, the dimension of the mid-space registration problem (solving 

for T1 and T2) is twice as big as the standard asymmetric problem (solving for T). Also, the 

mid-space can drift arbitrarily far away from the native spaces of the images due to large 

changes in T1 and T2, for instance through combination with a transformation h, as T1 ○ h 

and T2 ○ h, which decreases the mid-space cost function without changing the final 

. An example of this phenomenon is the situation where 

the optimization algorithm modifies T1 and T2 in order to shrink the regions where the two 

deformed images do not match, resulting in a decrease in the mid-space cost function, 

without necessarily changing the end result, T. To avoid these issues, additional constraints 

are often employed to keep the mid-space “in between” the native spaces. For instance, the 

two transformations may be forced to have opposite-sign displacement fields, as T1(x) = x + 

u(x) and T2(x) = x – u(x), resulting in the constraint T1(x) + T2(x) = 2x (or similarly 

) [7, 8, 12-14]. This reduces the degrees of freedom and to some 

extent prevents the mid-space drift, however, at the expense of limiting our ability to model 

all possible transformations T. An extreme example of this limitation would be the 2D case 

with the true transformation T being a 180° rotation about the origin, i.e. T(x) = –x, where no 

T1 and T2 will simultaneously satisfy both T1(x) + T2(x) = 2x and T2(x) = T ○ T1(x). For 
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large deformations, opposite-sign velocity fields [9, 10, 15] and geodesic averaging are used 

to preserve the properties of the transformations [5, 6, 16]. Since there is no unique way to 

define the mid-space, the registration results can depend on the choice of the constraints 

imposed on T1 and T2.

Mid-space pairwise registration can also be performed by constructing an unbiased atlas 

from two images [10, 16, 17]. In atlas construction, the observed images are assumed to be 

instances generated from an atlas image with some geometrical and intensity variation. 

Therefore, the problem boils down to finding an atlas, , and regular 

transformations  and  that take the atlas from the mid-space to the native spaces of 

the two images, in such a way that the deformed versions of the atlas resemble the observed 

images. Using the SSD metric, the data term for such an optimization is the sum of two 

(asymmetric [18, 19]) subject-atlas distance terms, as in:1

(1)

Comparing the images to the atlas in the physically meaningful native image spaces 

complies with the generative model assumption that the image is generated as a deformed 

version of the atlas (not vice versa), and that the Gaussian noise is added to the deformed 

atlas [18, 19]. The changes of variables x = T1(y) and z = T2(y) leads to:

(2)

where J1(y) ≔ det ∂T1(y) and J2(y) ≔ det ∂T2(y) are the Jacobian determinants of the two 

transformations. The Â(y) minimizing the cost function is derived as [18]:

(3)

In an explicit-atlas scheme, the transformations and the atlas can be iteratively computed 

from Eq. (1) and Eq. (3) [17]. However, the atlas can indeed be eliminated in Eq. (2) by 

substituting A(y) with Â(y), leading to an implicit-atlas data term [10]:

(4)

1Regularization terms such as the Tikhonov integrals  and  are also typically 
included in the cost function to keep the transformations meaningful and penalize excessive distortion. In this section, however, we 
focus only on the data term. The derivation of Eq. (4) is not impacted by the regularization terms, as they do not depend on A. Please 
note that anti-drift constraints are needed in addition to the regularization terms.
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2.2 Independence from the Mid-Space

Equation (4) is an optimization over both T1 and T2, which define the mid-space. Even so, 

further simplification reveals that the two transformations are redundant. The change of 

variables , with , results in:

(5)

Recall that the output transformation T is computed as , the Jacobian 

determinant of which is . It now becomes 

clear that the above integral is, remarkably, only a function of T, and that the optimization 

can be written independently of the individual T1 and T2, as:

(6)

Thus, we can minimize this cost-function data term directly with respect to T, as opposed to 

the previous methods that optimize their cost functions with respect to both T1 and T2, 

conditioned to constraints that prevent the mid-space drift.

With D(I1, I2, T) being independent of T1 and T2, the mid-space disappears, eliminating the 

problem of the mid-space drift as well. We do not need to enforce any anti-drift constraints 

anymore, hence not biasing the space of possible transformations T by the particular choice 

of such constraints. This is all while keeping the degrees of freedom of the optimization half 

of that of the unconstrained problem of solving for both T1 and T2. In addition, no 

transformation needs to be inverted to compute T, as opposed to most existing mid-space 

approaches that need to invert T1 to compute . These advantages are especially 

valuable for displacement-field parameterized transformations, inverting which is a difficult 

and inexact task. Lastly, one can verify the expected symmetry of the proposed data term, 

i.e. D(I1, I2, T) = D(I2, I1, T–1). Note that this symmetry holds only in the continuous 

domain. In the discrete case, where one image is resampled and the other is not, 

discretization artifacts produce a bias [19-21].

Equation (6) might seem like a non-uniform integral in the native space of I1. However, this 

cost function originates from Eq. (1), which is the sum of two integrals taken uniformly in 

the native spaces of images, and non-uniformly only in the abstract mid-space. Therefore, 

the pitfalls associated with non-uniform integration in native spaces [11] are not expected to 

arise. We subsequently showed that Eq. (1) can be written independently of not only the 

atlas (Eq. (4) [10]), but also the mid-space itself (Eq. (6)).
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2.3 Implementation

We implement the proposed registration method via the diffeomorphic demons scheme [22], 

and minimize D(I1, I2, T) of Eq. (6) by gradient descent with line search. Similar to the 

demons algorithm, T is regularized by Gaussian blurring between each two descent 

iterations. We use a compositive scheme and update T by composing it with a 

transformation S, chosen to be the exponential of the update field. At each iteration, we fix T 

and J, and compute the variation of D(I1, I2, T ○ S) with respect to S, with S currently 

assumed to be the identity transformation. Then, to preserve the diffeomorphism, we 

initialize  (for a large enough M), with Δ the step size, and compose 

it with itself (S ← S ○ S) M times, before updating T as T ← T ○ S [22]. The variation is 

computed as follows (derivations omitted):

(7)

where C is the cofactor matrix of ∂T with Ck,: its kth row, and Hk is the Hessian matrix of the 

kth element of T. The notation (x) has been dropped for brevity. The last term of Eq. (7) 

involves the Hessian tensor of the deformation field, which can introduce large 

discretization error. In fact, the imprecision due to the discretization of the second derivative 

may outweigh the accuracy that this term is expected to bring about. In our experiments, 

ignoring this second-order term improved the optimization of Eq. (6).

3 Experimental Results

We tested the proposed deformable registration method on 2D slices of brain magnetic 

resonance images, using our in-house Matlab implementation of the diffeomorphic demons 

with the compositive scheme [22] (see Section 2.3). We compared our symmetric mid-

space-independent registration method with the popular symmetrization approach that 

minimizes the average of the forward and backward cost functions [1-4], simplified in the 

form of , with –(I1 – I2 ○ T)(J∇I1 + ∇(I2 ○ T)) being its 

compositive gradient. Each registration experiment consisted of 2000 gradient descent 

iterations, and was repeated with the demons regularization parameter taking a range of 22 

different values.

3.1 Retrieval of Synthetic Deformations

In the first set of experiments, we compared the two algorithms on the mid-sagittal planes of 

20 brain images taken from the publicly available OASIS database [23], which were pre-

processed in FreeSurfer [24]. From each intensity-normalized and resampled volume (1-

mm3 isotropic voxel), the sagittal slice located four voxels to the right of the mid-sagittal 

plane was extracted, and resampled to the size 128×128 (Figure 1a). For each subject, two 

random deformation fields  and  were synthesized, spatially low-pass filtered, 

and applied to the sagittal slice, I, to produce two synthetically deformed images, 

 and  (Figure 1b,c), which were then registered with each other 

using both methods (Figure 1d,e). Ideally, we would expect to retrieve a transformation T 
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satisfying . Accordingly, we computed the error 

, and for each subject and method, chose the best result 

(with the smallest error) across the experiments with different demons regularization values. 

Our mid-space-independent registration resulted in a lower error than the symmetrization 

method did in 14 out of the 20 subjects. On average, the error was 0.2% ± (SE) 0.2% lower 

for our method. We also ran the experiments in the reverse direction, and computed the 

inverse-consistency error, , which was 4% ± 2% lower 

for our method than for the symmetrization method.

3.2 Cross-Subject Registration of Labeled Images

We performed a second set of experiments on a dataset of brain images with 37 

neuroanatomical structures manually labeled [25]. We chose a fixed coronal slice 

maximizing the number of included distinct labels across the subjects (Figure 2). We 

randomly selected 40 pairs of subjects, and registered the chosen slices using the two 

methods. Although cross-sections of labels of 3D structures are not so precise for empirical 

validation, slice registration, being much faster than volumetric registration, allowed us to 

run many more experiments with a wide range of regularization.

We first considered 12 key subcortical regions: left/right amygdala, caudate, hippocampus, 

pallidum, putamen, and thalamus. As a similarity score for comparing the two methods, we 

computed in the union of these regions the portion of the voxels with matching labels 

between the two images. For each method and pair of subjects, we chose the maximum 

score achieved across different values of the demons regularization parameter. When the 

labels were compared in the native space of I1, the two methods achieved on average similar 

scores (difference: 0.0% ± 0.2%). On the other hand, when the scores were computed in the 

native space of I2 (by nearest-neighbor interpolation), the proposed method resulted in 

0.10% ± 0.16% higher score than the symmetrization approach did.

In a different comparison, we computed the similarity score for each experiment by 

averaging the Dice's similarity coefficient across all of the labels. When the label overlaps 

were computed in the native space of I1, the symmetrization approach produced a significant 

0.7% ± 0.2% higher similarity score compared to the proposed method. When the scores 

were computed in the native space of I2, however, the two algorithms performed similarly 

(0.0% ± 0.2%).

4 Conclusions

We have demonstrated for the first time that implicit-atlas pairwise registration is inherently 

independent of the mid-space, which led to deriving a new symmetric data term for 

deformable image registration. The independence of the cost function from the two image-

to-atlas transformations alleviates the need for enforcing anti-drift constraints that can 

potentially bias the results. Our method is especially advantageous for the displacement-

field transformation models, since inverting a velocity-field transformation is 

straightforward. We validated our method through experiments on two brain image datasets. 

Future work includes: a comprehensive evaluation of the proposed method on 3D labeled 
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data; investigating the practicality of the proposed framework for group-wise registration; 

and devising a suitable symmetric regularization scheme.
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Figure 1. 
The original image (a) was deformed by two synthetic random transformations (b,c). The 

deformed images were then registered with each other, resulting in deformation fields by the 

proposed (d) and the symmetrization (e) methods.
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Figure 2. 
Examples of the labeled coronal slices used in Section 3.2.
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