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Recently developed ultrasensitive and quantitative methods for detection of Clostridium difficile toxins provide new tools
for diagnosis and, potentially, for management of C. difficile infection (CDI). Compared to methods that detect toxigenic
organism, ultrasensitive toxin detection may allow diagnosis of CDI with increased clinical specificity, without sacrificing
clinical sensitivity; measurement of toxin levels may also provide information relevant to disease prognosis. This minire-
view provides an overview of these new toxin detection technologies and considers what these new tools might add to the
field.

Clostridium difficile is a significant nosocomial and community-
acquired pathogen in adults and children, associated with dis-

ease ranging from mild diarrhea to severe pseudomembranous
colitis resulting in colectomy and even death (1, 2). Transmission
is primarily by person-to-person spread of spores (fecal-oral
route), and prevention of transmission is significantly compli-
cated by the high prevalence of asymptomatic colonization
with C. difficile (e.g., between 5% and 50% in adult inpatient
facilities [1]). Since the turn of the millennium, rates of C. difficile
infection (CDI) have increased globally, concomitant with in-
creased rates of severe clinical presentations and worsened
clinical outcomes (1, 3). A recent U.S. prevalence survey of
health care-associated infections (HAI) (4) found that C. diffi-
cile was the most commonly reported pathogen, causing 12.1%
of HAI. Despite available therapies, treatment failure and re-
lapse are common (1).

C. difficile isolates can be either nontoxigenic or toxigenic (pro-
ducing toxins A and B); nontoxigenic strains are not considered to
be pathogenic. Exposure to antibiotics increases the risk of CDI by
disrupting the normal bowel flora and allowing the opportunistic
proliferation of toxigenic C. difficile. These high-molecular-mass
protein exotoxins (308 and 270 kDa, respectively) are immuno-
logically and biologically distinct; depending on the experimental
system used, the activity of each has been described in the litera-
ture as proinflammatory, cytotoxic, and enterotoxic (5, 6). Most
strains produce both toxins A and B, though a minority of disease-
causing strains produce toxin B only (see, e.g., reference 7). Toxins
A and B are the primary virulence factors contributing to the
pathogenesis of CDI (6, 8, 9), and the genes for these toxins (tcdA
and tcdB) are colocated in a pathogenicity locus in toxigenic
strains (5, 10). Importantly, these genes are under complex regu-
latory control and expression of toxin proteins is impacted by
numerous environmental factors, including temperature, carbon
source/amino acid availability, and antibiotic concentration (10,
11). A recent paper also provided evidence for regulation of toxin
production by a quorum sensing system, with toxin synthesis be-
ing absent at low bacterial concentrations (12). While each of the
two toxins has been shown to be independently capable of causing
disease, the relative contributions of the two toxin proteins to
disease remain unclear (see, e.g., references 6, 8, 13, and 14), in
part due to differences in experimental systems (animals versus

humans, purified toxins versus natural infection) and clinical con-
texts (adults versus children). In short, many complex and impor-
tant questions remain regarding these toxins and the overall
pathogenesis of CDI— questions that could begin to be addressed
with a tool with which to sensitively detect and separately quantify
toxins A and B in stool.

CURRENT DIAGNOSTIC STRATEGIES AND THEIR
LIMITATIONS

Because toxin is necessary for disease, qualitative enzyme immu-
noassays (EIAs) that detect these toxins in stool were for many
years the mainstay of diagnosis, used by more than 90% of U.S.
laboratories (1). However, these assays are significantly limited in
sensitivity (52% to 75% versus toxigenic culture [TC; see below]
[15, 16]). In contrast, the assays have high (96% to 98%) specific-
ity versus TC (15, 16). Attempts have been made to increase sen-
sitivity by combining detection of a more sensitive but less specific
target, glutamate dehydrogenase (GDH), with detection of toxin;
however, this test must be followed by nucleic acid amplification
testing (NAAT; see below) to resolve discordant results (GDH
positive [GDH�]/toxin negative [toxin�]), increasing cost and
time to results (5).

The test historically used as the laboratory gold standard, TC
(in which C. difficile is cultured from stool and isolates are tested
for cytotoxin production by cytotoxicity assay [3, 5]), has limited
utility for clinical diagnosis. TC methods are slow (requiring 72 to
96 h), nonstandardized, and unsuitable for routine clinical testing.
An additional limitation lies in the fact that TC examines toxin
production in vitro, which may not reflect the strain’s production
of toxins in the highly variable in vivo environment. Notably,
Akerlund et al. (17) demonstrated no correlation between fecal
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toxin levels and toxin yields in vitro for given isolates or between in
vitro yields and disease severity.

An alternative reference standard that detects toxin directly in
stool filtrate is the cell culture cytotoxicity assay, which detects
characteristic cell rounding in the presence of functional toxin.
This qualitative, subjective assay is approximately 86% sensitive
compared to TC (16) and primarily detects toxin B, which is far
more potent than toxin A in this assay (18); specificity of cytotox-
icity is confirmed by neutralizing antitoxin antibodies. Like TC,
this assay is slow (requiring 24 to 48 h of incubation), nonstan-
dardized, and not widely used for clinical testing. However, a re-
cent United Kingdom-based study (19) compared TC with cyto-
toxicity testing on more than 12,000 specimens and correlated
results with clinical data. While positive cytotoxicity assay re-
sults correlated with increased mortality, the combination of
positive TC and negative cytotoxicity assay results did not, in-
dicating that the actual presence of toxin (and not just the
presence of toxigenic C. difficile) was of primary importance. The
authors concluded that “detection of toxin is an essential step in
the diagnosis of C. difficile infection” and proposed a new diag-
nostic category of “C. difficile excretor” (TC positive but cytotox-
icity assay negative) to characterize patients without CDI but with
possible colonization.

Given the suboptimal sensitivity of EIAs and the complexities
and delayed turnaround times of the cytotoxicity assay (and TC),
many laboratories have turned to NAAT for detection of the tcdA
and tcdB genes, with its potential for high sensitivity and short
turnaround time (despite potentially higher expense). However,
despite relatively high sensitivity and specificity versus TC (90%
and 96%, respectively, in a large comparison study [20]), the use
of NAAT (like that of TC) is confounded by its inability to distin-
guish disease from colonization (5, 21). The problem remains that
positive NAAT results indicate the presence of organisms capable
of producing toxin—not whether (or at what levels) they are ac-
tually producing it in vivo. While this information may be opti-
mal for determining the need for infection control measures, it
is not necessarily optimal for deciding whether or not C. difficile
is the cause of the patient’s symptoms (22), and patients should
be selected appropriately for testing with this highly sensitive
method.

IS IT PREFERABLE TO DETECT TOXINS OR TOXIGENIC
ORGANISMS?

Whether detection of toxins (EIA, cytotoxicity assay) or detection
of toxigenic organisms (NAAT, TC) has higher clinical utility for
diagnosis of CDI clearly remains controversial. Arguing for the
higher utility of toxin detection, multiple studies comparing the
clinical features of patients with different test outcomes have
demonstrated that NAAT-positive, toxin-negative patients have
milder symptoms than NAAT-positive, toxin-positive patients
(see, e.g., references 22, 23, and 24), and others have shown that
toxin-positive patients have higher mortality than toxin-negative
patients (see, e.g., references 19, 22, 25, 26, and 27). Further argu-
ing for the clinical utility of toxin detection, disease severity has
been correlated to stool toxin levels in some preliminary studies
(17, 19, 25, 28, 29), suggesting that the ability to quantify toxin
levels in stool could potentially be clinically valuable to predict
disease and treatment outcomes and in identifying those who
need aggressive therapy. Recent data (30) indicate that toxins also
may be detectable in blood in some individuals with CDI, provid-

ing another potential use for an ultrasensitive toxin detection
tool. However, arguing against the utility of toxin detection
(and potentially against ultrasensitive detection, in particular),
it must be noted that multiple studies have detected toxin in the
stool of some asymptomatic individuals (see, e.g., references
31, 32, and 33) and that even after effective therapy (i.e., with
clinical improvement) toxin may remain detectable in stool in
some patients (see, e.g., references 34 and 35). Clearly, while
toxin is necessary for clinical disease, it is not sufficient, in that
toxin can be present in stool in the absence of symptoms; the
impact of host immunity on detectable toxin levels also re-
mains unclear.

NOVEL APPROACHES TO ULTRASENSITIVE TOXIN
DETECTION

Given the limitations of existing diagnostic testing and the build-
ing body of evidence that detection of toxins (rather than toxi-
genic organisms) has the highest clinical utility, the field would
seem to be poised for a simple toxin detection test that combines
high analytical sensitivity with the clinical specificity of toxin de-
tection. In considering the potential utility of ultrasensitive assay
technologies, an important initial question is what analytical sen-
sitivity should be targeted for assay development. The current an-
alytical limits of detection (LODs) for some of the highest-per-
forming EIAs (16) range from 0.8 to 2.5 ng/ml, i.e., �1 ng/ml, in
stool (36, 37). Ryder et al. (28; discussed below) have described a
cell-based assay for quantification of toxin B in stool and cal-
culated toxin concentrations down to as low as 30 pg/ml. Their
data indicated that almost half of the toxin-positive specimens
in their study would not be detected by EIAs with LODs of �1
ng/ml. Conventional cytotoxicity assays have demonstrated
analytical LODs far below those of EIA for detection of toxin B
in buffer (e.g., 1.5 pg/ml [38]), but achievable LODs for detec-
tion of toxins in stool samples appear to be higher (29, 39).
Older literature (40) states that “1 pg of toxin B is sufficient to
cause rounding of the cells” in this assay format, but how this
corresponds to an actual concentration of toxin in stool is un-
clear.

A team led by Yi-Wei Tang, in collaboration with ACEA Bio-
sciences (San Diego), has developed a real-time cellular analysis
(RTCA) assay for detection of functional C. difficile toxin B di-
rectly from stool. This assay applies samples to cultured HS27 cells
dispensed in microwells with imbedded electrodes and then mea-
sures cell status over time in “cell index” (CI) units, based on
changes in electrode impedance with cytotoxic effects (changes in
cell number, morphology, and spreading). The first generation of
this assay (28) had a LOD for toxin B of 0.2 ng/ml and took �48 h
to run. A second-generation assay (“RTCA2” [29]) incorporates a
front-end sample processing step (“immunomagnetic separation
enrichment process”) in which toxin B is first captured from di-
luted stool supernatant via magnetic beads coated with toxin B-
specific monoclonal antibodies (described as “nonneutralizing”);
after elution, captured toxins are inoculated to cultured HS27 cells
as described above. The cells are precultured (with CI monitoring,
establishing a baseline CI) for 18 to 24 h on the specialized plates
prior to addition of sample eluates, after which incubation of up to
36 h (with monitoring at 5-min intervals) is required for CI mea-
surements. The time point at which the normalized cell index
(nCI) has dropped by 30% is considered a “positive time step”
(PST) which in turn is used to calculate toxin concentrations in
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samples by comparison to a standard curve generated with buffer
spiked with purified toxin B (List Biological Laboratories [Camp-
bell, CA]), also taken through the immunocapture procedure. The
calculated LOD for RTCA2 for detection of toxin in stool was 0.12
ng/ml (29). Among the 51 specimens that tested positive by
RTCA2 during assay validation, the mean PST ranged from 1.43
to 35.85 h; the total turnaround time was approximately 60 h.
Sensitivity and specificity of the RTCA2 versus quantitative toxi-
genic culture (qTC) were 96.2% and 99.7%, respectively, which
were similar to the performance of NAAT (Xpert C. difficile assay
[Cepheid, Sunnyvale, CA]) versus qTC (100.0% and 99.7%, re-
spectively).

The authors (29) also performed a retrospective chart review to
evaluate CDI severity (broken into 6 clinical categories, including
no CDI) in study cohort patients. In the 51 patients whose stools
tested positive by RTCA2, comparisons of measured toxin B con-
centrations across the 5 represented severity score groups indi-
cated a correlation between toxin concentration and clinical CDI
severity (R2 � 0.427, P � 0.002), though no significant correlation
between clinical CDI severity and threshold cycle (CT) values
(Xpert) or toxigenic C. difficile bacterial loads by qTC were ob-
served. Notably, 14/51 patients were determined not to have CDI
(severity group 1); the mean stool toxin B concentration in this
group as measured by RTCA2 was 2.22 ng/ml (median, 1.59 ng/
ml). The fact that this measured concentration is above the LOD
of standard EIA, in combination with the very high sensitivity of
the RTCA2 assay versus qTC and NAAT in this study (see above),
might raise some uncertainty about the accuracy of the assay’s
calibration curve. However, given that this assay methodology
measures concentrations of functional toxin rather than total
toxin as detected by immunoassay, it is difficult to directly com-
pare the LODs of the two types of assays. Measuring functional,
and thus biologically relevant, toxin is one advantage of this type
of assay. However, it should be noted here that cytotoxicity assays
by definition measure only one aspect of toxin function and fur-
thermore predominantly detect toxin B, thus potentially underes-
timating the contributions of toxin A to disease. The authors note
the potential disadvantages of prolonged turnaround time and
complexity of the RTCA2 assay and are working to improve both.
Importantly, differential immunodetection of toxin B from highly
virulent strains of C. difficile has recently been demonstrated (41),
making it imperative that the front-end immunocapture step of
this assay be performed with antibodies that have been shown to
detect toxin B from all clinically relevant C. difficile strains.

Investigators from the Feng laboratory (18) developed a cell-
based immunocytotoxicity assay similarly based on a real-time
cell electronic sensing system (xCELLigence; Roche Applied Sci-
ence, Indianapolis, IN), with readouts in CI units. These investi-
gators uniquely utilized a mouse monoclonal antibody (A1H3)
against toxin A to enhance its cytotoxic effect on mRG1-1 cells (an
engineered CHO cell line expressing murine Fc�RI-� chain [18])
attached to the bottom of microelectrode-embedded microplate
wells. Using this method, the team achieved a sensitivity for toxin
A of 0.1 to 1 pg/ml in buffer and also managed to detect toxin
activity in a small number of porcine stool samples (the LOD for
toxin detection in stool was not reported). Overall turnaround
time for this assay was as short as 3 to 4 h, achieved by adding
freshly thawed mRG1-1 cells (from cryopreservation) together
with toxins to the microplate wells and thus avoiding a prolonged
preculture step.

An alternative immunoassay approach to ultrasensitive toxin
detection has recently been developed based on single-molecule
array (Simoa) technology (39). Simoa technology (Quanterix;
Lexington, MA), also known as “digital enzyme-linked immu-
nosorbent assay (ELISA),” is based on efficient capture, labeling,
and detection of single protein molecules on paramagnetic beads
in arrays of femtoliter-sized wells; in terms of achievable LODs,
digital ELISA is typically 1,000-fold more sensitive than conven-
tional ELISA (42). Beth Israel Deaconess Medical Center investi-
gators, in collaboration with Quanterix, developed digital ELISAs
for toxins A and B and validated the assays using both culture
filtrates prepared from a panel of clinical C. difficile strains (rep-
resenting the most common strains in circulation) and adult clin-
ical stool specimens submitted to the hospital laboratory for rou-
tine testing (NAAT) for C. difficile. The digital ELISAs detected
toxins A and B produced by all of the strains in the panel and
detected native toxins in stool with LODs of 0.45 pg/ml (toxin A)
and 1.50 pg/ml (toxin B), respectively, as calibrated against puri-
fied native toxins spiked into NAAT-negative stool samples. Total
assay time was 69 min, and sample processing prior to testing was
minimal (dilution and filtration); assays were performed on an
automated platform (“HD-1”).

For validation of the digital ELISAs, 149 clinical stool samples
(previously tested by NAAT [illumigene, Meridian Bioscience,
Inc.]) were tested by TC (followed by restriction endonuclease
analysis [REA] typing of any C. difficile isolates), cytotoxicity as-
say, and the digital ELISAs in parallel. A clinical cutoff for positive
results for each digital ELISA was established by averaging the
Simoa signal values (average enzymes per bead, or AEB) for “true
negative” samples (negative by NAAT, TC, and cytotoxicity as-
say), plus 3 standard deviations of that mean. The calculated assay
cutoffs were 29.4 pg/ml (toxin A) and 23.3 pg/ml (toxin B), re-
spectively; with these cutoffs, the specificities of the digital ELISA
in the true-negative group were 96% and 98%, respectively. Toxin
concentrations in clinical samples as measured by digital ELISAs
spanned a �4-log dynamic range (Fig. 1). As expected, despite the
low LOD for the toxin B digital ELISA, 16/65 (25%) samples that
were positive by NAAT and 14/63 (22%) samples that were posi-
tive by TC were negative by the toxin B digital ELISA, consistent
with the presence of organism (but minimal or no toxin) in
those samples. However, 34/34 (100%) samples positive by cy-
totoxicity assay were positive by the toxin B digital ELISA (Fig.
1). There were four samples which were positive by TC and
cytotoxicity assay but negative by toxin A digital ELISA; REA
typing of isolates obtained from TC confirmed that all four
were REA type CF (known to produce toxin B but not toxin A).
Mean toxin levels (toxin [A], toxin [B], or toxin [A plus B]) in
the 5 subjects with CDI-attributable severe outcomes were
higher (1.7-fold, 1.5-fold, and 1.6-fold, respectively) than
mean toxin levels in the 68 subjects without CDI-attributable
severe outcomes, though these trends did not reach statistical
significance (P � 0.10, 0.18, and 0.08, respectively). Notably,
the sensitivity of the toxin B digital ELISA versus TC (78%
[39]) was much lower than the sensitivity reported for the
RTCA2 assay versus quantitative TC (96.2% [29]), despite the
digital ELISA having a significantly lower reported LOD than
the RTCA2 as detailed above. Both toxin B digital ELISA and
RTCA2 had high specificity versus TC (97% and 99.7%, respec-
tively), and in both studies, NAAT and TC results were tightly
correlated, suggesting similar performances of the TC in both
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studies. It is difficult to explain this discrepancy without a di-
rect comparison of the two assays, given the different method-
ologies used for toxin detection, different standards used for
assay calibration, and potential differences in sample handling
and clinical cohorts studied.

Alternative immunoassay approaches to ultrasensitive toxin
detection are currently in early development, including two
based on sandwich-type electrochemical immunosensor meth-
odology (43, 44). Preliminarily, both methods appear to be able
to detect toxins in buffer with analytical LODs of �1 pg/ml;

definition of LOD for toxin in stool samples and, ultimately,
assay validation using well-characterized clinical samples will
provide important detail as to the potential clinical utility of
these approaches.

In summary, a tool capable of sensitive detection and quanti-
fication of C. difficile toxins in stool offers significant potential
for improvements to the current paradigm for diagnosis of
CDI. Compared to methods that detect toxigenic organism,
ultrasensitive toxin detection may allow diagnosis of CDI with
increased clinical specificity, without sacrificing clinical sensi-
tivity. For such a tool to be suitable for clinical use, it must
improve on the complexity and lengthy turnaround times lim-
iting cytotoxicity assays, while also improving on the sensitivity
limitations of currently available EIAs; optimally, the new tool
will be rapid, robust, and simple to use. Future studies should
focus on determining the clinical diagnostic and prognostic
value of ultrasensitive detection and quantification of stool
toxins (both A and B) in symptomatic patients, as well as the
clinical significance of TC or NAAT positivity in the absence of
detectable toxin. Optimization of clinical cutoffs for these ul-
trasensitive assays may be refined by analysis of toxin presence
and quantity in asymptomatic hosts and the potential impact of
host factors (particularly host antitoxin antibodies) on disease
expression. If a direct and definitive correlation between toxin
quantities and clinical course were shown, this new tool would
have not only diagnostic but also prognostic value, allowing
toxin measurements made at the time of diagnosis to influence
management decisions—a rational yet entirely new direction
for the field.
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