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Abstract

Purpose—Autosomal recessive non-syndromic deafness (ARNSD) is characterized by a high
degree of genetic heterogeneity with reported mutations in 58 different genes. This study was
designed to detect deafness causing variants in a multiethnic cohort with ARNSD by using whole-
exome sequencing (WES).

Methods—After excluding mutations in the most common gene, GJBZ2, we performed WES in
160 multiplex families with ARNSD from Turkey, Iran, Mexico, Ecuador and Puerto Rico to
screen for mutations in all known ARNSD genes.

Results—We detected ARNSD-causing variants in 90 (56%) families, 54% of which had not
been previously reported. Identified mutations were located in 31 known ARNSD genes. The most
common genes with mutations were MYO15A (13%), MYO/7A (11%), SLC26A4 (10%),
TMPRSS3 (9%), TMC1 (8%), ILDR1 (6%)and CDHZ23 (4%). Nine mutations were detected in
multiple families with shared haplotypes suggesting founder effects.

Conclusion—We report on a large multiethnic cohort with ARNSD in which comprehensive
analysis of all known ARNSD genes identifies causative DNA variants in 56% of the families. In
the remaining families, WES allows us to search for causative variants in novel genes, thus
improving our ability to explain the underlying etiology in more families.

Keywords
Autosomal Recessive; Deafness; Exome; Next-Generation Sequencing

Introduction

Deafness is a global public health concern which affects 1 to 3 per 1,000 newborns.” In more
than half of the cases with congenital or prelingual deafness, the cause is genetic and most
demonstrate an autosomal recessive inheritance pattern.l Mutations in 58 different genes
have been reported to cause autosomal recessive non-syndromic deafness (ARNSD) (http://
hereditaryhearingloss.org/).

Except for one relatively common gene, GJBZ (MIM 121011), most reported mutations are
present in only a single or a few families.2 Whole-exome sequencing (WES) allows
resequencing of nearly all exons of the protein-coding genes in the genome.3 A growing
number of research and clinical diagnostic laboratories are successfully using WES for gene/
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variant identification, owing to its comprehensive analysis advalntages.‘lv5 In this study, we
present the results of WES in a large multiethnic cohort consisting of 160 families with
ARNSD that were negative for GJB2 mutations.

Material and Methods

Statement of Ethics

Subjects

This study was approved by the University of Miami Institutional Review Board (USA),
Ankara University Medical School Ethics Committee (Turkey), Growth and Development
Research Ethics Committee (Iran), Bioethics Committee of FFAA (HE-1) in Quito
(Ecuador) and the Ethics Committee of National Institute of Rehabilitation (Mexico). A
signed informed consent form was obtained from each participant or, in the case of a minor,
from parents.

We included 160 families with at least two members with nonsyndromic sensorineural
hearing loss with a pedigree structure suggestive of autosomal recessive inheritance (affected
siblings born to unaffected parents with or without parental consanguinity) and GJB2
mutations were negative. Hearing loss was congenital or prelingual onset with a severity
ranging from mild to profound. One hundred and one families from Turkey, fifty-four from
Iran, two from Mexico, two from Ecuador and one from Puerto Rico were included.
Sensorineural hearing loss was diagnosed via standard audiometry in a sound-proof room
according to standard clinical practice. Clinical evaluation of all affected individuals by a
geneticist and an otolaryngologist included a thorough physical examination, otoscopy, and
ophthalmoscopy. Tandem walking and the Romberg test were used for initial vestibular
evaluation with more detailed tests if needed based on symptoms and findings. Laboratory
investigation included but was not limited to an EKG, urinalysis, and, when available, a high
resolution CT scan of the temporal bone or an MRI to identify inner ear anomalies. DNA
was extracted from peripheral leukocytes of each member of the family by standard
protocols.

Whole-Exome Sequencing

Agilent SureSelect Human All Exon 50 Mb versions 3, 4, and 5 (Agilent Technologies Santa
Clara, CA) were used for in-solution enrichment of coding exons and flanking intronic
sequences following the manufacturer's standard protocol. The enriched DNA samples were
subjected to standard sample preparation for the HiSeq 2000 instrument (Illumina San
Diego, CA). The lllumina CASAVA v1.8 pipeline was used to produce 99 bp sequence
reads. BWA® was used to align sequence reads to the human reference genome (hg19) and
variants were called using the GATK (https://www.broadinstitute.org/gatk/) software
package.7 All single nucleotide variants (SNVs) and insertion/deletions (INDELS) were
submitted to SeattleSeq137 for further characterization and annotation. Sanger sequencing
was used for confirmation and segregation of the variants in each family.
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Bioinformatics Analysis

Results

We analyzed WES data using our in house tool (https://genomics.med.miami.edu). Our
workflow is seen in Figure 1. The analysis started with QC checks including the coverage
and average read depth of targeted regions, numbers of variants in different categories, and
quality scores. All variants were annotated and categorized into known and novel variants.
As previously recommended, we filtered variants based on minor allele frequency of <0.005
in dbSNP141.2 We also filtered out variants that are present in >10 samples in our internal
database of >3,000 exomes from European, Asian, and American ancestries that includes
Turkish, Iranian, Mexican, Ecuadorian, and Puerto Rican samples (Figure 1). Autosomal
recessive inheritance with both homozygous and compound heterozygous inheritance
models, and a genotype quality (GQ) score >35 for the variant quality were chosen.
Missense, nonsense, splice site, in-frame INDEL and frame-shift INDELSs in the known
ARNSD genes (supplementary data) were selected. Missense variants that remained after
these filters were later analyzed for presence in the Human Gene Mutation Database
(HGMD) (www.hgmd.cf.ac.uk) and having a pathogenic prediction score at least in two of
the following tools: PonPhenZg, SIFTlO, MutationAssessorll, and MutationTaster'2.
Finally, we used CoNIFER13 (Copy Number Inference From Exome Reads) and XHMM14
(eXome-Hidden Markov Model) to detect CNVs. ™ After this filtering, only those variants
co-segregated with the phenotype in the entire family was considered pathogenic.

On average, each exome had 99%, 95% and 88% of mappable bases of the Gencode defined
exome represented by coverage of 1X, 5X and 10X reads, respectively. Average coverage of
the mappable bases for the 58 known ARNSD genes (exons and the first and last 20 bps of
introns) were 99%, 95%, 87% for the 1X, 5X, 10X reads, respectively.

We detected pathogenic or likely pathogenic variants that can explain ARNSD in 90 (56%)
families. All identified variants co-segregated with deafness as an autosomal recesive trait.
54% of the mutations were not previously reported in HGMD. Mutations were identified in
31 ARNSD genes. The genes with mutations identified in at least three families are
MYOI15A (MIM 602666) (13%), MYO7A (MIM 276903) (11%), SLC26A4 (MIM 605646)
(10%,), TMPRSS3 (MIM 605551) (9%), TMCI (MIM 606706) (8%,), ILDR1 (MIM 609739)
(6%), CDH23 (MIM 605516) (4%), OTOF (MIM 603681) (4%), PCDH15 (MIM 605514)
(3%), and TMIE (MIM 607723) (3%). During the course of this study we reported
mutations in OTOGL (MIM 614925) and FAM658 (MIM 611410) as novel causes of
ARNSD™®* (Figure 1)(Table 1).

Discussion

Identifying causative variants in ARNSD is challenging because of (1) the extreme genetic
heterogeneity of ARNSD; (2) the presence of different categories of genetic variants such as
SNVs, INDELs and CNVs; (3) the presence of a high proportion of non-recurrent mutations
and (4) the variability in mutation frequencies in individual ARNSD genes across

Lo 18 . i .
ethnicities.”” Consequently, we performed a comprehensive analysis to detect pathogenic
SNVs, INDELs and CNVs in the ARNSD genes.
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Targeted resequencing allows identification of mutations in the interested gene sets. Recent
studies pioneered by Shearer et al. have shown the effectiveness of the targeted resequencing
of deafness genes.g'19 An advantage of the targeted resequencing over WES is having better
coverage with higher depth and significantly lowered costs, which is suitable for clinical
diagnostic labs. However, a main limitation of the targeted sequencing is the need for
revalidation of the panel after adding each new gene. In contrast, many laboratories around
the world offer WES as a diagnostic tool requiring validation only when a new WES version
is introduced. Our analysis using three different versions of an exome capture kit during the
four year period shows that the depth of coverage of WES has improved to reliably identify
most mutations in known ARNSD genes (Figure 2) (Table S1 and Table S4). Recently
developed WES approaches provide more coverage for genes that are known to cause
Mendelian disease. They are expected to cover deafness genes more efficiently. In addition,
adding in baits to improve coverage over poorly covered regions may be considered if a
better coverage is desired. It was recently shown via targeted sequencing that CNVs are a
common cause of deafness.”’ While CNV analysis of the WES data is being still optimized
for clinical usage, we integrated two currently available tools, XHMM and CoNIFER into
our WES analysis pipeline and identified large OTOA (MIM 607038), STRC (MIM 606440)
and PCDH15 (exon 27-28) homozygous deletions in our cohort, supporting a significant role
of CNVs to in deafness etiology.

In this study after excluding GJB2 mutations we detected pathogenic variants in the known
ARNSD genes in 56% of the studied families. The advantage of this study is to have large
multiplex autosomal recessive families (including affected and unaffected children) that can
be tested for co-segregation of all variants. While we identified more novel variants than
those reported in Table 1 through WES, only those variants co-segregated in the family with
deafness were considered pathogenic. Similarly heterozygous variants didn't explain the
phenotype since they did not co-segregate with deafness and were not included. WES
facilitates the cataloguing of mutations in different populations. Population characteristics
such as the rate of consanguineous marriages may affect the distribution of deafness
mutations in different populations. As expected, the vast majority of Turkish and Iranian
probands from consanguineous marriages are homozygous for the pathogenic variants
(Table 2). However, there is a marked difference between the rates of solved families in
Turkey (73%) vs. Iran (24%) (Figure 3). As seen in figure 3, the distribution of genes is also
different between the two countries. In our study, the top five genes explain 39 out of 101
families (39%) in Turkey, while only 10 out of 54 families (19%) in Iran. Moreover, our
analysis of the WES data in the unsolved Iranian families shows that there are no common
mutations in genes that are not known to be deafness genes (data not shown). Unless there
are common mutations in regions that are not well covered by WES, our data suggest that
many rare genes are responsible for the majority of hereditary deafness in the Iranian cohort.
Itis likely that there are undetected rare variants specific to certain ethnicities in Iran.21
Another advantage of WES is to allow surveying of mutations for founder effects. We
detected 7M/E ¢c.250C>T (p.R84W) in three unrelated Turkish families, which all shared a
flanking haplotype as noted previously.22 Furthermore MYO15A, MYO7A, SLC26A4,
TMPRSS3, ILDR1, OTOF, ESRRB (MIM 602167) and G/PC3 (MIM 608792) genes had
recurrent mutations with shared haplotypes indicating founder effects (Table S2).
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There is no correlation between the size of transcript and number of mutant alleles (Table
S3). There may be some deafness genes that are more prone to have mutations. Founder
effects appear to play a role because some small genes such as TM/E, ESRRB, and GIPC3
ranked high in mutation frequency because of founder mutations. Some discrepancy
between the size of a gene and number of mutations can be explained by the fact that only
certain mutations cause nonsyndromic deafness for some genes. For instance, CDHZ23,
PCDH15, MYO7A are big genes but many mutations in those genes cause Usher syndrome
(MIM 276900) instead of ARNSD. An interesting example is 7MC1 that ranks the 20th
based on size but the 5th for mutation frequency. Nonsyndromic deafness is the only
phenotype caused by 7TAMC1 mutations and none of the 7AMCZ mutations are recurrent in our
cohort. These may suggest that 7AMC1 is relatively more prone to have de novo mutations or
it is a highly conserved gene and its variants are rarely tolerated.

In conclusion, WES is a an effective tool for identifying pathogenic SNVs, INDELs and
CNVs simultaneously in ARNSD genes and provides further analysis of the unsolved
families for novel gene discovery. Identification of two novel ARNSD genesm'17 during the
course of this study testifies its power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to the participating families.

This work was supported by National Institutes of Health grant RO1DC009645 to M.T.

References

1. Morton CC, Nance WE. Newborn hearing screening--a silent revolution. N Engl J Med. 2006;
354:2151-2164. [PubMed: 16707752]

2. Duman D, Tekin M. Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci
(Landmark Ed). 2012; 17:2213-2236. [PubMed: 22652773]

3. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12
human exomes. Nature. 2009; 461:272-276. [PubMed: 19684571]

4. Diaz-Horta O, Duman D, Foster J 2nd, et al. Whole-exome sequencing efficiently detects rare
mutations in autosomal recessive nonsyndromic hearing loss. PLoS One. 2012; 7:€50628. [PubMed:
23226338]

5. Atik T, Bademci G, Diaz-Horta O, Blanton S, Tekin M. Whole-exome sequencing and its impact in
hereditary hearing loss. Genet Res (Camb). 2015; 97:e4. [PubMed: 25825321]

6. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics. 2010; 26:589-595. [PubMed: 20080505]

7. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297-1303. [PubMed:
20644199]

8. Shearer AE, Eppsteiner RW, Booth KT, et al. Utilizing ethnic-specific differences in minor allele
frequency to recategorize reported pathogenic deafness variants. Am J Hum Genet. 2014; 95:445—
453. [PubMed: 25262649]

9. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense
mutations. Nat Methods. 2010; 7:248-249. [PubMed: 20354512]

Genet Med. Author manuscript; available in PMC 2016 May 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bademci et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 7

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein
function using the SIFT algorithm. Nat Protoc. 2009; 4:1073-1081. [PubMed: 19561590]

Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to
cancer genomics. Nucleic Acids Res. 2011; 39:e118. [PubMed: 21727090]

Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the
deep-sequencing age. Nat Methods. 2014; 11:361-362. [PubMed: 24681721]

Krumm N, Sudmant PH, Ko A, et al. Copy number variation detection and genotyping from exome
sequence data. Genome Res. 2012; 22:1525-1532. [PubMed: 22585873]

Fromer M, Moran JL, Chambert K, et al. Discovery and statistical genotyping of copy-number
variation from whole-exome sequencing depth. Am J Hum Genet. 2012; 91:597-607. [PubMed:
23040492]

Bademci G, Diaz-Horta O, Guo S, et al. Identification of copy number variants through whole-
exome sequencing in autosomal recessive nonsyndromic hearing loss. Genet Test Mol Biomarkers.
2014, 18:658-661. [PubMed: 25062256]

Yariz KO, Duman D, Seco CZ, et al. Mutations in OTOGL, encoding the inner ear protein
otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet. 2012; 91:872-882.
[PubMed: 23122586]

Diaz-Horta O, Subasioglu-Uzak A, Grati M, et al. FAM65B is a membrane-associated protein of
hair cell stereocilia required for hearing. Proc Natl Acad Sci U S A. 2014; 111:9864-9868.
[PubMed: 24958875]

Duman D, Sirmaci A, Cengiz FB, Ozdag H, Tekin M. Screening of 38 genes identifies mutations in
62% of families with nonsyndromic deafness in Turkey. Genet Test Mol Biomarkers. 2011; 15:29—
33. [PubMed: 21117948]

Shearer AE, DelLuca AP, Hildebrand MS, et al. Comprehensive genetic testing for hereditary
hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A. 2010; 107:21104—
21109. [PubMed: 21078986]

Shearer AE, Kolbe DL, Azaiez H, et al. Copy number variants are a common cause of non-
syndromic hearing loss. Genome Med. 2014; 6:37. [PubMed: 24963352]

Mahdieh N, Rabbani B, Wiley S, Akbari MT, Zeinali S. Genetic causes of nonsyndromic hearing
loss in Iran in comparison with other populations. J Hum Genet. 2010; 55:639-648. [PubMed:
20739942]

Sirmaci A, Ozturkmen-Akay H, Erbek S, et al. A founder TMIE mutation is a frequent cause of
hearing loss in southeastern Anatolia. Clin Genet. 2009; 75:562-567. [PubMed: 19438934]

Cengiz FB, Duman D, Sirmaci A, et al. Recurrent and private MYO15A mutations are associated
with deafness in the Turkish population. Genet Test Mol Biomarkers. 2010; 14:543-550.
[PubMed: 20642360]

Janecke AR, Meins M, Sadeghi M, et al. Twelve novel myosin VIIA mutations in 34 patients with
Usher syndrome type I: confirmation of genetic heterogeneity. Hum Mutat. 1999; 13:133-140.
[PubMed: 10094549]

Cremers FP, Kimberling WJ, Kulm M, et al. Development of a genotyping microarray for Usher
syndrome. J Med Genet. 2007; 44:153-160. [PubMed: 16963483]

Bharadwaj AK, Kasztejna JP, Hug S, Berson EL, Dryja TP. Evaluation of the myosin VIIA gene
and visual function in patients with Usher syndrome type |. Exp Eye Res. 2000; 71:173-181.
[PubMed: 10930322]

Yoshimura H, lwasaki S, Nishio SY, et al. Massively parallel DNA sequencing facilitates diagnosis
of patients with Usher syndrome type 1. PLoS One. 2014; 9:¢90688. [PubMed: 24618850]

Landa P, Differ AM, Rajput K, Jenkins L, Bitner-Glindzicz M. Lack of significant association
between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged
vestibular aqueducts. BMC Med Genet. 2013; 14:85. [PubMed: 23965030]

Blons H, Feldmann D, Duval V, et al. Screening of SLC26A4 (PDS) gene in Pendred's syndrome: a
large spectrum of mutations in France and phenotypic heterogeneity. Clin Genet. 2004; 66:333—
340. [PubMed: 15355436]

Van Hauwe P, Everett LA, Coucke P, et al. Two frequent missense mutations in Pendred syndrome.
Hum Mol Genet. 1998; 7:1099-1104. [PubMed: 9618166]

Genet Med. Author manuscript; available in PMC 2016 May 18.



1duosnue Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bademci et al.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 8

Coucke PJ, Van Hauwe P, Everett LA, et al. Identification of two different mutations in the PDS
gene in an inbred family with Pendred syndrome. J Med Genet. 1999; 36:475-477. [PubMed:
10874637]

Hildebrand MS, Kahrizi K, Bromhead CJ, et al. Mutations in TMC1 are a common cause of
DFNB7/11 hearing loss in the Iranian population. Ann Otol Rhinol Laryngol. 2010; 119:830-835.
[PubMed: 21250555]

Kurima K, Peters LM, Yang Y, et al. Dominant and recessive deafness caused by mutations of a
novel gene, TMCL, required for cochlear hair-cell function. Nat Genet. 2002; 30:277-284.
[PubMed: 11850618]

Romanos J, Kimura L, Favero ML, et al. Novel OTOF mutations in Brazilian patients with auditory
neuropathy. J Hum Genet. 2009; 54:382-385. [PubMed: 19461658]

Rodriguez-Ballesteros M, Reynoso R, Olarte M, et al. A multicenter study on the prevalence and
spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing
impairment and auditory neuropathy. Hum Mutat. 2008; 29:823-831. [PubMed: 18381613]

Naz S, Giguere CM, Kohrman DC, et al. Mutations in a novel gene, TMIE, are associated with
hearing loss linked to the DFNB6 locus. Am J Hum Genet. 2002; 71:632-636. [PubMed:
12145746]

Chakchouk I, Grati M, Bademci G, et al. Novel mutations confirm that COL11A2 is responsible
for autosomal recessive non-syndromic hearing loss DFNB53. Mol Genet Genomics. 2015; doi:
10.1007/s00438-015-0995-9

Collin RW, Kalay E, Oostrik J, et al. Involvement of DFNB59 mutations in autosomal recessive
nonsyndromic hearing impairment. Hum Mutat. 2007; 28:718-723. [PubMed: 17373699]
Riazuddin S, Ahmed ZM, Fanning AS, et al. Tricellulin is a tight-junction protein necessary for
hearing. Am J Hum Genet. 2006; 79:1040-1051. [PubMed: 17186462]

Yang T, Wei X, Chai Y, Li L, Wu H. Genetic etiology study of the non-syndromic deafness in
Chinese Hans by targeted next-generation sequencing. Orphanet J Rare Dis. 2013; 8:85. [PubMed:
23767834]

Genet Med. Author manuscript; available in PMC 2016 May 18.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Bademci et al.

Page 9

WES Pipeline

| SNVs & INDELs

| WES 160 probands -
Unrelated multiplex families with ARNSD
85 families -
Causative SNVs/INDELs in known deafness genes
\ 7 *  <0.005in dbSNP ; <10 in ethnicity-matched >400 exomes

¢ Sanger confirmation and co-segregation with deafness in the family
*  Pathogenicity prediction to categorize variants:
» Number of cases previously reported with variant

» Frequency of variant in controls
> Results of published functional analyses

Unsolved Families

N/ » Results of four in silico prediction tools
: 3 families -
CNV Detection
Homozygous CNVs (deletion) in known deafness genes
L
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~
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Search is ongoing for more novel genes

Fig.1. Overall workflow of our WES pipeline
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samples studied with different capture kits (D).
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Fig.3.
Distribution of causative DNA variants in known ARNSD genes according to the family

origin (A) and variant categories (B).
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Table 2
Overview of mutation detection and parental consanguinity

Page 16

Number of Homozygous

Number of Compound

Countries  Number of Families Reported Parental Consanguinity Probands (consanguineous) Hetg;)nzgnogjséggsa)nds
Turkey 101 82 67 (59) 5(2)
Iran 54 31 12 (10) 1(2)
Ecuador 2 0 0 1(0)
Mexico 2 0 0 1(0)
Puerto Rico 1 0 0 1(0)
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