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Abstract We present a reanalysis of the stochastic model of organelle production and show that

the equilibrium distributions for the organelle numbers predicted by this model can be readily

calculated in three different scenarios. These three distributions can be identified as standard

distributions, and the corresponding exact formulae for their mean and variance can therefore be

used in further analysis. This removes the need to rely on stochastic simulations or approximate

formulae (derived using the fluctuation dissipation theorem). These calculations allow for further

analysis of the predictions of the model. On the basis of this we question the extent to which the

model can be used to conclude that peroxisome biogenesis is dominated by de novo production

when Saccharomyces cerevisiae cells are grown on glucose medium.

DOI: 10.7554/eLife.10167.001

Introduction
Recently a model was presented in which the variation of numbers of a particular type of organelle

(Golgi apparatus, vacuoles or peroxisomes) observed in cells was proposed as a diagnostic indicator

of the relative importance of different processes by which organelles can be formed and destroyed

(Mukherji and O’Shea, 2014; see Mukherji and O’Shea, 2015 for a correction). Here we re-examine

the mathematical analysis of this model and show that further insight can be gained from consider-

ing exact calculations of the equilibrium distributions. For conciseness we will refer to the model,

and the analysis in the associated paper (Mukherji and O’Shea, 2014), by the abbreviation SMOP

(stochastic model of organelle production).

Analysis

The SMOP model in the context of “birth and death” models
In the SMOP model, four processes are envisaged for the production and destruction of organelles:

de novo synthesis, fission, fusion and decay. These four processes are characterised by one rate con-

stant each, defined in the SMOP paper as kde novo, kfission, kfusion, and g. Following the definitions in

the SMOP paper, the probabilities of each of the four processes occurring in the next small time

period dt are given in Table 1. We also include in this table the total rate of each process that would

be observed instantaneously in a large population of N cells.

Models involving processes of this type are generically termed “birth and death” processes and

have a very long history of analysis in the context both of the life sciences (e.g. evolution; Yule, 1924)

and in the context of physical processes (e.g. detection of cosmic rays; Furry, 1937). Accessible dis-

cussions can be found in several books (Bailey, 1990, which is a reissue of the classic text from

1964; Taylor and Karlin, 1998). In such analyses, the three processes of de novo production, pro-

duction by fission, and loss by first order decay are often termed immigration, birth and death,

Craven. eLife 2015;5:e10167. DOI: 10.7554/eLife.10167 1 of 16

SHORT REPORT

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.10167.001
http://dx.doi.org/10.7554/eLife.10167
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


respectively. Immigration is used for a process that increases the number of individuals but does not

require any other individuals already to be present. Birth is the process by which one individual gives

rise to a second individual. Death is a process by which a particular individual is lost from a popula-

tion with a probability that is independent of any other members of the population. Analyses includ-

ing a fusion term are much less common.

As there are a considerable number of possible combinations of the four processes that might be

active, we will use a notation here to define a model by listing in curly brackets the active production

processes, followed by the active destruction processes, separated by a semi-colon. Any process

that is not mentioned has a rate constant of zero. Thus the model with de novo, fission and decay

terms would be denoted {de novo, fission; decay}.

During single cell simulations based upon the equations in Table 1 the number of organelles will

fluctuate (Figure 1A) and one can ask what fraction of time, fn, does a cell spend having n = 0,

n = 1, n = 2, etc. organelles. This is equivalent to asking what fraction of a large ensemble of cells

have n = 0, n = 1, n = 2, etc. organelles at one moment in time. In treatments of stochastic systems,

the values of fn would normally be described as the probability distribution for a cell having n organ-

elles. In terms of a population of cells it can be described as a population distribution.

eLife digest Any cell that has a nucleus also contains a number of subcellular structures called

organelles. The number of organelles inside a cell increases when new organelles are made from

scratch (a process known as de novo synthesis), or when an existing organelle divides to produce

two organelles in a process called fission. And the number of organelles decreases when an existing

organelle decays, or when two organelles fuse together to become one organelle. The actual

number of organelles of a particular type inside a cell results from a balance between these creative

and destructive processes.

Last year researchers at Harvard University developed a model that treats the processes of

organelle creation and destruction as if they were chemical reactions, and then used their model to

make predictions about the budding yeast S. cerevisiae in three scenarios. The Harvard researchers

had to use a number of approximations to make these predictions.

Now Jeremy Craven has derived exact solutions to the model for these three scenarios. The

exact solutions call into question some aspects of the model, notably the prediction that the

production of new peroxisomes – organelles that are involved in breaking down fatty acids and

other compounds – is dominated by fission when the yeast cells are grown on a substance called

oleate, and by de novo synthesis when they are grown on glucose. Craven’s analysis also highlights

the need for quantitative time-course imaging data to test theoretical models of dynamic processes

in cells.

DOI: 10.7554/eLife.10167.002

Table 1. Definition of terms in the SMOP model

Process
Probability of process occurring in next dt in a
particular cell containing n organelles1

Process
changes n by

Rate of process in
sample of N cells2

De
novo

kde novodt 1 kde novofnN

Fission kfissionndt 1 kfissionnfnN

Decay gndt -1 gnfnN

Fusion kfusionn(n-1)dt -1 kfusionn(n-1)fnN

1For example, if kfission = 0.02 then the probability of a cell with n = 2 organelles undergoing a fission event in the

next 0.1 time units = 0.02x2x0.1 = 0.004.
2fn is the fraction of cells having n organelles. For example, if 23% of the cells have 2 organelles then f2 = 0.23. If,

in a population of 1000 cells, f2 = 0.23 and kfission = 0.02 then the rate of cells changing from having n = 2 to n = 3

organelles at any one moment due to fission would be 0.02x2x0.23x1000 = 9.2 cells per time unit.

DOI: 10.7554/eLife.10167.003
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The simulations in Figure 1A illustrate the important point that a simulation is always started

from some arbitrary starting point, and that a period of time must elapse before the simulations can

be considered to be independent of this starting point. If the distribution fn is evaluated at different

times after the starting point of simulations (Figure 1C) then different distributions are obtained;

hence the distribution is “time dependent”. As the probability (or population) distribution varies in

time (and since the system can in principle be started from any state) then it is not strictly possible

to talk of “the distribution” for a stochastic system. However in many birth and death models the

system will settle down to a limiting distribution, independent of the starting states of the cell(s) as

in the cyan and red curves in Figure 1C. Such a situation corresponds to a state of dynamic equilib-

rium that is familiar from chemical kinetics. Thus the terms limiting, equilibrium (or steady state) dis-

tributions can be used in this context interchangeably. The conditions for the models studied here

to have limiting distributions is discussed further below; an example of a set of parameters for which

a SMOP model does not yield a limiting distribution is shown in Figure 1D.

Assuming that a limiting probability distribution does exist there are two basic sampling methods

by which it can be measured, irrespective of whether one is making experimental observations or

performing simulations. One method is to note n at a set of time points for a single cell (such as

points drawn from the trajectories in Figure 1A), and the other is to take a large number of cells at

one point in time, and measure n across this ensemble of cells (Figure 1B,C). The former would

require a time dependent set of observations that may be difficult to obtain experimentally. The lat-

ter approach is equivalent to making experimental observations on a large field of view of cells, or

of making repeated simulations. However there is a large caveat that when the measurements are

Figure 1. The concept of the limiting distribution in a stochastic system. (A) The traces show simulations run with

the parameters {kde novo = 2.0, kfission = 0.9; g = 1.0, kfusion = 0.02}, starting from n = 0 (black trace) and n = 50

(green trace). Both simulations “settle down” to stochastic fluctuations about a mean value of <n> = 7.1 (B)

Schematic representation of a set of cells that are all initialised to n = 1 at time t = 0, and are observed at a time

t = t. (C) Distributions calculated with the same parameters as in (A) for a set of 1000 cells as in (B), calculated for

t = 0.2 (magenta), 0.4 (yellow), 1.0 (green), 2.0 (blue), 5.0 (black), 10.0 (cyan), 15.0 (red). The curves for t = 10.0 and

t = 15.0 become very similar as they approach the limiting distribution. These two curves match closely the result

(filled black circles) of applying the recurrence relation (Equation 2; Appendix 2). (D) The red trace is a time course

for parameters {kde novo = 2.0, kfission = 1.1; g = 1.0, kfusion = 0}. Since kfission > g, and kfusion = 0, then n diverges; in

such a case there is no limiting distribution.

DOI: 10.7554/eLife.10167.004
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made one must be convinced that the cells have had “long enough to reach equilibrium” since the

last significant perturbation to the system. If this is not the case then the distribution measured will

be contaminated with contributions from non-equilibrium distributions (such as from the magenta,

yellow, green and blue curves in Figure 1C). Perturbations include the choice of an arbitrary starting

point in simulations, and effects such as cell division and change of growth conditions in experimen-

tal data.

Does the SMOP analysis imply equilibrium distributions?
It is implicitly assumed in the SMOP paper that the populations are to be considered to be at equi-

librium (or that the probability distributions are in their limiting form) for all three cases of the analy-

sis via simulations, from experimental data, or via the fluctuation dissipation theorem; a comment

has been added to the original articles to clarify this assumption for the simulations (see the com-

ment dated November 23, 2015 on Mukherji and O’Shea, 2014). For the experimental data this

seems a reasonable assumption, although dynamic population data are really required to fully settle

this issue. The fluctuation dissipation theorem method implicitly assumes a steady state

(Paulsson, 2005).

Derivation of recurrence relation for the distribution of organelles in
the {de novo, fission; decay, fusion} model
By applying an equilibrium condition it is straightforward to derive precise relations for the distribu-

tions in the three scenarios considered in the original SMOP paper, and hence avoid the approxima-

tions introduced by the use of the fluctuation dissipation theorem.

At equilibrium, the rate at which the population gains cells with n + 1 organelles due to cells with

n organelles gaining one organelle must equal the rate at which the cells with n + 1 organelles lose

one organelle. The reasoning is the same as for standard treatments of dynamic equilibrium between

two states (as in a chemical reaction), and the complete justification of this when there are multiple

states (i.e. cells with n = 0, n = 1, n = 2, etc., organelles) is given in Appendix 1.

Thus at equilibrium

ðkde novoþ kfissionnÞfnN ¼ ðgþ kfusionnÞðn þ 1Þfnþ1N (1)

which gives

fnþ1 ¼
ðkde novoþ kfissionnÞ

ðgþ kfusionnÞ nþ 1ð Þ
fn (2)

From Equation 2 the exact distribution of organelle numbers at equilibrium can be calculated for

a model involving any combination of the four processes, without recourse to random number based

simulations and the attendant issues of ensuring adequate sampling precision.

An explicit numerical example of the use of Equation 2 to generate a distribution is given in

Appendix 2. Briefly, an arbitrary value for f0 is chosen; f1 is then calculated from f0; f2 is calculated

from f1; f3 is calculated from f2; etc. Finally the entire distribution is normalised, which removes any

dependence on the initial choice for f0. Equation 2 is often termed a recurrence relation (or some-

times recursion relation or difference equation) as it allows successive terms in a distribution to be

calculated from earlier terms.

Application of recurrence method to Golgi and vacuole models
The recurrence relation readily allows the derivation of precise distributions for the case of the

model applied to Golgi ({de novo; decay}, Appendix 3) and vacuoles ({fission; fusion}, Appendix 4).

For the Golgi, a Poisson distribution is obtained as the limiting distribution in accord with the SMOP

analysis. However for vacuoles a truncated Poisson distribution is obtained, and not the shifted Pois-

son distribution that is reported in the SMOP analysis. Although the difference between these distri-

butions is quite subtle (Appendix 4), the variation of Fano factor with <n> is significantly different:

the Fano factor for the truncated Poisson approaches 1 much more rapidly (Figure 2, green curve)

than for the shifted Poisson (Figure 2, black curve).

In Figure 2, it can be seen that the experimental values quoted in the SMOP analysis are in excel-

lent agreement with the incorrect prediction, whilst the agreement with the corrected theoretical
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prediction is much less good. This greatly weakens the argument that the SMOP model makes

“quantitatively accurate predictions” or that it therefore correctly accounts for the behaviour of the

vacuole population.

Application of recurrence method to peroxisome models
Having established the value of analysing the SMOP model with the recurrence method, we move

on to the case of peroxisomes.

Recurrence relation demonstrates that {de novo, fission; decay} yields a
negative binomial distribution
For peroxisomes, the primary model discussed in the SMOP analysis is a model in which peroxi-

somes can potentially form both de novo and by fission, and fusion is considered to be negligible.

We show in Appendix 5 that such a {de novo, fission; decay} model has a limiting distribution that is

a negative binomial distribution.

As a result, exact expressions (for all parameter values) are readily obtained (Appendix 5) for the

mean and Fano factor for this model,

nh i ¼
kde novo

g� kfission
(3)

s2

nh i
¼

g

g� kfission
(4)

Combining Equations 3,4 gives an alternative form for the Fano factor

s2

nh i
¼ 1þ

kfission nh i

kde novo
(5)

This latter equation is the form given in the SMOP analysis as the kfusion = 0 limit of the approxi-

mate Equation 1 of the SMOP paper. By explicitly applying the equilibrium assumption we have

therefore shown that this expression is exact in this case for all values of the parameters.

Figure 2. Comparison of reported Fano factors for vacuole populations, compared to two different theoretical

expectations. Three data points quoted in the SMOP paper are plotted: □ Haploid (glucose); ○ Diploid (glucose);

D Haploid (oleate). The solid black curve is the expectation from the shifted Poisson distribution (which is the

incorrect distribution given the {fission; fusion} model) and the solid green curve is the expectation from the

truncated Poisson distribution (which is the correct distribution given the model). The dashed line is for a Fano

factor of 1. The solid curves were constructed by calculating a family of distributions and evaluating the mean and

Fano factor.

DOI: 10.7554/eLife.10167.005
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Evaluation of Fano factor for the boundary marking equal de novo and
fission rates
An attractive claim made for the SMOP analysis is that the value for the Fano factor can be used to

distinguish between different modes of organelle production.

In Figure 3D of the original SMOP paper, a green dashed line was placed at s2= nh i ¼ 1 and

stated as “marking the boundary between de novo synthesis and fission dominated organelle pro-

duction”. Thus, as presented in Figure 3D of the original version of the SMOP paper, the Fano fac-

tor for cells grown on oleate (s2= nh i ¼ 2:4� 0:2Þ appears to lie significantly above the line where the

rates are equal, and thus terms such as “fission dominated biogenesis” are used widely in the SMOP

paper.

However, according to Equation 5 the correct value with equal contributions from the two pro-

cesses is s2= nh i ¼ 2. A correction to this effect has now been issued. The value of s2= nh i ¼ 1 corre-

sponds to the extreme case of zero fission and production solely by de novo production (Figure 3).

In the corrected version of Figure 3D in the SMOP paper it is clear that the inferred fission rate for

growth on oleate is only barely greater than the de novo synthesis rate and the term “dominance”

does not seem to be appropriate. It is clear from Figure 3 that the inferred contribution from fission

grows only rather slowly as the Fano factor increases above a value of two. In other words, for fission

to be truly dominant a Fano factor would have to be observed that was far greater than any

reported in the SMOP paper.

Restrictions on the relationships between parameters in order for limiting
distributions to exist
Since it is inherent in the SMOP analysis that the distributions are limiting/equilibrium distributions,

it is important to consider whether a limiting distribution will ever be reached.

In the case of the peroxisome model, {de novo, fission; decay}, for the system to have a limiting

or equilibrium distribution there is a strong restriction on parameters, namely that kfission < g. To see

why this restriction exists, consider first the more simple {de novo; decay} model. Considering a sin-

gle cell, the number of organelles will be limited by the fact that as n grows larger then the decay

Figure 3. The percentage contribution to the total production rate from de novo production and from fission as a

function of Fano factor in the {de novo, fission; decay} model. For each value of the Fano factor shown, a bar is

drawn to represent the total production rate. The filled part of the bar represents the contribution from de novo

production inferred from the model and the open part of the bar represents the inferred rate from fission. Bars are

shown for Fano factors of: 1.0 (100% de novo); 1.1 (experimentally observed for glucose growth (G) in SMOP

paper; 9% de novo, 91% fission); 2.0 (boundary value, where de novo and fission contributions are equal); 2.4

(experimentally reported value for oleate growth (O) in SMOP paper; 42% de novo, 58% fission); 3.0 (value

required for fission rate to be double the de novo rate). The total production rate from de novo processes is

simply kde novo. The total rate from fission processes is kfission<n>. The relative proportions of the two processes

were calculated using Equation 5.

DOI: 10.7554/eLife.10167.006
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process (whose rate increases proportionally to n) will become increasingly more likely than the de

novo formation process (which is independent of n). If the fission process is introduced then there is

now a production term that also increases proportionally to n. If kfission exceeds g then the fission

process will always exceed the decay process and the number of organelles will grow without limit.

The behaviour as kfission becomes similar to g can also be seen from Equations 3,4 since if kfission
is increased from zero until it becomes equal to g then <n> and s2= nh i both diverge. Thus at first

sight there appear to be two different ways in which the Fano factor can become very large. One

way, as extensively discussed in the SMOP analysis and above, is if the mean rate kfission<n>

becomes large compared to the mean rate kde novo. The other way, that becomes clear from our

analysis, is if the rate constant kfission becomes similar to the rate constant g. The connection

between these two relations is that <n> is a function of all three rate constants. This emphasises the

hidden complexity of the interplay of the parameters in this model.

Discussion
Our motivation for this in depth analysis of the SMOP method was sparked by the claim that it could

differentiate between fission and fusion dominated mechanisms of peroxisome biogenesis. That the

distribution of numbers of organelles can give a clue to the mechanisms by which organelles are

formed is a very elegant idea, and the SMOP analysis combines this idea with a very simple kinetic

model. As we explored the system further we realised that the fluctuation dissipation theorem result

was not necessary for analysis of the system, and that enforcing the equilibrium condition, that was

implicit in the work already, greatly simplified the analysis.

There are a number of factors that cause us to question the utility of the SMOP model. A main

piece of evidence for the correctness of the model was the agreement of the experimentally

observed Fano factors for the vacuole data with those from the model. We have shown this agree-

ment to be much less perfect than originally demonstrated. We have also shown that there is a

strong interplay between different parameters in the model. This means that the agreement of

experimental data with the model is not as compelling as originally presented and that the interpre-

tation of experimental observations back to mechanistic conclusions is open to question. We hope

that our analysis will stimulate discussion as to whether, for instance, the SMOP model captures the

key features of the underlying processes and is just lacking some details; or whether the model fun-

damentally lacks key aspects of feedback. The assumption that observations of cells grown in batch

culture faithfully report equilibrium distributions also requires further verification.

A key conclusion of the SMOP analysis is that the contribution of fission to peroxisome biogenesis

is negligible (<10%) when yeast cells are grown on glucose, but "dominant" when they are grown

on oleate. This is an area of some contention (Hoepfner et al, 2005; Motley and Hettema, 2007),

and a recent model relied on fission of peroxisomes during organelle inheritance as the proliferation

mechanism (Knoblach et al, 2013). Our analysis has shown that the term “dominant” is misleading,

and that the data reported for haploid cells grown on oleate indicates approximately equal contribu-

tions from the two processes.

Nevertheless the model does suggest that the proportion of production by fission increases by

about a factor of five on switching to oleate growth. Supporting evidence for this was provided by

the observation of the reduction in the inferred fission contribution in cells grown on oleate in which

the fission factors Vps1 or Dnm1 (or Fis1, an accessory factor of Dnm1) were deleted. On the other

hand, no data were shown for glucose grown cells harbouring the same deletions. On glucose the

Fano factor is reported in the SMOP analysis as 1.1, with <n> = 3, and from Equations 3,4 one

obtains kde novo = 2.7g and kfission = 0.1g. The model then implies that on deletion of the fission

pathway (i.e. setting kfission = 0) then <n> would only drop by 10%. Peroxisome count data has been

reported recently (Fig S4, Motley et al., 2015), with values of <n> = 4.9 in WT cells, <n> = 1.5 in

vps1D cells and <n> = 1.2 in vps1Ddnm1D cells. The drops in peroxisome numbers in vps1D and

vps1Ddnm1D cells are much greater than the 10% estimated above from the SMOP model. There is

also peroxisome count data in Kuravi et al. (2006), which gives <n> = 1.6 (WT), <n> = 1.2 (vps1D),

<n> = 1.7 (dnm1D), <n> = 0.9 (dnm1Dvps1D). The drop in <n> for the dnm1Dvps1D again conflicts

with the idea that fission is such a small contributor to the biogenesis process. The discrepancies

between these various data possibly arise from difficulties in quantifying peroxisome numbers, espe-

cially when cells contain a large number of small (and therefore low fluorescence) peroxisomes as
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may be the case when fission is a strong contributor to biogenesis. The problem of peroxisome

counts depending on the brightness of fluorescent markers has been commented on by Jung et al.

(2010).

There is a continuing push for cell biology to become more quantitative, and to be subject to the

use of rigorous models as are common in the physical sciences. Such a push raises significant chal-

lenges not only in terms of developing tractable models and justifying the underlying assumptions,

but also in terms of the application of the model to complex experimental data. In particular this

work highlights the need for greater accounting for detection limits and intensity distributions, as

well of time dependent issues, in the reporting and analysis of organelle count data, if these are to

be used to infer details of organelle biogenesis mechanisms.

Materials and methods
All calculations were performed in python 2.7, running either via Cygwin under Windows 8.1, or

Linux Mint 17.0. The code used for running stochastic simulations and for calculating distributions

via Equation 2 is given in Source code 1,2. Time units are arbitrary. The time step for the simula-

tions in Figure 1 was 0.0001 units. Equation 2 can be reformulated in terms of three parameters,

e.g. kde novo/g, kfission/g, kfusion/g; thus for example the parameters {kde novo = 2.0, kfission = 0.9;

g = 1.0, kfusion = 0.02} and any uniformly scaled set of parameters (e.g. {kde novo = 4.0, kfission = 1.8;

g = 2.0, kfusion = 0.04}) yield the same limiting distribution. As in the SMOP paper, the Fano factor is

defined here as s2

nh i.
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Appendix 1: Detailed balance

Consider an ensemble of cells, where cells with for example n = 3 organelles can only arise

from cells with n = 2 or n = 4 organelles.

We can represent the kinetic processes thus

Rn=1fin=0 Rn=2fin=1 Rn=3fin=2 Rn=4fin=3 Rn=5fin=4

n = 0  ! n = 1  ! n = 2  ! n = 3  ! n = 4  ! etc.

Rn=0fin=1 Rn=1fin=2 Rn=2fin=3 Rn=3fin=4 Rn=4fin=5

Where for example Rn=2fin=3 is the rate of formation of cells with n = 3 due to cells with n = 2

gaining one organelle, and Rn=3fin=2 is the rate of loss of cells with n = 3 due to such cells

losing one organelle.

If the system is in equilibrium (i.e. the values of f0, f1, f2, etc. are not changing) then a form of

the principle of detailed balance applies. The principle of detailed balance asserts that for

instance

Rn¼3!n¼2 ¼Rn¼2!n¼3 (6)

To show this, consider first the state with n = 0. At equilibrium the rate of formation must

equal the rate of loss,

Rn¼1!n¼0 ¼Rn¼0!n¼1 (7)

Now considering the state with n = 1, the equivalent relation contains more terms

Rn¼0!n¼1þRn¼2!n¼1 ¼Rn¼1!n¼0þRn¼1!n¼2 (8)

But, crucially, by substituting in from Equation 7 this simplifies to

Rn¼2!n¼1 ¼Rn¼1!n¼2 (9)

And by proceeding along the chain the general relationship emerges that

Rn¼i!n¼i�1 ¼Rn¼i�1!n¼i (10)

For i = 1, 2, 3, etc.

In other words at equilibrium every individual reversible process must have balancing rates.

The full “principle of detailed balance” for molecular systems contains some greater subtleties

related to thermodynamics, that allow the principle to be applied to more complex networks.
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Appendix 2: Recurrence example

The recurrence relation can be applied in an algebraic form as in the analysis of the various

models in the paper, but can also be used to rapidly calculate numerical distributions directly.

As an example, consider the model {kde novo = 2.0, kfission = 0.333; g = 1.0, kfusion = 0.0333}

Equation 2 becomes

fnþ1 ¼
ð2:0þ 0:333nÞ

ð1:0þ 0:0333nÞ nþ 1ð Þ
fn (11)

We first calculate provisional (un-normalised) values for f0, f1, f2, etc.

First set f0 = 1. This is an arbitrary choice and the final results do not depend upon it.

Using Equation 11 with n = 0,

f1 ¼
ð2:0þ 0Þ

ð1:0þ 0Þ 1ð Þ
� 1:0¼ 2:0 (12)

Then using Equation 11 with n = 1, and the above value for f1,

f2 ¼
ð2:0þ 0:333Þ

ð1:0þ 0:0333Þ 2ð Þ
� 2:0¼ 2:26 (13)

And again using Equation 11 with n = 2, and the above value for f2,

f3 ¼
ð2:0þ 0:666Þ

ð1:0þ 0:0666Þ 3ð Þ
� 2:26¼ 1:88 (14)

This procedure can be repeated to calculate any number of terms.

For a model with a limiting distribution then for large n the fn will become very small, for

instance here f20 = 0.00000008, and so it is not necessary to calculate more terms.

The calculated terms are then summed to give a normalising factor (NF),

NF ¼ 1:0þ 2:0þ 2:26þ 1:88þ �� �þ 0:00000008¼ 9:89 (15)

The provisional values of f0, f1, f2, etc. are divided by NF, which ensures that the fractional

populations sum to one, giving

f0 = 0.10, f1 = 0.20, f2 = 0.23, f3 = 0.19, f4 = 0.13, f5 = 0.08, f6 = 0.04, etc.

Ideally it should be checked with a longer sequence that, to sufficient precision, the results are

independent of the number of terms calculated.
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Appendix 3: Application of recurrence relation to {de novo;
decay} model

In the case of the Golgi, the model proposed in the SMOP analysis is a {de novo; decay}

model. This model is also often termed an immigration death process. For this model

Equation 2 becomes

fnþ1 ¼
kde novo
gðnþ 1Þ

fn (16)

So we have

f1 ¼
kde novo

g
f0 (17)

f2 ¼
1

2

kde novo
g

f1 ¼
1

2

kde novo
g

� �2

f0 (18)

f3 ¼
1

3

kde novo
g

� �

f2 ¼
1

6

kde novo
g

� �3

f0 (19)

etc., and so in general

fn ¼
1

n!

kde novo
g

� �n

f0 (20)

To ensure that the sum of all fn equates to one, it is simple to show from the power law

definition of the exponential function that f0 ¼ expð�kde novo=gÞ, and hence

fn ¼ exp �
kde novo

g

� �

1

n!

kde novo
g

� �n

(21)

Thus the limiting distribution is a Poisson distribution as stated without proof in the SMOP

paper. The mean is given by nh i = kde novo/g.
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Appendix 4: Application of recurrence relation to {fission;
fusion} model

In the case of vacuoles, the model proposed in the SMOP analysis is a {fission, fusion} model.

For this model Equation 2 becomes

fnþ1 ¼
kfission

kfusionðnþ 1Þ
fn (22)

Equations 16,22 are identical except for the replacement of the ratio kde novo/g by kfission/

kfusion and therefore Equation 22 yields a form of Poisson distribution. It is not a standard

Poisson distribution since, as noted in the SMOP paper, such a model cannot reach a state

with n = 0 from a state with n > 0 since the fusion probability is zero when n = 1. This means

that f0 = 0. The rest of the distribution has the same form as for a regular Poisson distribution

(Equation 23), except for a slightly different overall normalising factor. This distribution is

known as a truncated (or sometimes zero-truncated) Poisson distribution (Equation 24). We

have checked this analysis by direct calculation and simulation using the programs in Source

code 1,2.

The relevant distributions can be defined as (Appendix 4 Figure 1)

Poisson:

fn ¼ expð�lÞ
1

n!
ðlÞn; n ¼ 0;1;2;3; . . . (23)

Truncated Poisson:

fn ¼
expð�lÞ

1� expð�lÞ

1

n!
ðlÞn; n ¼ 1;2;3; . . .

¼ 0 ; n ¼ 0

(24)

Shifted Poisson:

fn ¼ exp �lð Þ
1

ðn� 1Þ!
ðlÞn�1; n ¼ 1;2;3; . . .

¼ 0 ; n ¼ 0

(25)

Appendix 4 Figure 1. Comparison of Poisson (black filled circles), shifted Poisson (red filled

squares), and truncated Poisson (green open circles) distributions calculated for l = 2.5.
The values in a shifted Poisson distribution are the same as in the corresponding Poisson

distribution, however the whole distribution is shifted to the right by one unit in n. The value

at n = 0 is set to zero. In a truncated Poisson the value at n = 0 is set to zero, and the rest of

the distribution has the same functional form as the corresponding Poisson distribution. Due
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to the loss of the n = 0 point then normalisation causes the remaining values to be slightly

higher in the truncated Poisson distribution than in the corresponding Poisson distribution.

DOI: 10.7554/eLife.10167.009
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Appendix 5: Application of recurrence relation to {de novo,
fission; decay} model

In the case of peroxisomes, the model proposed in the SMOP analysis is a {de novo, fission;

decay} model. For this model Equation 2 becomes

fnþ1 ¼
ðkde novoþ kfissionnÞ

ðgÞ nþ 1ð Þ
fn (26)

This has the same form as the recurrence relation for the negative binomial distribution. The

negative binomial distribution is often expressed as the distribution for the number of

successes in a set of trials (probability of success in each trial = p) before a certain number, r,

of failures occurs, however the distribution arises in a wide variety of situations (Kotz et al,

1989; Taylor and Karlin, 1998; Scheaffer and Young, 2010; Grimmett and Stirzaker, 2001)

and in general there is no restriction that r be an integer. The recurrence relation for the

negative binomial distribution is,

fnþ1 ¼
ðprþ pnÞ

ðnþ 1Þ
fn (27)

and the negative binomial distribution has mean nh i ¼ pr
ð1�pÞ and variance s2 ¼ pr

ð1�pÞ2
.

Comparing Equations 26,27 we can equate p ¼ kfission=g and r ¼ kde novo=kfission

Hence

nh i ¼
kde novo

ðg� kfissionÞ
(28)

and

s2

nh i
¼

g

g� kfission
(29)

Combining Equations 28,29 gives an alternative form for the Fano factor,

s2

nh i
¼ 1þ

ðkfission nh iÞ

kde novo
(30)

We also note that it is possible to derive an expression for the variance (and Fano factor) for

the full {de novo, fission; decay, fusion} model as follows.

The total net rate of formation of organelles across the whole sample of cells, Rtot, is given by

Rtot ¼ kde novoN þ
X

i

fiNkfissioni�
X

i

fiNgi�
X

i

fiNkfusioniði� 1Þ (31)

¼ kde novoN þðkfission�gþ kfusionÞN nh i� kfusionN n2

 �

(32)

At equilibrium Rtot is zero, hence we have
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n2

 �

¼
kde novoþðkfission�gþ kfusionÞ nh i

kfusion
(33)

Making use of the relationship ðn � nh iÞ2
D E

¼ n2

 �

� nh i2;

we have

s2 ¼
kde novoþðkfission�gþ kfusionÞ nh i

kfusion
� nh i2 (34)

And thus we have the exact result that

s2

nh i
¼

kde novo
kfusion nh i

þ
ðkfission�gþ kfusionÞ

kfusion
� nh i (35)

This expression can only be applied when kfusion 6¼ 0, and it is not evident that it provides

significant insight, however it is useful for cross checking other algebraic and computational

results. We have been unable to find a useful closed expression for <n>.
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